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Auditory scene analysis is the process of percep-
tually segregating multiple sound sources and oth-
er signals such as reverberation, the aggregated 
acoustic reflections from multiple nearby surfaces.

Stimuli:  600 reverberant sound sources created by convolving a 
sound source (spoken sentence) with a reverberant impulse re-
sponse (IR) characterizing the structure of a sampled space.  

Subjects:  14 adults (mean age = 32.3, SD = 5.7 years, 9 male).

Human listeners are perceptually sensitive to the temporal and spec-
tral statistical regularities of reverberation, facilitating perceptual seg-
regation in scene analysis1, and coding sound sources and their rever-
berant impulse responses (IRs) separably in the brain2.

How do the neurodynamics of reverberant scene analysis in 
humans track acoustics vs. perceptual properties? 
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1. BACKGROUND

2. METHODS

Example properties of reverb
•	 exponential decay
•	 a frequency-dependent decay 

profile.

Synthetic IRs were generated to 
match or deviate from the temporal 
or spectral features of real-world IRs1.

Real-world vs. synthetic reverberations 
are neurally decodable

3. RESULTS
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4. CONCLUSIONS 
•	Participants reliably distinguished real-world from synthetic reverbera-

tion even with stimuli containing complex speech sound sources, with per-
formance mirroring previous work1.

•	Even with a wide variety of IRs used, and speech source sounds unique 
for each trial, we were able to decode real vs. fake stimulus conditions, 
suggesting the neural response pattern captured consistent statistics 
of auditory scenes robustly across salient properties of both the varying 
source and the trial-unique IRs.

•	Stimulus conditions were better decoded when subselecting correct 
trials (about 75% overall), suggesting that perceptual report, not just stimu-
lus attributes, is related to classifier performance.

•	The differing time courses of the brain-behavior correlations suggest hetero-
geneous processing of temporal and spectral stimulus cues.
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p < .05, 2-tailed, FDR corrected. 

N=14, cluster-definition threshold, p < .05, 1000 permutations 

Trial N

Trial 1
Trial 2

•	Overall task performance was above 
chance; it was more accurate to real 
than fake conditions. 

  

•	Response time did not differ across 
conditions. 

Neural decoding accuracy correlates with task performance

Decoding accuracy and behavioral- 
performance correlated significantly 
during two windows time from 800 ms 
to 1000 ms, and 2100 ms to 2400 ms
after stimulus onset.
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Decoding-performance correlations varied widely across conditions
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** t= 4.12, df=26, p < 0.001
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p < .05, 2-tailed, FDR corrected. 

Time (sec)

Time x Time decoding matrix
decoding accuracy

60 5256 48 44

Across fake conditions, performance 
varied widely, resembling priors re-
sults1
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