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ABSTRACT
Wayfinding is a major challenge for visually impaired travelers,
who generally lack access to visual cues such as landmarks and in-
formational signs that many travelers rely on for navigation. Indoor
wayfinding is particularly challenging since the most commonly
used source of location information for wayfinding, GPS, is inac-
curate indoors. We describe a computer vision approach to indoor
localization that runs as a real-time app on a conventional smart-
phone, which is intended to support a full-featured wayfinding
app in the future that will include turn-by-turn directions. Our
approach combines computer vision, existing informational signs
such as Exit signs, inertial sensors and a 2D map to estimate and
track the user’s location in the environment. An important feature
of our approach is that it requires no new physical infrastructure.

While our approach requires the user to either hold the smart-
phone or wear it (e.g., on a lanyard) with the camera facing forward
while walking, it has the advantage of not forcing the user to aim
the camera towards specific signs, which would be challenging for
people with low or no vision. We demonstrate the feasibility of
our approach with five blind travelers navigating an indoor space,
with localization accuracy of roughly 1 meter once the localization
algorithm has converged.
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1 INTRODUCTION AND RELATEDWORK
Indoor wayfinding is a major challenge for blind and visually im-
paired travelers, who generally lack access to visual cues such as
landmarks and informational signs that many travelers rely on for
navigation. Outdoor environments, while often more dangerous
to traverse than indoor environments, have the advantage of ac-
cess to GPS-based apps. These include a number that are either
expressly designed for, or accessible to, visually impaired users,
including Nearby Explorer1, Seeing Eye GPS2, BlindSquare3 and
Google Maps4. However, GPS is only accurate outdoors, and the
goal of making similar tools for travelers of all abilities function
in GPS-denied indoor environments is an area of active research,
with entire conferences dedicated to this subject5, and increasing
presence in the marketplace.

A range of technologies have been developed for wayfinding
applications; see [24] for a recent overview. Early work in accessible
wayfinding emphasized the use of infrared light beacons [2], RFIDs
[9] and visual markers [3, 27]. More recently, low-energy Bluetooth
Beacons have been deployed in a variety of environments to sup-
port localization for use by apps such as NavCog [1]. All of these
systems, however, require additional physical infrastructure, with
associated installation and maintenance costs that may discourage
implementation [10].

Alternative approaches for indoor localization are being devel-
oped that require no new infrastructure. The most popular among
these is the use of Wi-Fi access points [8], now used by main-
stream apps such as Apple Maps6 in a growing number of airports7
and shopping malls8. Another approach is to use magnetic signa-
tures [21, 25], e.g., used in the IndoorAtlas9 and Microsoft Path10
apps. However, magnetic signatures require prior calibration, are
unreliable in the absence of metallic structures (such as in build-
ings constructed primarily of wood) and may drift unpredictably

1https://www.aph.org/nearby-explorer/
2http://www.senderogroup.com/products/seeingeyegps/index.html
3http://www.blindsquare.com/
4https://maps.google.com/
5https://www.ipin-conference.org/
6https://www.idownloadblog.com/2019/04/25/apple-maps-indoor-maps-airports-malls
7https://www.apple.com/ios/feature-availability/#maps-indoor-maps-airports
8https://www.apple.com/ios/feature-availability/#maps-indoor-maps-malls
9https://www.indooratlas.com/
10https://mspg.azurewebsites.net/
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over time, e.g., whenever large metallic structures such as shelves
and tables are moved. Inertial sensing approaches use the smart-
phone inertial measurement unit (IMU) to perform dead reckoning
through step detection [4, 5], but unless dead reckoning is aug-
mented with other forms of location information it drifts over time.
Moreover, such inertial-based step counting approaches require a
stable walking gait for good performance, but visually impaired
travelers sometimes walk in an irregular gait when exploring unfa-
miliar surroundings [22]. Such an irregular gait may occur when
the traveler slows down (and perhaps stops momentarily) or steps
sideways to explore.

Computer vision is a promising technology that enables indoor
localization without the need for added infrastructure [11, 15],
though it can also be used in conjunction with added infrastruc-
ture [18]. Some computer vision-based localization systems have
relied on special hardware such as Google Tango [17], but other
approaches such as VizMap [11] use standard smartphones. More-
over, the special tracking and positional estimation functions of
Google Tango are now provided by the ARKit and ARCore Aug-
mented Reality libraries available on standard iOS and Android
mobile devices; the Google Visual Positioning System (VPS)11 uses
a standard Android smartphone to provide more precise localiza-
tion information to augment what is available by other means,
including GPS and Wi-Fi. More recently, work by [23] addresses
the last-few-meters wayfinding problem, which uses computer vi-
sion to recognize landmarks, read signage and identify places to
complement the navigation guidance provided by a GPS-based
navigation tool, whose noisy localization estimates only suffice to
guide the user to the vicinity of their destination. Computer vision
is combined with LiDAR in CaBot [14], which is a suitcase-sized
autonomous navigation robot that localizes a visually impaired user
and provides real-time orientation and mobility guidance (towards
a desired destination while avoiding obstacles such as other people).

We propose a computer vision-based localization approach, im-
plemented as a stand-alone real-time iPhone app. Our approach
uses a 2D map (floor plan) that is more lightweight than the complex
3D models used by SLAM (simultaneous localization and mapping)
technology such as [11]. It combines Visual-Inertial Odometry (VIO)
(see Sec. 2.1) to estimate the user’s relative (ego-) motion in the
environment with location information obtained from sign recogni-
tions and geometric constraints imposed by walls and other barriers
indicated on the map. In contrast with the Clew iOS app [28], which
uses VIO to record a visually impaired traveler’s relativemovements
(i.e., dead reckoning) and facilitates path retracing, our approach
estimates and tracks the user’s absolute location in the environment,
i.e., their location on a map. The only requirements are a 2D floor
plan of the environment, which can be easily converted into a digi-
tal map and annotated, along with a few pictures of highly visible
signs, used as landmarks, to be logged in the same map. Compared
to other mechanisms that utilize visual SLAM and use generic vi-
sual features for reference and localization, the landmarks (signs)
selected for our system are arguably more stable over time and
less susceptible to superficial changes such as lighting conditions,
moved furniture, new posters or other wall coverings, etc. This is a
critical issue to ensure that the spatial information encoded in our

11https://ai.googleblog.com/2019/02/using-global-localization-to-improve.html

system remains valid through time, without the need for frequent
updates.

2 APPROACH
We first review our recent work that this paper builds on before
describing the new approach in detail.

2.1 Previous approach
The approach we describe in this paper builds on our recent work
[6], which is a marker-based computer vision system in which a
collection of unique markers (2D barcodes) are posted on the wall
every several meters (roughly one such marker for each office door
in an office building). The basic principle of [6] is that the user’s
location can be determined in any frame in which a marker is
recognized by estimating the camera’s pose relative to the marker
and using the marker’s known location and orientation on the 2D
map. The algorithm uses Visual-Inertial Odometry (VIO) [16] to
update the absolute location estimate from the most recent marker
recognition in the great majority of frames in which no marker is
recognized.

VIO is an algorithm that performs dead reckoning, i.e., estimating
the user’s movements in the environment, by combining computer
vision and the smartphone’s inertial measurement unit (IMU). VIO
is now a standard feature on modern smartphones that supports
Augmented Reality (AR) applications, and is included in ARKit12
for iOS and ARCore13 for Android. It estimates movements in 6
degrees of freedom: X , Y , Z translations (in which +Y is aligned
to the up direction defined by gravity and the XZ plane is the
horizontal plane) in physical units (i.e., meters) and 3D orientation
defined by roll, pitch and yaw. It is straightforward to project the
6D VIO motion estimates to the horizontal reference frame of the
2D map; given a known starting location and yaw (hereafter yaw
refers to the direction of the camera line of sight projected on the
horizontal plane), we can estimate the user’s trajectory on the map.
While the resulting VIO trajectory is usually a good approximation
of the user’s actual trajectory, the location estimate drifts over time,
and the overall trajectory scale may be off by as much as 10% or
more. We will describe our new approach in Sec. 2.2 that overcomes
the limitations imposed by VIO noise (which could, for instance,
erroneously estimate that the user is walking through a wall) and
by the need for a known initial location and yaw, which is not
always available.

In [6] we devised a simple app on an iPhone 8 that logs video
frames andVIO data at several frames per second. The only feedback
it provides to users is an audio warning if the camera is pointed too
far above or below the horizon, to maximize the opportunities for
capturing usable pictures of markers. The localization algorithm
was implemented on a laptop computer for offline analysis of the
logged data. Our experiments with four blind users demonstrated
the feasibility of this marker-based localization approach.

2.2 New approach
Our new approach builds on the previous work described above by
adding three principal elements: (1) Recognition of standard signs,

12https://developer.apple.com/arkit/
13https://developers.google.com/ar/
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including Exit signs, instead of markers (which are no longer used).
(2) Using the locations of walls and other impassable barriers in the
map, as well as the locations of signs, to constrain the location and
motion estimates. (3) Maintaining and evolving multiple location
hypotheses over time using a particle filter, instead of the single
hypothesis that we updated over time in [6]. Next we describe each
element in turn.

2.2.1 Sign recognition. A key element of our approach is the use
of informational signs as beacons: when a sign is recognized in an
image, the apparent location of the sign in the image determines
the user’s approximate location relative to the sign. (If there are
multiple signs in the floor plan with identical appearance then a sin-
gle sign recognition in isolation cannot determine which sign was
recognized; multiple hypotheses must be considered, which is an
important motivation for the particle filter described in Sec. 2.2.3.)
Our current system recognizes just one type of sign: the standard
emergency Exit sign, which is particularly useful as a beacon be-
cause the line-of-sight to an Exit sign is legally mandated to be
visible throughout any workplace or commercial space [20]. We
build on our past Exit sign recognition algorithm [7], which we
applied in our earlier work on indoor localization [22] that used
step detection to perform dead reckoning. The Exit sign recognition
algorithm is a fast Adaboost cascade-based approach that runs on
the smartphone in approximately 7ms on a 630 × 360 image, and
returns an approximate bounding box for each detected Exit sign.

Given an Exit sign bounding box estimate, we use the centroid
of the bounding box to estimate the direction to the sign and its
distance. The direction to the sign is calculated as the angular dif-
ference between the yaw direction (the direction of the camera
line of sight projected on the horizontal plane) and the direction
of the sign centroid in the image. The distance is calculated using
3D orientation information furnished by VIO, assuming knowledge
of two pieces of information: (a) the physical height of the sign
centroid above the ground and (b) the height of the camera above
the ground (which depends on the user’s height and how the smart-
phone is held or worn). In brief, the distance is estimated using the
apparent elevation of the detected sign above the horizon in the
image: the closer the sign appears to the horizon, the farther away
it is. (Note that the horizon line in the image is specified by the
camera’s pitch and roll, furnished by VIO.)

2.2.2 Visibility and traversability constraints. The map (Fig. 3) spec-
ifies the locations of walls and other barriers in addition to the
location and orientation of each sign (not shown in Fig. 3). A simple
2D ray-tracing algorithm is performed to determine where on the
map each sign is visible, taking into account both the opaqueness of
walls and the additional constraint that a sign is only recognizable
from a limited range of viewing angles. (Note that some signs, such
as Exit signs, have faces visible on both sides; this necessitates two
sign annotations sharing the same location but having opposite
orientations.) The resulting visibility map for each sign is used to
determine whether a sign is expected to be visible for a specific
location and yaw hypothesis; if it is, then when a sign is detected
in an image, the estimated direction and distance to the sign are
compared with the direction and distance implied by the location
and yaw hypothesis to evaluate the evidence for the hypothesis.

A similar ray-tracing algorithm is performed to determine if a
hypothetical trajectory should be ruled out because it implies that
the traveler is walking through a wall or other impassable barrier.
This calculation allows the particle filter to remove impossible
hypotheses.

2.2.3 Particle filter. We use a standard particle filter algorithm
[26] from robotics to represent uncertain knowledge of the user’s
location (x,y) and yaw θ ; the entire state is denoted S = (x,y, θ ).
The particle filter maintains multiple hypotheses for S that evolve
over time (see Fig. 1), continually accumulating evidence from
multiple sources (sign detections, motion from VIO and impassable
barriers indicated in the map) until it “locks on” to the correct
location, which is indicated by a tight spatial cluster of hypotheses
in the map.

The particle filter contains two main components: (a) A dynami-
cal model expressing how a hypothesis St at time t is likely to evolve
in the next time step, St+1. VIO measurements at t and t + 1 allow
us to predict St+1 in terms of St ; the dynamical model accounts for
the noise in this prediction. Note that yaw noise is very low, since
the yaw estimate is based heavily on the smartphone’s gyroscope,
which estimates yaw changes with only minimal drift over time.
By contrast, the noise in estimating spatial translations is much
larger, since VIO estimates egomotion by combining both apparent
motion cues in the image with inertial data. We compensate for
noise in the overall estimated translation scale using a scale cor-
rection factor that is drawn uniformly randomly from the interval
[1, 1.2] for each particle when it is created; this factor corrects the
scale of all spatial translations estimated by VIO for the life of the
particle. The dynamical model also rules out invalid state changes
from St to St+1 that would violate the traversability constraint. (b)
A measurement (likelihood) model that assesses the consistency
of a hypothesis St with an Exit sign detection (or non-detection).
This model compares the predicted Exit sign detection in the image
implied by St with an actual detection, taking into account the
relative distance, relative yaw and visibility implied by the map,
and assigns a likelihood score to St .

To interpret the set of particles at each time step, we apply a
kernel density estimator (KDE)[26] to estimate a spatial probability
density map, or heat map. Local maxima in this heat map above
a minimum peak threshold are considered as candidate location
estimates; the algorithm returns a location estimate if only one
substantial candidate peak exists, otherwise the algorithm declares
uncertainty.

Fig. 1 shows how the uncertainty of the heat map decreases as
the user walks and signs are detected. The top left image shows
the heat map generated by the particle filter soon after the system
is launched (red means high likelihood of the user standing in
that location, green means medium likelihood and blue means low
likelihood). Next, an Exit sign detection generates clusters of likely
locations that are compatible with the camera yaw hypothesis and
estimated distance with respect to all the Exit signs in the floor
plan. In the images that follow, as the user keeps walking, the
uncertainty decreases until most of the particles converge around a
single location in the map, yielding a strong peak in the heat map
that is interpreted by the system as a likely user location. The white
cross at the center of the cluster shows the estimated user location.
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Figure 1: Evolution of spatial probability densitymapover time showshow localization algorithmbeginswithhighuncertainty
and converges to a single well-localized peak. See text for details.

2.3 Implementation details
We initially implemented the new localization algorithm on a laptop
that analyzed data offline saved by the logging app we developed
in [6]. Then we ported the entire app to the iPhone 8, where it
runs in real time using Swift for the user interface and C++ for the
localization and computer vision algorithms; the app uses the main
rear-facing camera to acquire the video imagery needed for VIO.
The real-time app uses 50, 000 particles in the particle filter and uses
a particle filter time step of 100ms (reflecting the computational
limitations imposed by real-time performance); the logging app
records data roughly every 6 − 7ms, including the bounding boxes
of any Exit sign detections.

Both apps provide several forms of audio feedback. The first
audio feedback is to help the user keep the camera line of sight
roughly horizontal, issuing a warning whenever the camera is
pointed too far above or below the horizon. Second, both apps
monitor the status of the VIO tracking, which must be initialized
when the app is first launched by panning the camera for a few
seconds, and issue a text-to-speech (TTS) announcement after VIO

has been initialized. A “too fast” TTS announcement is issued if the
VIO tracker deems that the camera is moving too fast, in which case
the user has to slow down, or stop momentarily, until the warning
stops.

The real-time app provides three additional forms of audio feed-
back. First, every few seconds an audio tone is issued to indicate
whether the system declares a localization result (single beep) or
it declares uncertainty (double beep). Second, we defined a total
of 31 regions of interest (ROIs) on the map (see Fig. 3), one for
nearly every office door and landmark (e.g., elevator, stairwell) on
the floor; any time the algorithm estimates that the smartphone is
located inside an ROI, the app issues a brief TTS announcement.
The TTS announcement is repeated continously as long the location
remains in the ROI. We note that this user interface was designed
for the convenience of the experimenter, and is not intended to
guide the user (who often found the repeating TTS announcements
distracting and annoying); in the future we will devise a UI that
provides accessible wayfinding guidance. In addition, the app issues
an audio warning if the camera lens is covered.
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Finally, the real-time app allows the experimenter to set the
height of the smartphone camera above the floor, since the Exit sign
range estimates used by the particle filter depend on this number.

We note that the real-time app uses substantial computational
resources. In one participant experiment we measured the battery
consumption from the app: the battery charge decreased from 100%
to 87% after more than 16minutes of continuous use of the app. We
conclude that the battery consumption is significant but comparable
to other resource-intensive smartphone apps such as video games,
and is therefore not likely to prohibit real-world usage.

The app software will be open sourced upon publication of this
manuscript.

3 USER STUDIES
We conducted two user studies. The first study assessed localization
performance conducted using the logging app and offline analysis of
the data saved by it. The second study focused on the performance
of the real-time localization app. Together these studies included
a total of six blind participants (ages 27 − 72, four female/two
male). The studies were done in an iterative fashion, using our
experiences with the first few participants in each study to debug
both the software and our experimental protocol and to refine
our UI; the results from these participants are excluded from our
analysis. Results are reported from two participants in the first
study (P1 and P4) and five participants in the second study (P1, P3,
P4, P5 and P6).

Three participants used a white cane and the other three used a
guide dog. For each participant, we described the purpose of the
experiment and obtained IRB consent. Before participants used
our app, we explained how it worked, including the app’s audio
feedback and the need to avoid sudden camera movements (which
causes motion blur and thereby degrades the image quality) or cov-
ering the camera lens with the hands. Participants were instructed
to walk with whatever travel aid they wished to use (white cane
or guide dog). If the participant held the smartphone by hand (see
Fig. 2), they were instructed to aim the camera straight ahead; any
orientation (e.g., portrait or landscape) consistent with this camera
direction was permitted. Then we had each participant practice
using the app under the same conditions that would apply to the
formal experiment.

All experiments were performed on a floor of the main Smith-
Kettlewell building, with dimensions 39 m × 21 m (see Fig. 3).

3.1 User Study 1: Localization performance
using the logging app

This study assesses offline localization performance as a function
of two conditions. The first condition is the modality, i.e., how the
user holds or wears the smartphone, which has four possible values:
handheld, lanyard (which we note is a modality that is supported
by the Google Lookout app14), pocket (the smartphone is placed in
a shirt pocket with the lens facing out) and strap (the smartphone
is attached to the strap of a satchel or shoulder bag; in [6] this is
referred to as the satchel condition).

The second condition is the starting condition, which is the in-
formation that the localization algorithm has when it’s initialized.
14https://www.engadget.com/2018/05/08/google-lookout-app/

Figure 2: Participant shown (with face obscured) holding
smartphone in experiment.

The two possible starting condition values are unknown and known.
Unknown means that both the location and yaw are unknown, and
so the particles are randomly initialized with a uniform distribution
over the floor plan (including all allowed locations but not inside
walls or other barriers) and uniform yaw – this is a worst-case
assumption that would apply to the case in which a traveler knows
which floor of a building they are on but nothing else. Knownmeans
that the starting location is known to within a meter accuracy but
the yaw is unknown, which would apply to the case in which a
traveler knows their approximate starting location (e.g., near an ele-
vator) but not the direction they are facing. (We have experimented
with using the magnetometer to estimate the user’s initial yaw, but
these yaw estimates are unreliable, sometimes deviating more than
90◦ degrees from the true yaw.) Note that, while the modality is
fixed for each experimental trial that we conducted, we are free to
vary the starting condition when analyzing the data offline.

Each participant completed a total of 16 trials. The experimenter
gave turn-by-turn directions (such as “turn left in 3... 2... 1”) in
a Wizard-of-Oz paradigm [12] simulating the way a full-featured
wayfinding app would function. In each trial, the participant was
asked to use a specific modality and to complete either of two
routes, R1 (77 m long) or R2 (58 m long), in either a clockwise or
counterclockwise direction (Fig. 3). The trials were randomized so
that each block of 4 trials contained all four modalities in random
order (to minimize learning effects that could otherwise result). For

https://www.engadget.com/2018/05/08/google-lookout-app/
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Figure 3: Map of indoor environment, with dimensions 39 m × 21 m. Walls and other impassable barriers are shown in black.
A total of 31 rectangular regions of interest (ROIs), used in User Study 2, are indicated in green. Route R1 (77 m) is shown in
blue and route R2 (58m) in red.

each participant we recorded the height of the smartphone camera
above the ground for all four modalities.

3.1.1 User Study 1 ground truth procedure. We devised a simple
procedure to evaluate the localization accuracy. The procedure
establishes an approximate ground truth location at selected ref-
erence points in the path taken by the user. This is accomplished
by having an experimenter follow a few meters behind the traveler
and take a video of their footsteps. This video is reviewed offline,
with the experimenter noting each frame when the traveler passes
by a reference point (such as a door) and using visual context (e.g.,
nearby doors and other features) to determine the corresponding
ground truth location on the map. The ground truth location for
each reference point is then entered by clicking on the correspond-
ing location on the map. We estimate that the ground truth location
is accurate to about 1m, which implies that errors can be estimated
to approximately 1 m accuracy.

In our experiments we used a pre-selected set of reference points
(11 for the short circuit and 15 for the long one) to evaluate each
route, depending on the length of the route and the visibility of
landmarks. The data logged by the traveler’s app is time-synched
with the video so that any reference point in the video is associated
with the corresponding logging data. In this way, the ground truth
location of each reference point may be directly compared with the
corresponding location estimated from the logging data.

3.1.2 User Study 1 results. We show the localization error for the
unknown starting location condition in Fig. 4. Each plot shows the
cumulative distribution function (CDF) of the localization error for
a specific modality and aggregates over all trials with that modality

for both participants. Within each trial all available localization re-
sults are included; no data is available for times when the algorithm
declares uncertainty. The median localization errors are under 1 m
for all modalities, which is roughly the same as the accuracy of our
ground truth location estimates; 95% of the localization estimates
have an error of 1.5m or better.

We also show the localization error for the known starting loca-
tion condition in Fig. 5, displayed in the same way as the previous
figure. Again the median localization errors are under 1 m for all
modalities; 95% of the localization estimates have an error of 1.4m
or better.

These results demonstrate that our algorithm provides accurate
localization estimates once it converges (“locks on”). They also sug-
gest that all of the four modalities are about equal in effectiveness,
and so the choice of which modality to use should be based mostly
on individual preferences and circumstances.

Next we analyze how long it takes (both in terms of distance
and time) for the algorithm to converge, i.e., to arrive at a sin-
gle localization estimate. Fig. 6 shows the CDF of the distance to
convergence, both for the known starting location and unknown
starting location conditions. Each condition aggregates over all
trials from both participants. As expected, the distance to conver-
gence is usually very short (a few meters) for the known starting
location condition. For the unknown starting location condition,
the median distance is approximately 12 meters. Empirically we
have observed that convergence often occurs after the participant
has walked around at least one corner of a path. Corners provide
a powerful constraint for the particle filter, since false trajectories
that turn by 90◦ (as directed by VIO) are likely to collide with a
wall and are thus immediately removed from consideration.
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Figure 4: Offline analysis: localization error given unknown starting condition, for each of the four modalities (handheld,
lanyard, strap, pocket). Error in meters is shown as a cumulative distribution function (CDF) plot. The median localization
errors are under 1 meter for all four modalities (but note that the accuracy of the ground truth location estimates is roughly
1 meter). Each line aggregates four trials per participant times two participants.

Figure 5: Same as previous figure but for known starting condition. The median localization errors are under 1 meter for all
four modalities (but note that the accuracy of the ground truth location estimates is roughly 1 meter).

Fig. 7 shows the corresponding CDFs expressed for time to con-
vergence instead of distance. As before, the time to convergence is
usually very short (just a few to several seconds) for the known start-
ing location condition. For the unknown starting location condition,
the median time is approximately 19 sec. We note that, though these
plots aggregate over both participants, convergence times depend
strongly on walking speed, which varies among participants (see
Sec. 3.2.2).

Finally, we report the fraction of data samples (logged by the
app) for which the algorithm supplied a localization estimate, as
opposed to samples for which the algorithm reports uncertainty. For
the unknown starting location condition this fraction ranges from
0.65 to 0.69 (depending on modality), and for the known starting
location condition it ranges from 0.87 to 0.89. If we ignore samples
that occur before the initial convergence, then the fractions range
from 0.78 to 0.84 for unknown starting location and 0.88 to 0.89
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Figure 6: Distance to convergence.

Figure 7: Time to convergence.

for known starting location. These results show that the incidence
of uncertainty is low after the initial convergence. However, as we
discuss in Sec. 3.2.2, the peak location represented by the initial
convergence is often at the incorrect location, and is only corrected
later after additional evidence has accumulated.

3.2 User Study 2: Localization performance
using the real-time app

This study assesses localization performance of the real-time app.
Based on the earlier finding that the other modalities (lanyard,
pocket and strap) are roughly as effective as handheld, we test in

the handheld condition only. We focus on two different scenarios,
each tested with five participants.

(1) Convergence scenario (four trials per participant): In each
trial, the participant is told to start exploring the floor from a
specified initial location and walking direction. No directions
or guidance are given to the participant. The participant is
asked to continue walking until the app converges (“locks
on”) to the correct location. The app is launched with the un-
known starting location condition, reflecting the possibility
that the participant only knows what floor they are on but
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not their location or yaw. This scenario simulates the con-
ditions under which a traveler might launch a full-featured
wayfinding app and explore the environment until the app
converges and offers guidance.

(2) Tracking scenario (one trial per participant): The experi-
menter has arranged for the app to have already converged
to the correct location before this trial begins. The partic-
ipant is told to follow a lengthy route specified by the ex-
perimenter, who gives turn-by-turn directions (as in User
Study 1). This scenario simulates the conditions under which
a traveler might use a full-featured wayfinding app after it
has converged.

Note that the tracking scenario begins with complete knowledge
of the participant’s initial location and yaw; by contrast, the “known”
starting location condition from User Study 1 is incomplete in that
it assumes a known initial location but unknown yaw.

3.2.1 User Study 2 ground truth procedure. We devised a procedure
similar to that used in User Study 1 to evaluate the localization
accuracy. Again the experimenter walked a few steps behind the
participant and acquired video of their footsteps and of the nearby
scene; however, since the real-time app performed no data logging,
we relied on the audio track of the video to record the audible
feedback issued by the app. By reviewing this video offline, the
experimenter was able to estimate the participant’s ground truth
location relative to the ROIs (see Fig. 3) and compare it with the
app’s audio feedback. Instead of evaluating localization accuracy
in physical units (e.g., meters), we evaluated how often the correct
feedback was obtained when the participant entered a ROI. The
offline video also allowed the experimenter to determine the timing
of any events in the trial.

3.2.2 User Study 2 results. In the convergence trials our goal is
to assess the distribution of walking distances required to attain
convergence. (There are four convergence trials per participant;
however, the data for one trial was accidentally deleted for one
participant.) We distinguish between first convergence and correct
convergence. First convergence refers to the first time in which the
algorithm reports a location estimate, as in User Study 1. However,
empirically we find that the first such location estimate is often
incorrect, but that after a short period of additional walking the
location estimate locks on to the correct location, which we refer
to as the correct convergence. In the future we will explore an
automatic method for estimating whether a convergence is likely to
be correct or not, to reduce the confusion associated with incorrect
(but mostly transient) location estimates.

In User Study 2 a location estimate is indicated by a TTS utter-
ance reporting an ROI; unfortunately, if the algorithm’s estimate of
the user’s location doesn’t fall within an ROI then we are forced
to ignore this location estimate (since the audio feedback doesn’t
convey specific location information in this case). In other words,
convergence (first or correct) can’t be inferred until the participant
enters an ROI, which artificially inflates the convergence distances
we measured. Fortunately the ROIs cover the walkable space quite
densely (Fig. 3) so this effect should be minimal.

We show the distribution of first and correct convergences as
CDFs (shown in red and blue, respectively) in Fig. 8. The two CDF

curves have a similar shape except that the correct convergence
distance CDF is shifted by roughly 10 m relative to the first conver-
gence distance CDF.

Next we discuss the tracking trials. Here we assess performance
in terms of the false positive rate (FPR) and false negative rate
(FNR), which together form a suitable proxy for a metric localization
error in a physical unit such as meters. We define FPR as FPR =
FP/(FP +TN ) where FP is the number of false positives (a FP is
defined as a TTS utterance that is reported either in the wrong ROI,
or in a location that is not inside an ROI) and TN is the number
of true negatives (occasions when the participant was not inside
a ROI and the app uttered no TTS). Similarly, FNR is defined as
FNR = FN /(TP + FN ), where TP is the number of true positives
(occasions when the participant entered a ROI and the app uttered
the correct TTS for it) and FN is the number of false negatives
(times the user was inside an ROI but no TTS was announced).

Empirically we found that FPR = 0 for all trials of all five par-
ticipants. The FNR rates for each participant (P1, P3, P4, P5 and
P6) are as follows: FNR = (0.02, 0.009, 0.009, 0.09, 0.02). The FNR
rates are very low (0.02 or lower) for every participant except for
P5. In the tracking trial for each participant, the route covered a
total of roughly 100 ROIs (counting each ROI multiple times if it
was visited in multiple passes along the trial).

Finally, we report the average walking speed for each participant.
For simplicity we estimated this speed for a representative long
straight-line path that each participant walked in their tracking trial.
The average walking speeds, in units ofm/s , for each participant
(P1, P3, P4, P5 and P6) are as follows: speed = (0.9, 1.2, 0.6, 0.9, 1.6).
This highlights the high variability in walking speed that we en-
countered.

Overall, the results of User Study 2 demonstrate that the real-
time app performs localization reliably once the algorithm locks on
to the correct location. We note that the real-time app works well
despite a slower sampling rate compared with the offline algorithm.

4 CONCLUSIONS AND FUTUREWORK
We have demonstrated the feasibility of a real-time app that com-
bines computer vision, a 2D map and the smartphone’s IMU to
estimate and track the user’s location in an indoor environment.
While the app requires the user to either hold the smartphone or
wear it with the camera facing forward while walking, it has the
advantage of not forcing the user to aim the camera towards specific
signs, which would be challenging for people with low or no vision.
Once the localization algorithm locks on to the correct location, it
continues to track with a typical localization accuracy of roughly 1
meter or better.

Future work will focus on testing our approach on other indoor
environments, including buildings with multiple floors. The smart-
phone barometer can be used to automatically detect and estimate
relative floor transitions [19], though additional information is still
required to estimate the absolute floor location (such as the initial
floor that the user begins on when the app is launched).

A long-term priority will be to increase the speed of the conver-
gence (locking on) process. The simplest way to accomplish this is
to expand the set of signs that are recognized and distinguished in
an environment; even Exit signs often contain left or right arrows
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Figure 8: First distance to convergence (red) and correct distance to convergence (blue), in meters, shown as CDFs.

(which our Exit sign recognition algorithm currently ignores) that
can be used to distinguish them from other Exit signs in the same
environment. Ideally a sign recognition algorithm could be trained
with a single clear image of a (planar) sign, which would make
it easy to train the system to recognize and distinguish multiple
signs. We will also investigate an alternative method of estimating
the distance to a sign directly from the physical size and shape of
the sign and its appearance in the image, instead of our current
approach that requires knowledge of the height difference between
the camera and the sign.

The app we have implemented performs localization only, but we
will transform it into a full-featured wayfinding app with an acces-
sible UI that offers turn-by-turn directions to a desired destination
as well as optional announcements of nearby points of interest. We
recently conducted focus groups on the indoor wayfinding needs of
blind and visually impaired travelers and will use the feedback from
these groups to drive the development of our UI. Some visually im-
paired travelers might prefer navigation directions presented using
spatialized (3D) sound, as implemented in the Microsoft Sound-
scape app15, and we will experiment with this type of interface
as a possible alternative (or supplement) to verbal directions. We
note that travelers with residual vision may prefer a visual UI (e.g.,
an Augmented Reality interface that superimposes high-contrast
arrows on the smartphone screen to guide the user) over an audio
one.

We acknowledge that our current approach is best suited to
indoor environments dominated by corridors, which provide pow-
erful geometric constraints that rule out many false location hy-
potheses; wide open indoor spaces such as airports are challenging
for visually impaired travelers [13] and may also be problematic
for our localization algorithm. The persistent Augmented Reality
capabilities that have recently been added to ARKit and ARCore

15https://www.microsoft.com/en-us/research/product/soundscape/

(e.g., 16), which allow an app to create and save a 3D model of an
environment and use it later as a reference for localizing the camera
(effectively a SLAM-based approach), may be useful for handling
wide open spaces.
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