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Abstract. Indoor navigation is a major challenge for people with visual impair-

ments, who often lack access to visual cues such as informational signs, land-

marks and structural features that people with normal vision rely on for wayfind-

ing. Building on our recent work on a computer vision-based localization ap-

proach that runs in real time on a smartphone, we describe an accessible way-

finding iOS app we have created that provides turn-by-turn directions to a desired 

destination. The localization approach combines dead reckoning obtained using 

visual-inertial odometry (VIO) with information about the user’s location in the 

environment from informational sign detections and map constraints. We explain 

how we estimate the user’s distance from Exit signs appearing in the image, de-

scribe new improvements in the sign detection and range estimation algorithms, 

and outline our algorithm for determining appropriate turn-by-turn directions. 

Keywords: Navigation, Wayfinding, Accessibility, Visual Impairment, Blind-

ness, Low Vision. 

1 State of the Art and Related Technology 

The key to wayfinding tools is localization – a means of estimating and tracking a per-

son’s location as they travel in an environment. The most widespread localization ap-

proach is GPS, which enables a variety of wayfinding tools such as Google Maps and 

BlindSquare, but it is only accurate outdoors. There are a range of indoor localization 

approaches, including Bluetooth beacons [1], Wi-Fi triangulation
1
 and RFIDs [7]. 

However, all of these approaches incur the cost of installing and maintaining physical 

infrastructure, or of updating the system as the existing infrastructure changes (e.g., 

whenever Wi-Fi access points change). Dead reckoning approaches such as step count-

ing using inertial navigation [3] can estimate relative movements without any physical 

infrastructure, but this tracking estimate drifts over time unless it is augmented by ab-

solute location estimates. 

                                                           
1 https://techcrunch.com/2017/12/14/apple-maps-gets-indoor-mapping-for-more-than-30-air-

ports/  

https://techcrunch.com/2017/12/14/apple-maps-gets-indoor-mapping-for-more-than-30-airports/
https://techcrunch.com/2017/12/14/apple-maps-gets-indoor-mapping-for-more-than-30-airports/
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Computer vision is a promising localization approach, but most past work in this 

area has either required special hardware [9] or the use of detailed 3D models of the 

environment [8] that are time-consuming to generate and make the approach vulnerable 

to superficial environmental changes (e.g., new carpeting or moved shelves). The iOS 

app Clew [15] uses visual-inertial odometry (VIO) [10], a function built into modern 

smartphones, to perform dead reckoning, which requires no model of the environment. 

However, while dead reckoning allows a blind user to retrace their steps from a desti-

nation they have already reached back to their starting point, on its own it doesn’t pro-

vide guidance to a new destination, and does not provide absolute localization. To over-

come these limitations we developed an indoor localization system [4] that combines 

computer vision-based recognition of barcodes posted on walls of the environment for 

absolute location information with VIO to track movements between barcode detec-

tions. The new version of our localization system [5] is a self-contained iOS app that 

recognizes standard Exit signs, eliminating the need for barcodes. In this paper we de-

scribe enhancements to this system, including the development of an accessible navi-

gation function that provides turn-by-turn directions to guide the user to a desired des-

tination. 

2 Overall Approach 

This section summarizes our localization approach. The sections that follow it describe 

the specific contributions of this paper: improved sign recognition, improved range es-

timation from a sign detection, and turn-by-turn navigation directions. 

Our localization approach is described in detail in [5]. It combines three main ingre-

dients to estimate the user’s location in an indoor environment and track it over time: 

(a) A 2D floor plan (map), annotated with the locations of walls and other impassable 

barriers, locations of interest such as rooms, elevators and stairwells, and the locations 

of informational signs such as Exit signs. (b) A sign recognition algorithm, such as the 

one we have implemented [6] for standard Exit signs, combined with an algorithm that 

estimates the distance to the sign from its appearance in the image and its known phys-

ical size. (c) A dead reckoning algorithm that estimates the user’s relative movements, 

even when no signs are visible. We use the iOS ARKit’s2 built-in visual-inertial odom-

etry (VIO) function, which combines computer vision and inertial sensing, to perform 

dead reckoning. 

Our localization algorithm combines the three ingredients as follows. It uses a parti-

cle filter (a standard tool used in robotics [14]) to maintain multiple hypotheses (“par-

ticles”) of location and bearing (i.e., the direction the smartphone camera is facing rel-

ative to the map) over time. The particle filter integrates multiple sources of infor-

mation, and after some time it converges to an estimate of the location and bearing – 

even if the algorithm is initialized with no knowledge other than the specific floor the 

user is on. These information sources include distance estimates obtained from sign 

detections, VIO estimates of the user’s movements (available even when no signs are 

                                                           
2 https://developer.apple.com/augmented-reality/  

https://developer.apple.com/augmented-reality/
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visible), and two constraints: traversability (the fact that the smartphone can’t move 

through walls) and visibility (the smartphone camera can’t see a sign through a wall). 

We implemented our localization algorithm as a real-time app running on an iPhone 

8. Studies with blind participants [5] show that the app is accessible to blind users, who 

need only hold the smartphone camera straight ahead while walking, rather than having 

to aim the camera at specific signs (which would be challenging for people with low or 

no vision).  Alternatively, the user can “wear” the smartphone to point the camera 

straight ahead, using a lanyard, shirt pocket or other means. The median localization 

error in our studies was shown to be approximately 1 meter or less, which is more than 

adequate for typical wayfinding applications. 

3 Sign Recognition and Range Estimation Algorithms 

The localization algorithm [5] currently used in our iOS app uses an Exit sign recogni-

tion algorithm that we developed previously [6]. This algorithm is a fast AdaBoost [12] 

(short for “Adaptive Boosting”, a machine learning technique for combining multiple 

forms of evidence into a single more reliable decision) cascade-based approach that 

processes a single VGA frame on the smartphone in about 7 msec, and returns an ap-

proximate bounding box (Fig. 1a) for each detected Exit sign. While our previous al-

gorithm for estimating the distance to the Exit sign (see below) requires only knowledge 

of the Exit sign centroid in the image (which can be obtained from even an approximate 

bounding box), our new algorithm depends on having at least a rough segmentation of 

the Exit sign – in other words, knowledge of the Exit sign boundaries in the image. 

Accordingly, we have explored other sign recognition algorithms that return detailed 

segmentations instead of a rough bounding box. The algorithm that has proved most 

promising so far is a deep learning one called U-Net [11], using MobileNet 2 as a back-

bone to facilitate a mobile implementation3,4. Since the standard U-Net implementation 

processes small images of resolution 224 x 224, we have devised a multi-scale proce-

dure that first detects any Exit signs at coarse scale, zooms in on the part of the image 

centered on the detected Exit sign and then applies U-Net again on that part of the image 

to segment it accurately. We are in the process of integrating the U-Net algorithm with 

our iOS app, which will require efforts to optimize its speed for real-time iOS perfor-

mance. 

Previously [5] we estimated the distance to the Exit sign using a simple calculation 

that assumes knowledge of camera height above the ground and the height of the Exit 

sign above the ground. The range (distance to the Exit sign) was estimated using the 

apparent elevation of the detected sign in the image: the closer the sign appears to the 

horizon, the farther away it is. While this approach is effective, it is inconvenient to 

have to obtain the camera and Exit sign heights above the ground. The camera height 

depends not only on the user’s height but on how they hold the smartphone, which also 

                                                           
3 https://medium.com/vitalify-asia/real-time-deep-learning-in-mobile-application-25cf601a8976 
4 https://github.com/akirasosa/mobile-semantic-segmentation 

https://medium.com/vitalify-asia/real-time-deep-learning-in-mobile-application-25cf601a8976
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varies over time; moreover, the Exit sign heights may vary from sign to sign, even 

within the same floor of a building.  

 

Fig. 1. Sign recognition algorithms. (a) Original Adaboost approach [6] returns a rough bounding 

box around the Exit sign. (b) U-Net algorithm shows an accurate segmentation border (red pix-

els). (c) More distant view of Exit sign, zoomed in for clarity, shows a noisy segmentation by U-

Net. 

Instead we decided to estimate the range using the apparent size of the sign in the 

image, which eliminates the need for knowledge of the camera or sign height above the 

ground. A standard computer vision approach is to use a pose estimation algorithm such 

as PnP [13]. For a rectangular sign, this requires knowledge of the physical height and 

width of the sign, and the pixel locations of all four sign corners in the image. However, 

getting accurate location estimates of the sign corners is difficult without a precise seg-

mentation (Fig. 1b) – and segmentations are often noisy in images acquired under real-

world conditions, such as when the sign is viewed at a distance (Fig. 1c) or when the 

image quality is degraded by motion blur.  

Thus, we have devised a range estimation algorithm that is effective even when the 

segmentation is approximate. Our approach relies on three key assumptions: 

1. The sign is rectangular, with a known physical height (e.g., in cm). 

2. It is mounted so that the sign lies in a vertical plane, with the borders of the sign 

horizontal or vertical with respect to gravity. 

3. The camera pitch (angle that the camera line of sight makes with respect to the hor-

izontal plane) and roll (the angle the camera is rotated about its line of sight, with 0° 

and 90° corresponding to portrait and landscape orientations, respectively) are 

known. This enables us to estimate the horizon line and the apparent angle of the 

sign above the horizon, which is a key measurement in our range estimate. 

Fortunately, these assumptions are satisfied for our application. Exit signs are rec-

tangular, with a standard size, and they are almost always mounted in a way that satis-

fies assumption 2. Moreover, the camera pitch and roll are estimated in real time on 

modern smartphones using the built-in inertial measurement unit (IMU). 

We have derived a simple formula for calculating the sign range in terms of known 

and measured quantities. Briefly, instead of requiring the pixel coordinates of the four 

corners of the sign in the image, the formula requires only an estimate of the apparent 
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height of the sign in pixels and its location in the image. This is an important advantage 

over the PnP approach, since it is possible to estimate the apparent height even when 

the segmentation is too blurry to clearly identify the four sign corners. 

Next we describe this formula in detail. Given our assumptions, we can transform 

the raw image acquired by the camera into an unrolled image, which is an image that 

is rotated to undo the effects of any non-zero roll (i.e., rotation about the camera line of 

sight). This means that the horizon line appears horizontal in the unrolled image. Then 

we can analyze the scene geometry of the sign relative to the camera in 2D (Fig. 2), in 

which the Y axis represents the vertical axis (with respect to gravity) and the Z axis 

represents the horizontal axis. Given a column of pixels in the image plane, this sweeps 

out a vertical plane (shown in the figure) that intersects the camera center and a vertical 

slice of the sign. (Different image columns give rise to different slices of the sign, and 

thus slightly different ranges Z, but this discrepancy is minimal at typical sign viewing 

distances.)  

We denote the camera pitch by ɤ, the angle between the bottom pixel of the sign and 

the center row of the image (the camera line of sight direction corresponds to the pixel 

in the center of the image) by α, and the angle subtended by the sign (from its bottom 

pixel to top pixel) by δ. (It is straightforward to estimate α and δ from the pixel locations 

of the corresponding image features using the camera focal length and a simple pinhole 

model.) The bottom of the sign is height H above the ground (assumed unknown), and 

the physical height of the sign is h0 (known). From trigonometry we have: 

 tan⁡(ɤ + α) = H/Z (1) 

and 

 tan⁡(ɤ + α + δ) = (H+h0)/Z (2) 

Combining both equations allows us to solve directly for Z and H in terms of known 

quantities, leading to this range estimate equation: 

 𝑍 = h0/[tan⁡(ɤ + α + δ) – tan (ɤ + α)] (3) 

Given a segmented sign (e.g., Fig. 1c), which is obtained for an unrolled image, we 

analyze multiple vertical slices of the segmented sign to arrive at a single robust esti-

mate of α and another of δ. This is done by calculating the height (top row – bottom 

row) of each slice, and calculating the median height over all the slices; calculating the 

median of the bottom row over all the slices; and then converting the median height 

and bottom values into an overall estimate of α and δ. 
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Fig. 2. We can estimate the range Z to the sign in terms of easily measured quantities: the camera 

pitch ɤ, the angle α between the bottom pixel of the sign and the center of the image (which 

corresponds to the camera line of sight), the angle δ subtended by the sign (from its bottom pixel 

to top pixel) and the physical height h0 of the sign. (The height of the sign H above the ground 

is assumed unknown.) 

Table 1 presents experimental results describing the accuracy of various range esti-

mation algorithms, obtained using 852 Exit sign images taken in the Smith-Kettlewell 

building. The top row indicates the actual range of the Exit sign (measured with a tape 

measure) and the next three rows show results for each of three methods for detecting 

and segmenting the sign: VGA uses the approximate bounding box reported in [5], HR 

refers to the same approach applied to a higher resolution image (1920x1440) and U-

Net refers to the new multi-scale approach detailed above. The accuracy is reported as 

the median percent range estimation error, where the median is taken across all detected 

signs in a distance category, and the percent range estimation error is defined as |e-a|/a 

(expressed as a percentage), where e = estimated distance and a = actual distance. N/A 

indicates that no Exit signs were detectable for that algorithm and distance. (Of the 852 

Exit sign images, there are 74 false negatives, in which the U-Net recognition algorithm 

fails to detect an Exit sign and for which no range estimate is available; these cases, 

most of which occur at distances of 7 m and greater, are excluded from this error anal-

ysis.) Note that the U-Net approach almost always yields the smallest median errors, 

even at distances as far as 9 m. 

We expect that our new range estimation algorithm will improve our localization 

results, both in terms of accuracy and the time needed to arrive at an accurate localiza-

tion after the wayfinding app is first launched. These improvements will be augmented 

in the future as we continue to improve the underlying Exit sign recognition algorithm, 

and extend this algorithm to other types of signs. 
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Table 1. Median percent range estimation error, categorized by actual distance to sign. See text 

for details. 

Ac-

tual 

2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 

VGA 9.1% 14.7% 20.8% 11.0% 11.8% 25.0% 31.5% N/A 

HR 9.2% 13.8% 14.1% 11.4% 10.7% 15.5% 17.7% 13.3% 

U-Net 9.2% 7.7% 9.3% 8.9% 5.6% 8.0% 8.5% 9.1% 

4 Turn-by-Turn Navigation Directions 

This section describes the turn-by-turn navigation directions that build on our local-

ization algorithm, which are verbal directions that guide a visually impaired traveler in 

real time to a desired destination. Navigation directions are necessary for transforming 

a localization algorithm into a fully accessible wayfinding app. 

These turn-by-turn directions assume that the walkable area of an indoor environ-

ment is described by a graph (Fig. 3) whose nodes are either (a) points of interest (POIs) 

or (b) control points where the traveler either must turn or has multiple turning direc-

tions to choose from. The graph, including nodes and edges connecting neighboring 

nodes, is embedded in the (x,y) coordinate system used by the localization algorithm to 

identify locations on the map. Given a destination node and current location estimate 

(x,y), we first “snap” the location (x,y) to the closest point (x’,y’) on the graph; note 

that this point (x’,y’) lies either on a graph edge or (in rare cases) a graph node. Next 

we use a standard Dijkstra shortest-path algorithm 2] to determine the shortest path in 

the graph to the destination. Our app issues directions such as “turn left” shortly before 

the suggested action should be executed, for instance, when the snapped location (x’,y’) 

is 0.75 meters before the control nodes where a left turn should be taken.  

The app allows the user to specify their starting location from a pull-down menu, or 

to indicate the current floor if the starting location is unknown. The desired destination 

is selected from a second pull-down menu. Note that the app issues no directions other 

than “start walking” until it is able to estimate the user’s location. If the user begins 

heading in the wrong direction (e.g., the wrong direction down a corridor), the app 

signals this path deviation with haptic feedback. The app continuously updates the 

shortest path to the destination, which means that re-routing is automatically performed 

as needed. Guidance is provided until the destination is reached, including directions 

announcing where the destination is relative to the user as they approach within 1 meter 

and also announcing whether the desired destination is behind a door. 
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Fig. 3. 2D floor plan (map) of indoor area showing a graph of the walkable area defined by nodes 

and vertices. In this example, the destination node is filled in black, and the user’s current location 

(x,y), indicated by a star icon, is snapped to the nearest location (x’,y’) along the graph. The 

shortest path to the destination is shaded in gray, with arrows indicating the directions to turn at 

each node on the path. 

The graph representation we are currently using is optimized for environments dom-

inated by corridors and other narrow paths; in the future we will explore appropriate 

ways of representing walkable areas in large open spaces, such as shopping centers or 

airports, and of communicating appropriate verbal or non-verbal directions in these 

spaces. 

5 Conclusions and Future Work 

We have described enhancements to our previous indoor localization approach, includ-

ing improved Exit sign segmentation, a more effective method for estimating the range 

of a sign, and a navigation app that provides turn-by-turn directions to a desired desti-

nation. We have begun informal testing on the navigation app by two visually impaired 

participants, which demonstrates the app’s accessibility.  

 We will conduct systematic tests of the app with more visually impaired partici-

pants as soon as this is possible, and will expand our testing to include multiple build-

ings. Future work will focus on optimizing the user interface to communicate infor-

mation in a timely fashion without overwhelming the user with unnecessary feedback. 

We will also test and refine an algorithm that uses the built-in smartphone barometer to 

estimate floor changes, allowing the app to provide guidance in an entire building. Our 

sign recognition algorithm will need to be optimized for real-time use in the app, and 

we will explore ways of recognizing multiple sign types (such as restroom signs and 

room number signs) of any shape, size or appearance. Finally, we will experiment with 
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the persistent Augmented Reality capabilities that have recently been added to ARKit
5
  

and ARCore, which allow an app to create and save a 3D model of an environment and 

use it later for localizing the camera (effectively a SLAM-based approach), and which 

may be useful for handling wide open spaces. 
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