
Preprint – to be published in ICCHP 2020

An Indoor Navigation App using Computer Vision and

Sign Recognition

Giovanni Fusco1[0000-0001-9437-6954] , Seyed Ali Cheraghi1[0000-0001-8720-1291] , Leo Neat2

and James M. Coughlan1[0000-0003-2775-4083]

1 The Smith-Kettlewell Eye Research Institute, San Francisco, CA

{giofusco, ali.cheraghi, coughlan}@ski.org
2 Department of Computer Science and Engineering, University of California, Santa Cruz, CA

leosneat@gmail.com

Abstract. Indoor navigation is a major challenge for people with visual impair-

ments, who often lack access to visual cues such as informational signs, land-

marks and structural features that people with normal vision rely on for wayfind-

ing. Building on our recent work on a computer vision-based localization ap-

proach that runs in real time on a smartphone, we describe an accessible way-

finding iOS app we have created that provides turn-by-turn directions to a desired

destination. The localization approach combines dead reckoning obtained using

visual-inertial odometry (VIO) with information about the user’s location in the

environment from informational sign detections and map constraints. We explain

how we estimate the user’s distance from Exit signs appearing in the image, de-

scribe new improvements in the sign detection and range estimation algorithms,

and outline our algorithm for determining appropriate turn-by-turn directions.

Keywords: Navigation, Wayfinding, Accessibility, Visual Impairment, Blind-

ness, Low Vision.

1 State of the Art and Related Technology

The key to wayfinding tools is localization – a means of estimating and tracking a per-

son’s location as they travel in an environment. The most widespread localization ap-

proach is GPS, which enables a variety of wayfinding tools such as Google Maps and

BlindSquare, but it is only accurate outdoors. There are a range of indoor localization

approaches, including Bluetooth beacons [1], Wi-Fi triangulation
1
 and RFIDs [7].

However, all of these approaches incur the cost of installing and maintaining physical

infrastructure, or of updating the system as the existing infrastructure changes (e.g.,

whenever Wi-Fi access points change). Dead reckoning approaches such as step count-

ing using inertial navigation [3] can estimate relative movements without any physical

infrastructure, but this tracking estimate drifts over time unless it is augmented by ab-

solute location estimates.

1 https://techcrunch.com/2017/12/14/apple-maps-gets-indoor-mapping-for-more-than-30-air-

ports/

https://techcrunch.com/2017/12/14/apple-maps-gets-indoor-mapping-for-more-than-30-airports/
https://techcrunch.com/2017/12/14/apple-maps-gets-indoor-mapping-for-more-than-30-airports/

2

Computer vision is a promising localization approach, but most past work in this

area has either required special hardware [9] or the use of detailed 3D models of the

environment [8] that are time-consuming to generate and make the approach vulnerable

to superficial environmental changes (e.g., new carpeting or moved shelves). The iOS

app Clew [15] uses visual-inertial odometry (VIO) [10], a function built into modern

smartphones, to perform dead reckoning, which requires no model of the environment.

However, while dead reckoning allows a blind user to retrace their steps from a desti-

nation they have already reached back to their starting point, on its own it doesn’t pro-

vide guidance to a new destination, and does not provide absolute localization. To over-

come these limitations we developed an indoor localization system [4] that combines

computer vision-based recognition of barcodes posted on walls of the environment for

absolute location information with VIO to track movements between barcode detec-

tions. The new version of our localization system [5] is a self-contained iOS app that

recognizes standard Exit signs, eliminating the need for barcodes. In this paper we de-

scribe enhancements to this system, including the development of an accessible navi-

gation function that provides turn-by-turn directions to guide the user to a desired des-

tination.

2 Overall Approach

This section summarizes our localization approach. The sections that follow it describe

the specific contributions of this paper: improved sign recognition, improved range es-

timation from a sign detection, and turn-by-turn navigation directions.

Our localization approach is described in detail in [5]. It combines three main ingre-

dients to estimate the user’s location in an indoor environment and track it over time:

(a) A 2D floor plan (map), annotated with the locations of walls and other impassable

barriers, locations of interest such as rooms, elevators and stairwells, and the locations

of informational signs such as Exit signs. (b) A sign recognition algorithm, such as the

one we have implemented [6] for standard Exit signs, combined with an algorithm that

estimates the distance to the sign from its appearance in the image and its known phys-

ical size. (c) A dead reckoning algorithm that estimates the user’s relative movements,

even when no signs are visible. We use the iOS ARKit’s2 built-in visual-inertial odom-

etry (VIO) function, which combines computer vision and inertial sensing, to perform

dead reckoning.

Our localization algorithm combines the three ingredients as follows. It uses a parti-

cle filter (a standard tool used in robotics [14]) to maintain multiple hypotheses (“par-

ticles”) of location and bearing (i.e., the direction the smartphone camera is facing rel-

ative to the map) over time. The particle filter integrates multiple sources of infor-

mation, and after some time it converges to an estimate of the location and bearing –

even if the algorithm is initialized with no knowledge other than the specific floor the

user is on. These information sources include distance estimates obtained from sign

detections, VIO estimates of the user’s movements (available even when no signs are

2 https://developer.apple.com/augmented-reality/

https://developer.apple.com/augmented-reality/

3

visible), and two constraints: traversability (the fact that the smartphone can’t move

through walls) and visibility (the smartphone camera can’t see a sign through a wall).

We implemented our localization algorithm as a real-time app running on an iPhone

8. Studies with blind participants [5] show that the app is accessible to blind users, who

need only hold the smartphone camera straight ahead while walking, rather than having

to aim the camera at specific signs (which would be challenging for people with low or

no vision). Alternatively, the user can “wear” the smartphone to point the camera

straight ahead, using a lanyard, shirt pocket or other means. The median localization

error in our studies was shown to be approximately 1 meter or less, which is more than

adequate for typical wayfinding applications.

3 Sign Recognition and Range Estimation Algorithms

The localization algorithm [5] currently used in our iOS app uses an Exit sign recogni-

tion algorithm that we developed previously [6]. This algorithm is a fast AdaBoost [12]

(short for “Adaptive Boosting”, a machine learning technique for combining multiple

forms of evidence into a single more reliable decision) cascade-based approach that

processes a single VGA frame on the smartphone in about 7 msec, and returns an ap-

proximate bounding box (Fig. 1a) for each detected Exit sign. While our previous al-

gorithm for estimating the distance to the Exit sign (see below) requires only knowledge

of the Exit sign centroid in the image (which can be obtained from even an approximate

bounding box), our new algorithm depends on having at least a rough segmentation of

the Exit sign – in other words, knowledge of the Exit sign boundaries in the image.

Accordingly, we have explored other sign recognition algorithms that return detailed

segmentations instead of a rough bounding box. The algorithm that has proved most

promising so far is a deep learning one called U-Net [11], using MobileNet 2 as a back-

bone to facilitate a mobile implementation3,4. Since the standard U-Net implementation

processes small images of resolution 224 x 224, we have devised a multi-scale proce-

dure that first detects any Exit signs at coarse scale, zooms in on the part of the image

centered on the detected Exit sign and then applies U-Net again on that part of the image

to segment it accurately. We are in the process of integrating the U-Net algorithm with

our iOS app, which will require efforts to optimize its speed for real-time iOS perfor-

mance.

Previously [5] we estimated the distance to the Exit sign using a simple calculation

that assumes knowledge of camera height above the ground and the height of the Exit

sign above the ground. The range (distance to the Exit sign) was estimated using the

apparent elevation of the detected sign in the image: the closer the sign appears to the

horizon, the farther away it is. While this approach is effective, it is inconvenient to

have to obtain the camera and Exit sign heights above the ground. The camera height

depends not only on the user’s height but on how they hold the smartphone, which also

3 https://medium.com/vitalify-asia/real-time-deep-learning-in-mobile-application-25cf601a8976
4 https://github.com/akirasosa/mobile-semantic-segmentation

https://medium.com/vitalify-asia/real-time-deep-learning-in-mobile-application-25cf601a8976

4

varies over time; moreover, the Exit sign heights may vary from sign to sign, even

within the same floor of a building.

Fig. 1. Sign recognition algorithms. (a) Original Adaboost approach [6] returns a rough bounding

box around the Exit sign. (b) U-Net algorithm shows an accurate segmentation border (red pix-

els). (c) More distant view of Exit sign, zoomed in for clarity, shows a noisy segmentation by U-

Net.

Instead we decided to estimate the range using the apparent size of the sign in the

image, which eliminates the need for knowledge of the camera or sign height above the

ground. A standard computer vision approach is to use a pose estimation algorithm such

as PnP [13]. For a rectangular sign, this requires knowledge of the physical height and

width of the sign, and the pixel locations of all four sign corners in the image. However,

getting accurate location estimates of the sign corners is difficult without a precise seg-

mentation (Fig. 1b) – and segmentations are often noisy in images acquired under real-

world conditions, such as when the sign is viewed at a distance (Fig. 1c) or when the

image quality is degraded by motion blur.

Thus, we have devised a range estimation algorithm that is effective even when the

segmentation is approximate. Our approach relies on three key assumptions:

1. The sign is rectangular, with a known physical height (e.g., in cm).

2. It is mounted so that the sign lies in a vertical plane, with the borders of the sign

horizontal or vertical with respect to gravity.

3. The camera pitch (angle that the camera line of sight makes with respect to the hor-

izontal plane) and roll (the angle the camera is rotated about its line of sight, with 0°

and 90° corresponding to portrait and landscape orientations, respectively) are

known. This enables us to estimate the horizon line and the apparent angle of the

sign above the horizon, which is a key measurement in our range estimate.

Fortunately, these assumptions are satisfied for our application. Exit signs are rec-

tangular, with a standard size, and they are almost always mounted in a way that satis-

fies assumption 2. Moreover, the camera pitch and roll are estimated in real time on

modern smartphones using the built-in inertial measurement unit (IMU).

We have derived a simple formula for calculating the sign range in terms of known

and measured quantities. Briefly, instead of requiring the pixel coordinates of the four

corners of the sign in the image, the formula requires only an estimate of the apparent

5

height of the sign in pixels and its location in the image. This is an important advantage

over the PnP approach, since it is possible to estimate the apparent height even when

the segmentation is too blurry to clearly identify the four sign corners.

Next we describe this formula in detail. Given our assumptions, we can transform

the raw image acquired by the camera into an unrolled image, which is an image that

is rotated to undo the effects of any non-zero roll (i.e., rotation about the camera line of

sight). This means that the horizon line appears horizontal in the unrolled image. Then

we can analyze the scene geometry of the sign relative to the camera in 2D (Fig. 2), in

which the Y axis represents the vertical axis (with respect to gravity) and the Z axis

represents the horizontal axis. Given a column of pixels in the image plane, this sweeps

out a vertical plane (shown in the figure) that intersects the camera center and a vertical

slice of the sign. (Different image columns give rise to different slices of the sign, and

thus slightly different ranges Z, but this discrepancy is minimal at typical sign viewing

distances.)

We denote the camera pitch by ɤ, the angle between the bottom pixel of the sign and

the center row of the image (the camera line of sight direction corresponds to the pixel

in the center of the image) by α, and the angle subtended by the sign (from its bottom

pixel to top pixel) by δ. (It is straightforward to estimate α and δ from the pixel locations

of the corresponding image features using the camera focal length and a simple pinhole

model.) The bottom of the sign is height H above the ground (assumed unknown), and

the physical height of the sign is h0 (known). From trigonometry we have:

 tan⁡(ɤ + α) = H/Z (1)

and

 tan⁡(ɤ + α + δ) = (H+h0)/Z (2)

Combining both equations allows us to solve directly for Z and H in terms of known

quantities, leading to this range estimate equation:

 𝑍 = h0/[tan⁡(ɤ + α + δ) – tan (ɤ + α)] (3)

Given a segmented sign (e.g., Fig. 1c), which is obtained for an unrolled image, we

analyze multiple vertical slices of the segmented sign to arrive at a single robust esti-

mate of α and another of δ. This is done by calculating the height (top row – bottom

row) of each slice, and calculating the median height over all the slices; calculating the

median of the bottom row over all the slices; and then converting the median height

and bottom values into an overall estimate of α and δ.

6

Fig. 2. We can estimate the range Z to the sign in terms of easily measured quantities: the camera

pitch ɤ, the angle α between the bottom pixel of the sign and the center of the image (which

corresponds to the camera line of sight), the angle δ subtended by the sign (from its bottom pixel

to top pixel) and the physical height h0 of the sign. (The height of the sign H above the ground

is assumed unknown.)

Table 1 presents experimental results describing the accuracy of various range esti-

mation algorithms, obtained using 852 Exit sign images taken in the Smith-Kettlewell

building. The top row indicates the actual range of the Exit sign (measured with a tape

measure) and the next three rows show results for each of three methods for detecting

and segmenting the sign: VGA uses the approximate bounding box reported in [5], HR

refers to the same approach applied to a higher resolution image (1920x1440) and U-

Net refers to the new multi-scale approach detailed above. The accuracy is reported as

the median percent range estimation error, where the median is taken across all detected

signs in a distance category, and the percent range estimation error is defined as |e-a|/a

(expressed as a percentage), where e = estimated distance and a = actual distance. N/A

indicates that no Exit signs were detectable for that algorithm and distance. (Of the 852

Exit sign images, there are 74 false negatives, in which the U-Net recognition algorithm

fails to detect an Exit sign and for which no range estimate is available; these cases,

most of which occur at distances of 7 m and greater, are excluded from this error anal-

ysis.) Note that the U-Net approach almost always yields the smallest median errors,

even at distances as far as 9 m.

We expect that our new range estimation algorithm will improve our localization

results, both in terms of accuracy and the time needed to arrive at an accurate localiza-

tion after the wayfinding app is first launched. These improvements will be augmented

in the future as we continue to improve the underlying Exit sign recognition algorithm,

and extend this algorithm to other types of signs.

7

Table 1. Median percent range estimation error, categorized by actual distance to sign. See text

for details.

Ac-

tual

2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m

VGA 9.1% 14.7% 20.8% 11.0% 11.8% 25.0% 31.5% N/A

HR 9.2% 13.8% 14.1% 11.4% 10.7% 15.5% 17.7% 13.3%

U-Net 9.2% 7.7% 9.3% 8.9% 5.6% 8.0% 8.5% 9.1%

4 Turn-by-Turn Navigation Directions

This section describes the turn-by-turn navigation directions that build on our local-

ization algorithm, which are verbal directions that guide a visually impaired traveler in

real time to a desired destination. Navigation directions are necessary for transforming

a localization algorithm into a fully accessible wayfinding app.

These turn-by-turn directions assume that the walkable area of an indoor environ-

ment is described by a graph (Fig. 3) whose nodes are either (a) points of interest (POIs)

or (b) control points where the traveler either must turn or has multiple turning direc-

tions to choose from. The graph, including nodes and edges connecting neighboring

nodes, is embedded in the (x,y) coordinate system used by the localization algorithm to

identify locations on the map. Given a destination node and current location estimate

(x,y), we first “snap” the location (x,y) to the closest point (x’,y’) on the graph; note

that this point (x’,y’) lies either on a graph edge or (in rare cases) a graph node. Next

we use a standard Dijkstra shortest-path algorithm 2] to determine the shortest path in

the graph to the destination. Our app issues directions such as “turn left” shortly before

the suggested action should be executed, for instance, when the snapped location (x’,y’)

is 0.75 meters before the control nodes where a left turn should be taken.

The app allows the user to specify their starting location from a pull-down menu, or

to indicate the current floor if the starting location is unknown. The desired destination

is selected from a second pull-down menu. Note that the app issues no directions other

than “start walking” until it is able to estimate the user’s location. If the user begins

heading in the wrong direction (e.g., the wrong direction down a corridor), the app

signals this path deviation with haptic feedback. The app continuously updates the

shortest path to the destination, which means that re-routing is automatically performed

as needed. Guidance is provided until the destination is reached, including directions

announcing where the destination is relative to the user as they approach within 1 meter

and also announcing whether the desired destination is behind a door.

8

Fig. 3. 2D floor plan (map) of indoor area showing a graph of the walkable area defined by nodes

and vertices. In this example, the destination node is filled in black, and the user’s current location

(x,y), indicated by a star icon, is snapped to the nearest location (x’,y’) along the graph. The

shortest path to the destination is shaded in gray, with arrows indicating the directions to turn at

each node on the path.

The graph representation we are currently using is optimized for environments dom-

inated by corridors and other narrow paths; in the future we will explore appropriate

ways of representing walkable areas in large open spaces, such as shopping centers or

airports, and of communicating appropriate verbal or non-verbal directions in these

spaces.

5 Conclusions and Future Work

We have described enhancements to our previous indoor localization approach, includ-

ing improved Exit sign segmentation, a more effective method for estimating the range

of a sign, and a navigation app that provides turn-by-turn directions to a desired desti-

nation. We have begun informal testing on the navigation app by two visually impaired

participants, which demonstrates the app’s accessibility.

 We will conduct systematic tests of the app with more visually impaired partici-

pants as soon as this is possible, and will expand our testing to include multiple build-

ings. Future work will focus on optimizing the user interface to communicate infor-

mation in a timely fashion without overwhelming the user with unnecessary feedback.

We will also test and refine an algorithm that uses the built-in smartphone barometer to

estimate floor changes, allowing the app to provide guidance in an entire building. Our

sign recognition algorithm will need to be optimized for real-time use in the app, and

we will explore ways of recognizing multiple sign types (such as restroom signs and

room number signs) of any shape, size or appearance. Finally, we will experiment with

9

the persistent Augmented Reality capabilities that have recently been added to ARKit
5

and ARCore, which allow an app to create and save a 3D model of an environment and

use it later for localizing the camera (effectively a SLAM-based approach), and which

may be useful for handling wide open spaces.

6 Acknowledgments

GF and JMC were supported by NIH grant 1R01EY029033 and NIDILRR grant

90RE5024-01-00. LN was supported by NIH grant 1R01EY029033 and SAC was sup-

ported by Smith-Kettlewell’s CV Starr Fellowship. We thank Dr. Roberto Manduchi at

UC Santa Cruz for helpful discussions about sign recognition.

References

1. D. Ahmetovic, C. Gleason, K. Kitani, H. Takagi & C. Asakawa. (2016). NavCog: turn-by-

turn smartphone navigation assistant for people with visual impairments or blindness. Web

for All Conference. ACM.

2. E.W. Dijkstra. (1959). A note on two problems in connexion with graphs. Numerische Math-

ematik. 1 (1959), 269-271.

3. G. Flores & R. Manduchi. (2018). Easy Return: An App for Indoor Backtracking Assistance.

CHI 2018.

4. G. Fusco & J. Coughlan. (2018). “Indoor Localization using Computer Vision and Visual-

Inertial Odometry.” 16th Int’l Conf. on Computers Helping People with Special Needs

(ICCHP '18). Linz, Austria. July 2018.

5. G. Fusco & J. Coughlan. “Indoor Localization for Visually Impaired Travelers Using Com-

puter Vision on a Smartphone.” 17th International Web for All Conference (2020). Taipei,

Taiwan.

6. G. Fusco, E. Tekin, & J. Coughlan. (2016). Sign Finder Application -Technical Report.

https://www.ski.org/sign-finder-application-technical-report

7. A. Ganz, S. R. Gandhi, C. Wilson & G. Mullett. (2010). INSIGHT: RFID and Bluetooth

enabled automated space for the blind and visually impaired. 2010 Int’l Conf. of the IEEE

Engineering in Medicine and Biology.

8. C. Gleason, A. Guo, G. Laput, K. Kitani & J.P. Bigham. (2016). VizMap: Accessible visual

information through crowdsourced map reconstruction. ASSETS 2016.

9. F. Hu, Z. Zhu, and J. Zhang, (2014). Mobile Panoramic Vision for Assisting the Blind via

Indexing and Localization. Second Workshop on Assistive Computer Vision and Robotics,

in conjunction with ECCV 2014.

10. J. Kelly & G.S. Sukhatme. (2011). Visual-inertial sensor fusion: Localization, mapping and

sensor-to-sensor self-calibration. The International Journal of Robotics Research, 30(1), 56-

79.

11. O. Ronneberger, P. Fischer, & T. Brox. (2015). U-net: Convolutional networks for biomed-

ical image segmentation. Int’l Conf. on Medical image computing and computer-assisted

intervention. Springer, Cham.

5 https://developer.apple.com/documentation/arkit/saving_and_loading_world_data

https://developer.apple.com/documentation/arkit/saving_and_loading_world_data

10

12. Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated

predictions. Machine learning, 37(3), 297-336.

13. R. Szeliski. (2010).Computer vision: algorithms and applications. Springer Science & Busi-

ness Media.

14. S. Thrun, W. Burgard, & D. Fox. Probabilistic Robotics. (2005). Massachusetts Institute of

Technology.

15. C. Yoon, R. Louie, J. Ryan, M.K. Vu, H. Bang, W. Derksen, & Paul Ruvolo. (2019). Lev-

eraging Augmented Reality to Create Apps for People with Visual Disabilities: A Case

Study in Indoor Navigation. ASSETS 2019.

