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Summary

Several parameters of brain integrity can be derived from diffusion tensor imaging. These include
fractional anisotropy (FA) and mean diffusivity (MD). Combination of these variables using multi-
variate analysis might result in a predictive model able to detect the structural changes of human
brain aging.

Our aim was to discriminate between young and older healthy brains by combining structural and
volumetric variables from brain MRI: FA, MD, and white matter (WM), gray matter (GM) and cere-
brospinal �luid (CSF) volumes.

This was a cross-sectional study in 21 young (mean age, 25.71±3.04 years; range, 21–34 years)
and 10 elderly (mean age, 70.20±4.02 years; range, 66–80 years) healthy volunteers. Multivariate
discriminant analysis, with age as the dependent variable and WM, GM and CSF volumes, global FA
and MD, and gender as the independent variables, was used to assemble a predictive model.

The resulting model was able to differentiate between young and older brains: Wilks’ λ = 0.235, χ
(6) = 37.603, p = .000001. Only global FA, WM volume and CSF volume signi�icantly discriminated
between groups. The total accuracy was 93.5%; the sensitivity, speci�icity and positive and negative
predictive values were 91.30%, 100%, 100% and 80%, respectively.
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Global FA, WM volume and CSF volume are parameters that, when combined, reliably discriminate
between young and older brains. A decrease in FA is the strongest predictor of membership of the
older brain group, followed by an increase in WM and CSF volumes. Brain assessment using a pre-
dictive model might allow the follow-up of selected cases that deviate from normal aging.
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Introduction

An approach that integrates structural and volumetric biomarkers could be adopted in an attempt
to explain some of the discrepancies in the current literature on the aging process of the human
brain (Abe et al., 2008); for example, it is known that white matter (WM) changes exceed gray mat-
ter (GM) changes during aging (Allen et al., 2005), meaning that human WM is more vulnerable
than GM, especially in late-myelinating regions such as the frontal and temporal lobes. Gender has
also been associated with the brain aging process: cortical GM declined more steeply with age in
men than women, but cortical WM volumes remained stable across the adult age span in both gen-
ders (Sullivan et al., 2004). Knowledge of the parameters of brain aging is essential in order to un-
derstand what underlies the cognitive declines associated with normal aging and how these
de�icits differ from those related to pathological conditions such as mild cognitive impairment
(MCI) or Alzheimer’s disease (AD).

Diffusion tensor imaging (DTI) allows the calculation of several biomarkers of structural integrity
of brain tissue (Vernooij et al., 2008). These include fractional anisotropy (FA) and mean diffusiv-
ity (MD) (Abe et al., 2008; Hsu et al. 2008). Previous studies have proved the usefulness of a global
(whole-brain) approach when using DTI-derived biomarkers in the detection of GM and WM
changes (Kochunov et al., 2011). A lower FA value represents a decrease in diffusion directionality
due to a loss of microstructural integrity (Vernooij et al., 2008); this is thought to correspond to a
decrease in water movement along (the same) axonal tracts. Age-related changes in FA and MD
should be presented using a global rather than a regional approach, as a global approach allows a
comprehensive quantitation of a tract or group of tracts and not only a partial measurement of
�ibers (as is the case when using a regional, or structure-based, approach). Previous studies using
a regional approach showed: that FA in the temporal and occipital regions was not correlated with
age (Hsu et al., 2008); that FA was negatively correlated in the frontal and temporal WM regions
(Abe et al., 2008); that FA measurements did not reveal signi�icant differences, with aging, between
the temporal and posterior WM regions (Salat et al., 2005). They also showed the existence of sig-
ni�icant differences in FA between cross-sectional normal WM tracts (Nusbaum et al., 2001;
Roldan-Valadez et al., 2012). Furthermore, correlations between FA and MD reportedly change de-
pending on the brain region considered: lower FA and higher MD values have been found in the
WM of older versus younger subjects, while basal ganglia FA and MD measurements were higher
in older than in younger subjects (Pfefferbaum et al., 2010). These variations might be due to
methodological differences in image analyses or acquisition, selection and placement of regions of
interest, and/or study populations (Jenkinson et al., 2012).
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The primary aim of this study was to evaluate global measures of diffusion (i.e. global FA and MD),
selected volumes of WM, GM and cerebrospinal �luid (CSF), and gender, assembling a model that
allows us, through a multivariate analysis, to discriminate between normal younger and normal
older brains. This global approach offers an integrative model that allows quantitative depiction of
normal aging using a series of biomarkers that have previously been used separately in the diag-
nosis of other neurological diseases, but not as an integrative model of normal brain aging.

Materials and methods

Subjects

A cross-sectional study was performed in right-handed healthy volunteers, divided into young
adults and elderly persons. The young subjects were consecutively recruited from a group of med-
ical residents; the elderly subjects were recruited from the Geriatric Unit at Medica Sur Clinic &
Foundation, in the period from July 2011 to August 2012. The young adults underwent detailed
health examinations performed by a general practitioner; the elderly subjects underwent com-
plete physical and geriatric examinations performed by a board certi�ied geriatrician. Participants
were excluded if they had a history of major neurological, psychiatric or cardiovascular disease.
The local institutional review board approved the study (protocol #2011.043), and all the partici-
pants gave their written informed consent.

MRI scans showing structural abnormalities, such as tumors or stroke, anatomical variations (e.g.,
mega cisterna magna, cavum septum pellucidum), or technical artifacts, were excluded. WM hyper-
intensities, as observed on T2-weighted or �luid-attenuated inversion recovery (FLAIR) images,
were rated by a radiologist using the age-related WM changes (ARWMC) score (Wahlund et al.,
2001). We excluded elderly subjects with regional ARWMC scores higher than 1. For all partici-
pants a preliminary neuropsychological evaluation included the Wechsler Adult Intelligence Scale-
III intelligence quotient (IQ) test validated for Mexican patients (considering an average IQ of 100
and a standard deviation of 15) (Wechsler, 1997), and a validated, modi�ied version of the Mini-
Mental State Examination (MMSE) in Spanish, adjusted for age and level of education (a score of
25 points or more was taken as normal) (Reyes-de-Beaman et al., 2004). Elderly participants with
MCI or AD were excluded on the basis of diagnostic criteria established in accordance with the di-
agnostic guidelines of the National Institute on Aging-Alzheimer’s Association work groups (Albert
et al., 2011; McKhann et al., 2011).

Brain image acquisition

MRI evaluations of the brain were performed using a 3.0T Signa HDxt scanner (GE Healthcare,
Waukesha, WI) and a high-resolution eight-channel head coil (Invivo, Gainesville, FL).
Contraindications to MRI were the presence of a pacemaker or metallic implant and claustropho-
bia. All participants were included.
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The examination included standard clinical sequences: sagittal T1-weighted FLAIR (TE/TR =
9.9/2500 ms) with a 5/3-mm slice thickness/gap and 24 × 24 cm �ield of view (FOV); axial fast
spoiled gradient-echo (FSPGR) (TE/TR = 3.9/9.4 ms) with a 1.3/0-mm slice thickness/gap and
FOV of 24 × 18 cm; coronal T2-weighted fast spin-echo (TE/TR = 164.1/2617 ms) with a 3/0-mm
slice thickness/gap and FOV of 22 × 16 cm; and axial FLAIR (TE/TR = 115.8/11002 ms) with a
5/1-mm slice thickness/gap and FOV of 22 × 22 cm. The DTI sequence resulted in 50 axial slices
covering the entire brain and brainstem with 1.7 × 1.7 × 3.0 mm  voxel size, acquired with 25 non-
collinear diffusion directions with a b-value of 1,000 s/mm , and one with a b-value of 0 s/mm .

Volumetric data analysis

MRI data of the T1-weighted FSPGR sequence were transferred to a Linux-based workstation.
Individual brain atlas-based volumetry was performed using the IBASPM software version 1.0
(Alemán-Gomez et al., 2006), a toolbox for structure segmentation of structural MRI images imple-
mented in MATLAB 7.0 (MathWorks, Natick, MA). This software uses the spatial normalization and
segmentation routines of the Statistical Parametric Mapping software version 2 (SPM2) (Roldan-
Valadez et al., 2012). A description of the method for volume measurement was recently published
elsewhere (Roldan-Valadez et al., 2013).

DTI analysis and global MD and FA measurements

We used the dcm2nii software (Rorden et al., 2011)
(http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html) and tools from the FMRIB
Software Library (FSL, www.fmrib.ox.ac.uk/fsl) version 4.1.9 (Smith et al., 2004), as follows. DTI
images were extracted using the Brain Extraction Tool (BET) version 2.1 (Smith, 2002). Eddy cur-
rents were corrected using the Diffusion Toolbox version 2.0; the Reconstruct Diffusion Tensor
(DTIFIT) and the fslmaths tool generated the eigenvector and eigenvalue maps for each tensor
metric. The fslstats tool calculated the scalar measures (mean values) of global FA and MD.
Evidence of the clinical application of global DTI-derived tensor metrics for brain imaging has re-
cently been published (Roldan-Valadez et al., 2014).

Statistical analysis

Sample size Considering that this was a pilot/feasibility study, in accordance with the considera-
tions and recommendations of others we chose to include at least 10 subjects per group (Hertzog,
2008), and to have a minimum overall sample size of 30 (Lancaster et al., 2004). The statistical
analysis was focused on the calculation of 95% con�idence intervals (CIs) according to contempo-
rary de�initions (P�ister and Janczyk, 2013); a boot strapping method with bias corrected and ac-
celerated con�idence estimates was performed with 1000 bootstrap resamples (Henderson,
2005). Differences between groups (normal young and normal older brains) for each variable
were tested using the Mann-Whitney U test; the value of z was used to calculate an approximate
value of r as a measure of effect size (r = z/square root of N where N = total number of cases); ef-
fect sizes of 0.1, 0.3 and 0.5 were termed small, medium and large, respectively (Cohen, 1988).

3

2 2

5/2/24, 2:33 PM Global fractional anisotropy and mean diffusivity together with segmented brain volumes assemble a predictive discriminant model f…

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819817/ 4/16

http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html
http://www.fmrib.ox.ac.uk/fsl


Multivariate discriminant analysis Multivariate discriminant analysis (DA) (Tabachnik and Fidell,
2013) included continuous and categorical variables to identify speci�ic volumetric and structural
attributes in young and older brains. The dependent variable (DV) was age group, with subjects
classi�ied as young adults or healthy elders. The independent variables (IVs) comprised: three vol-
umes (cm ): GM, WM and CSF; two DTI-derived measurements: MD (mm s ) and FA (dimension-
less number), and one categorical variable (gender: male or female). The effect-size measure for
DA was calculated using the squared canonical correlation as the equivalent of the R  in regres-
sion. By convention, effect sizes of 0.02, 0.15 and 0.35 were termed small, medium and large, re-
spectively (Cohen, 1988).

Diagnostic model evaluation The cross-validated contingency table generated by the DA was used
to evaluate the diagnostic performance of the DA model; we reported values of sensitivity and
speci�icity, positive and negative likelihood ratios, and positive and negative predictive values, with
their corresponding CIs. Statistical signi�icance was indicated by a p-value < 0.05.

Software DA analyses were carried out using the IBM® SPSS® Statistics software (version
22.0.0.0, IBM Corporation, Armonk, NY, USA). Diagnostic performance was assessed using
MedCalc® (version 14.8.1 MedCalc Software bvba, Mariakerke, Belgium). Reporting of diagnostic
performance tests followed the STARD initiative (Bossuyt et al., 2003).

Results

Subjects

The study was conducted in 31 subjects: 23 females and eight males, distributed in two age
groups: 21 young adults (mean age, 25.71 ± 3.04 years; range, 21–34 years) and 10 healthy elders
(mean age, 70.20 ± 4.02 years; range, 66–80 years). Table I shows the gender distribution in each
age group.

Table I

Gender distribution between the young and older brains.

Group Gender n %

Young brain Male 5 16.13

Female 16 51.61

Older brain Male 3 9.68

Female 7 22.58

Total 31 100.00

3 2 −1

2
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FA values were higher in younger than in older brains, with a signi�icant difference and a large ef-
fect size: U = 17.0, z = −3.719, p < .001, r = .66. Signi�icantly lower volumes of CSF were found in
young versus older brains, this �inding also showed a large effect size: U = 136.0, z = −32.916, p =
.004, r = .52. No signi�icant differences between the groups were found for MD (p = .186), GM vol-
ume (p = .087) and WM volume (p = .072). Table II presents the mean values, SD and CI for each
age group.

Table II

Mean values, standard deviations and con�idence intervals of the structural and volumetric biomarkers in each
age group.

Variable

Young	brains	(20–35	years) Older	brains	(60–85	years)

Mean SD
95%	CI

Mean SD
95%	CI

Lower Upper Lower Upper

GM volume (cm ) 638.166 69.102 606.377 666.678 591.725 62.345 549.884 628.896

WM volume (cm ) 382.034 33.501 367.440 395.757 414.978 49.903 386.179 447.963

CSF volume (cm ) 359.397 68.103 331.930 389.319 477.271 105.053 414.772 543.323

MD (mm /s) 0.001224 0.000082 0.001191 0.001262 0.001272 0.00014 0.001183 0.001360

FA (dimensionless) 0.294860 0.012442 0.289698 0.299928 0.266776 0.015586 0.257207 0.276734

Abbreviations: GM=gray matter; WM=white matter; CSF=cerebrospinal �luid; MD=mean diffusivity; FA=fractional

anisotropy; SD=standard deviation; 95% CI=bootstrap 95% con�idence intervals.

Discriminant analysis

The DA was performed by entering the measurements of the six IVs for each of the 31 brains —
�ive continuous (WM, GM and CSF volumes; FA and MD) and one categorical (gender) — for a to-
tal of 186 measurements. DA revealed one discriminant function. The assumption of homogeneity
of variance-covariance matrices was interpreted as non-signi�icant (Box’s M value = 62.335, p =
0.002), assuming the covariance matrices between the groups were equal (Huberty and Petroskey,
2000). This discriminant function signi�icantly differentiated the young and older brains: Wilks’ λ =
0.235, χ  (6) = 37.603, p = .000001. By indicating the signi�icance of the discriminant function,
Wilks’ λ explained a low proportion (only 23.55%) of the total variability not explained by the
model. A canonical correlation of .8743 suggested that the model explains 76.45% of the variance
in the �inal model.

Summary of discriminant functions

3

3

3

2
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The tests of equality of group means provided statistical evidence of signi�icant differences be-
tween means of the groups (young adult and elderly) for only three of the IVs (FA, WM and CSF
volumes) with FA producing the highest F-test variance ratio value (Table III).

Table III

Multivariate analysis showing the statistical effect of each independent variable included in the analysis.

Variable Wilks’	Lambda F	ratio p-value

Fractional anisotropy .497 29.330 < .001

Cerebrospinal �luid volume .671 14.210 .001

White matter volume .859 4.753 .038

Gray matter volume .899 3.247 .082

Mean diffusivity .953 1.437 .240

Gender .996 .127 .724

Standardized canonical discriminant function coef�icients provided an index of the importance of
each predictor of diagnosis with the sign indicating the direction of the relationship. A signi�icant
decreased value for FA was the strongest diagnostic predictor of older brains, while a signi�icant
increase in CSF volume was next in importance. The variables with large coef�icients stand out (for
these data) as those that strongly predict allocation to the young or elderly group. On the basis of
these coef�icient scores the rest of the variables were decreasingly strong as diagnostic predictors
(Table IV A).
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Table IV

Independent variables included in the discriminant analysis.

A

Standardized	canonical	discriminant
function	coef�icients

B

Structure	matrix

C

Canonical	discriminant	function
coef�icients

Variable Function Function Function

1 Variable 1 Variable 1

MD −918 FA −558 MD −8842.143

FA −956 CSF
volume

.388 FA −70.806

GM volume .019 WM

volume

.225 GM volume .000281

WM volume .506 GM
volume

−186 WM volume .012860

CSF volume 1.264 MD .124 CSF volume .015526

Gender .570 Gender −037 Gender 1.262

Abbreviations: MD=mean diffusivity; FA=fractional anisotropy; GM=gray matter; WM=white matter;

CSF=cerebrospinal �luid
A) ordered by their standardized canonical discriminant function coef�icients (variables with larger coef�icients
stand out as those that strongly predict allocation to each diagnosis). B) Within-groups correlation matrix depicts

the participant variables ordered by absolute size of correlation (Pearson coef�icients) within function. A value of
0.30 is considered the cut-off between important and less important variables. C) Unstandardized coef�icients
used to create a discriminant function operating just like a regression equation. Coef�icients indicate the partial

contribution of each variable to the discriminate function controlling for all other variables in the equation.

The structure matrix table provides another way of indicating the relative importance of the diag-
nostic predictors by showing the correlations (Pearson’s coef�icients) of each variable with each
discriminate function. Many researchers consider structure matrix correlations more accurate
than standardized canonical discriminant function coef�icients (Field, 2009). By identifying the
largest loadings for each discriminate function it is possible to see a different pattern of variables.
Here we have FA (a unitless structural measurement) and CSF (measured in cm ), which account
for the largest loadings for the functions that discriminate between the young and elderly groups.
A value of 0.30 is taken as the cut-off between important and less important variables (Field,
2009) (Table IV B).

The canonical discriminant function coef�icients table shows the unstandardized coef�icients (b)
that are used to create the discriminant function (equation), operating just like a regression equa-
tion. In this study we observed:

3
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D = 17.601(Constant) - (8, 842.143 × MD) - (70.806 × FA) + (0.000281 × GM) + (0.012860 WM)
+ (0.015526 × CSF) + (1.262 × Gender)

The categorical variable gender was classi�ied as: male = 1 and female = 2. The discriminant func-
tion coef�icients (b) indicate the partial contribution of each variable to the discriminate function
controlling for all other variables in the equation (Table IV C).

Group centroids table: we also described each group in terms of its pro�ile, using the group means
of the predictor variables called centroids. The mean of the two centroids is considered the cut-off
value; if the discriminant score of the function is less than or equal to the cut-off, the case is
classed as 1 (young brain), whereas if it is above, it is classed as 2 (older brain). In our study,
young brains had a mean of −1.203 while elder brains produced a mean of 2.526 (Table V).

Table V

Means of the predictor variables (centroids) used to describe each group in terms of its pro�ile.

Age	group Functions	at	group	centroids

Young adults (20–35 years) −1.203

Elders (> 60 years) 2.526

Cut-off value .060

The cut-off value is considered the mean of the two centroids; if the discriminant score of the function is less than
or equal to the cut-off a new case can be classed as 1 (young adult), whereas if it is above, it is classed as 2
(elderly).

We �inished the DA by performing a classi�ication phase, using the cross-validated set of data to
present the power of the discriminant function. The classi�ication results revealed that 93.5% of
the patients were classi�ied correctly in the “young adult brain” or “older brain” groups, this value
corresponded to the overall predictive accuracy of the discriminant function; additional results of
diagnostic tests are presented in table VI. The average D scores for each group and the group cen-
troids help us to see the effectiveness of the discriminant function. Histograms and box plots of
the average D scores for each group were used as visual demonstrations of the power of the dis-
criminant function, the absence of overlap of the plots revealed an excellent discriminant function
(Fig. 1).
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Fig. 1

Visual demonstration of the effectiveness of the discriminant function.

a) histograms showing the distribution of discriminant scores for young and older brains. b) box plots of the av-
erage D scores. Both illustrate the distribution of the discriminant function scores for each group. The absence of
overlap between groups constitutes a visual demonstration of excellent discrimination.
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Table VI

Results of diagnostic tests of the discriminant model.

Test Value	(%) 95%	CI

Sensitivity 91.30 71.96–98.93

Speci�icity 100.00 63.06–100.00

+ likelihood ratio - -

− likelihood ratio 0.09 0.02–0.33

+ predictive value 100.00 83.89–100.00

− predictive value 80.00 44.39–97.48

Discussion

There is cumulative evidence showing that brain aging is a complex and heterogeneous process
characterized by a pattern of age-related preservation and selective loss and associated with a
high degree of inter-individual variability (Gunning-Dixon et al., 2009). In this study we investi-
gated whether global (whole-brain) measures of MD and FA, together with segmented WM, GM
and CSF volumes and gender, are able to document microstructural brain changes during normal
aging.

Our assembled model showed 93.5% accuracy for discrimination between young and elderly
brains, with FA topping the ranking of signi�icant discriminant variables, followed by CSF volume
and WM volume; such a ranking of MRI global parameters as part of a predictive model has not
previously been reported in clinical settings to the best of our knowledge.

Surprisingly, MD, GM volume and gender were not signi�icant parameters for classifying between
groups even though they have been reported in the literature as biomarkers of the brain aging
process.

In our view the clinical importance of this study lies in the assembling of a multivariate predictive
model, which combines global (whole-brain) measures of MD and FA (which are easier to calcu-
late and understand) with segmented WM, GM and CSF volumes and gender, and allows the build-
ing of a pro�ile of the healthy elderly brain in normal aging. The adoption of a predictive model
might supplement the assessment of brain structure and function in different circumstances: when
brain measures in a new patient deviate from the expected parameters of normal aging, as well as
in the follow-up of selected cases. Although radiologists and researchers have previously used and
reported these parameters separately, the literature lacks a model that integrates them and is able
to document microstructural brain changes during normal aging on a day-to-day basis.
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Our evidence pointing to decreased FA as the best biomarker for classi�ication of young vs older
brains is in agreement with the �indings of a previous study in normal aging (Michielse et al.,
2010). FA values for WM continue to increase until the third to fourth decade of life, but they start
to decline during aging (after 40 years of age) (Kochunov et al., 2011). These �indings further sup-
port the idea that decreased FA might be interpreted as an expression of degeneration of the ax-
onal myelin sheath (demyelination) and/or replacement of axonal �ibers with other cells (gliosis)
(Smith et al., 2006), and that it may precede atrophy in many regions of the brain (Hugenschmidt
et al., 2008).

On the other hand, MD re�lects the physicochemical properties of the nervous system (e.g., viscos-
ity and temperature) as well as its structural components (macromolecules, membranes, and in-
tracellular organelles) (Di Paola et al., 2010). In our study, MD depicted the smallest correlation
and its values were not signi�icant for discriminating between groups.

A possible explanation for this apparent difference with previous �indings is that in our study we
used a global measure of MD instead of a local or regional measure, and it seems that MD changes
remarkably depending on the brain region considered. This may suggest that MD is a weak global
biomarker of normal aging. Further research on aging and its related bio-markers should focus
on FA rather MD, however we acknowledge that MD might still have important applications out-
side of the aging process.

Gender had a non-signi�icant in�luence as a biomarker in our study, a �inding that agrees with the
equivalent disruption of regional WM microstructure between men and women found by Sullivan
et al. (2001). It is possible, therefore, that the pattern of transition from the young to the older
brain in men and women is equivalent.

An additional interesting �inding in this study was that increased WM volume signi�icantly pre-
dicted membership of the older brain group; this �inding is in line with the continued production
of ‘redundant myelin’ that has been observed in human adults (Allen et al., 2005; Salat et al., 2009)
and suggested to be a compensatory mechanism for myelin degeneration.

The observed decrease in GM volume in elderly brains was non-signi�icant, in contrast to earlier
�indings of a gradual linear decrease of GM, 5% per decade of age, from early adulthood (Smith et
al., 2007). These �indings suggest that GM loss progresses gradually, whereas WM loss starts later
and progresses more precipitously (Raz et al., 2005); these �indings might indirectly explain the
signi�icant increase in CSF volume in the older brains in our study and its key role in the model.
This interplay between segmented WM, GM and CSF volumes remains unclear and could be inves-
tigated in further studies including ratios of WM, GM and CSF instead of absolute values. Our
model follows the recommendation of Abe et al. (2008) to assess FA and brain volumes together,
as complementary indices of brain aging. Despite the non-signi�icant participation of MD and GM
volume in our model, we recommend keeping track of their changes during follow-up studies, and
also of changes in the other structural and volumetric biomarkers (FA, CSF and WM volumes), un-
til more evidence helps validate their role in integrative models.
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Several limitations in our study need to be addressed: our DA model, represented by an equation,
behaves like a regression model and is strictly valid only within the range of the observed data on
the explanatory variables. Our sample size, although small, was statistically valid for evaluating the
diagnostic performance of the predictive model (Cortez-Conradis et al., 2013); this study is a start-
ing point for a research line focused on MRI biomarkers of aging in the normal brain and in de-
generative brain diseases. Further studies could increase the homogeneity of the sample in terms
of gender, as well as the number of subjects, thus increasing the statistical power for generalizing
the �indings.

Segmentation algorithms and intensity thresholds of GM, WM and CSF may differ across laborato-
ries, producing variable results. We acknowledge that alternative software like Freesurfer (Han et
al., 2006) allows the calculation of surface-based cortical thickness measures. We did not use that
software because our aim was to limit the computational costs of our study; also, we aimed to
choose variables (brain volumes) which we could compare with previous studies. We believe it is
necessary to reach a consensus of standardized software algorithms and measurements able to
guarantee that all measurements are conducted within the same algorithms in all patients; in this
way, variations in the results would be a re�lection only of the distribution of the selected biomark-
ers. For example, a recent study has proposed the use of machine learning, albeit in a younger age
group (8–22 years) (Erus et al., 2015). Despite the initially steep learning curve of the open-
source software packages used in this study, they are suitable for use on a day-to-day basis in MRI
units, for example those supporting geriatric or family medicine studies, and not only in clinical re-
search. We acknowledge that further studies examining the changes, with age, in the biophysical
properties of the DTI signal are necessary, as well as the inclusion of additional brain volume cor-
relates; both groups of variables could supplement the study of neurodevelopment, healthy aging
and brain disorders (Roldan-Valadez et al. 2014, 2015).

The increased availability of open source software in MRI units around the world would allow
these measurements to become low-cost and commonly used biomarkers. By calculating multivari-
ate discriminant models, further studies will help to rank the in�luence of these parameters in
physiological brain aging. Eventually, similar reports would lead to the generalization and accep-
tance of multivariate-integrative models by clinicians (geriatricians, neurologists, psychiatrist, neu-
roscientists, etc.).

In summary our study shows that FA, CSF volume and WM volume are reliable imaging parame-
ters that can depict microstructural changes during normal brain aging by using a global and inte-
grative approach.
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