
Improved Image Caption Rating – Datasets, Game, and Model
Andrew Taylor Scott

ats@sfsu.edu
Department of Computer Science,
San Francisco State University

San Francisco, CA, USA

Lothar D Narins
lnarins@mail.sfsu.edu

Department of Computer Science,
San Francisco State University

San Francisco, CA, USA

Anagha Kulkarni
ak@sfsu.edu

Department of Computer Science,
San Francisco State University

San Francisco, CA, USA

Mar Castanon
marcastanon4@gmail.com

Department of Computer Science,
San Francisco State University

San Francisco, CA, USA

Benjamin Kao
bkao1@mail.sfsu.edu

Department of Computer Science,
San Francisco State University

San Francisco, CA, USA

Shasta Ihorn
sihorn@sfsu.edu

Department of Psychology,
San Francisco State University

San Francisco, CA, USA

Yue-Ting Siu
ting.siu@wssb.wa.gov

Department of Special Education,
San Francisco State University

San Francisco, CA, USA

Ilmi Yoon
ilmi@sfsu.edu

Department of Computer Science,
San Francisco State University

San Francisco, CA, USA

ABSTRACT
How well a caption fits an image can be difficult to assess due to
the subjective nature of caption quality. What is a good caption?
We investigate this problem by focusing on image-caption ratings
and by generating high quality datasets from human feedback with
gamification. We validate the datasets by showing a higher level of
inter-rater agreement, and by using them to train custom machine
learning models to predict new ratings. Our approach outperforms
previous metrics – the resulting datasets are more easily learned
and are of higher quality than other currently available datasets for
image-caption rating.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression; Computer vision; Natural language processing.
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1 INTRODUCTION
Image-caption rating (ICR) is the task of estimating the quality of a
caption for a given image. It is a growing area of research in the
computer vision, natural language processing (NLP), and human
computer interaction communities [10, 13, 18, 19, 32], and is becom-
ing especially relevant as computer generated captions are used
more and more for closed-captioning and descriptive annotations.
Identifying how good a caption is can be difficult because of the
multiple aspects involved. At minimum, a good caption should cor-
rectly identify all relevant objects, where things are in space, the
setting in which the objects are shown, and the interpretation of
events depicted in the image. Prior work has contributed multiple
ICR datasets where human annotators were asked to assign quality
ratings to image-caption pairs, most often with an ad hoc rating
scale [12, 20, 22, 29]. While these datasets have been tremendously
valuable in advancing the field and have been used extensively
[1, 2, 19, 27, 30, 33], several of them suffer from high skew in the
ratings with predominantly poor quality captions. Our work seeks
to improve the rigor, quality, and scalability of ICR datasets by
providing a better rating scale, dataset generation process, dataset
validation process, and rating predictor. Our datasets, code, and
pretrained models are available through our project website.1

A distinguishing characteristic of caption quality metrics is
whether or not they depend on reference captions. Traditional NLP
approaches such as BLEU, CIDEr, ROUGE, METEOR, and SPICE
are monomodal, reference-based, and are unable to measure the
nuance found in rich image captions [1, 7, 21, 25, 29]. The success
of reference-free approaches has opened new possibilities for ICR
estimation in applications without access to reference captions
[4, 10, 11, 28]. However, existing reference-free metrics lack rat-
ing granularity due to the use of oversimplified scales. Our work
seeks to lift this restriction by retaining the benefits of a reference-
free rating approach while employing a 5-level rating scale that

1https://ai.youdescribe.org
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can capture subtle aspects of caption quality, such as correctness,
completeness, and local and global context.

Although a more detailed scale can offer higher rating capacity,
it can also increase the complexity of the rating task, potentially
making the task more subjective and tedious. To tackle this down-
side, we propose a novel human-in-the-loop solution that employs a
rigorous human rater training procedure and a gamified data gener-
ation process with built-in quality control. The gamification aspect
keeps the raters engaged and the built-in quality control steers
raters toward higher quality answers. Our contributions include a
web-based image-caption rating game, novel datasets, inter-rater
agreement validation, and baseline models that can be used in place
of other metrics. We define our research objective to be: Design and
develop a reliable and scalable data generation approach for the task
of image-caption rating.

2 RELATEDWORK
2.1 ICR Scale and Datasets
There are only a handful of image-caption datasets with ratings:
Google Image Caption (GIC) [20], Conceptual Captions Challenge2,
CapEval1k [18], PASCAL50s [29], and Flickr8k-Expert [12]. Among
those previous datasets, we identify two sources of error. One is
the rating scale itself which is generally not defined well enough to
capture significant meaning. The other source of error is the human
rater’s inconsistent application of that scale.

The GIC dataset is large with 140k image-caption pairs but only
has ratings on a binary scale (“good” or “bad”). One common prob-
lem with a binary scale is that it does not have the capacity to
handle incomplete or partially correct captions. Figure 1 includes
two image and caption examples which were considered “good” by
raters but lack contextual information. The Conceptual Caption
Challenge dataset contains 5,000 image-caption pairs with binary
ratings that were collected in the same manner as GIC and has
the same problem with incomplete or partially correct captions.
CapEval1k is good because it has a five point scale but the scale
is not specific and the dataset is very small with only 1,000 cap-
tions and 250 images. PASCAL50s only has ratings in a free-form,
non-numeric scale. These datasets are all either too small or have
rating scales that are not defined well enough to capture significant
meaning.

Table 1: Flickr8k-Expert rating scale.

𝑟 Meaning
4 Describes the image without any errors.
3 Describes the image with minor errors.
2 Is somewhat related to the image.
1 Is unrelated to the image.

Flickr8k-Expert is the only one with ratings on a graduated,
numeric scale with specific meanings, and represents the current
state of the art in ICR datasets. Flickr8k-Expert has 5,822 captions
across 1,000 images rated by 21 college students such that each
caption has received 3 ratings in a range of 1 to 4 (Table 1). The

2https://www.conceptualcaptions.com

Caption: “audience members at
the conference hall”.

Caption: “street art on the side-
walk”.

Figure 1: Two examples from Google Image Caption Dataset
illustrating the limitation of a binary scale. For both images
all 10 raters chose “good” rating even though salient aspects
of the image are not captured by the caption (lecturer at the
front of a sparsely attended lecture hall, with a scale model
bridge on the table; artist wearing a sunhat, crouching on the
ground, holding a piece of paper).

complexity of the ICR task combined with an underspecified rating
scale, however, lead to fairly low inter-rater agreement which we
show in Section 4 and Table 3. In addition, the rating distribution in
Flickr8k-Expert skews heavily toward ratings of 1 and 2, indicating
overall lower caption quality (Figure 4a).

2.2 Reference-free ICR Estimators
VSEPP [8] and CLIPScore [10] are multimodal models that use
cosine similarity to measure the alignment between an image em-
bedding and text embedding vector representation in a shared
visual-linguistic feature space to provide reference-free metrics.
While cosine similarity is useful for measuring the alignment be-
tween these modes, fine-tuning or manipulation of the similarity
of the image and text embeddings for domain-specific applications
remains difficult.

Cui and colleagues [6] created a deep learning method for deter-
mining if a caption for an image was human-written or machine
generated. This binary classifier is not sufficient for diverse use
cases since it only detects the source of a caption rather than its
quality. Levinboim and colleagues [20] trained a deep learning,
image-caption Quality Estimation (QE) model on the GIC dataset.
This model inherits the same limitations from the GIC dataset be-
cause of its binary classification system discussed in Figure 1.

Lee and colleagues [18] developed UnreferencedMetric for Image
Captioning (UMIC) using UNITER [5] via contrastive learning, a
process where the model is trained to compare and discriminate the
ground-truth captions and diverse synthetic negative samples. Jiang
and colleagues [13] developed TIGEr (Text-to-Image Grounding for
Image Caption Evaluation) by refining the mapping of the image
and the caption pair into carefully grounded vector spaces. These
estimators improve over prior metrics but still do not surpass state
of the art methods on Flickr8k-Expert.

3 METHODS
To make the task of image-caption rating easier, we developed a
rating scale that captures all essential aspects of image-caption
quality, and we have developed an engaging tool to facilitate high-
quality data generation from human raters. We have evaluated the

https://www.conceptualcaptions.com
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efficacy of our approach by analyzing inter-rater agreement and by
conducting experiments with custom machine learning models for
rating prediction. These components provide a robust, high-quality
and scalable image-caption rating methodology.

3.1 Rating Scale
As shown in Table 2, our 5-level scale is designed to capture the
extent of four essential aspects of image captions: (1) accuracy (e.g.
‘objects are partially correctly identified’), (2) completeness (e.g.
‘identifies most of the objects’), (3) local context (e.g. ‘where things
are in space’), and (4) global context and inferential information
(e.g. ‘interpretation of overall setting and/or event’). The rating
scale was designed through consulting with measurement experts,
accessibility experts, and informed by the Integrative Inferential
Reasoning (IIR) framework, which is concerned with how humans
integrate context for image and text narratives [3]. Our scale differs
from the Flickr8k-Expert scale in the ratings of 2 and above. Our
rating scale captures more nuance with less ambiguity.

Table 2: Improved image caption rating scale.

𝑟 Meaning
5 Objects, a general scene, and actions are correctly identified if

present in the image. The caption describes what is seen and
where things are in space. Interpretation of overall setting
and/or event is included.

4 Objects and/or a general scene and/or an action are correctly
identified but not every element is completely identified. The
caption describes what is seen and where things are in space.
There is no interpretation of an event.

3 Relevant objects are correctly identified. The caption de-
scribes what is seen but not where objects are in space. There
is no description of the overall setting and no interpretation
of an event.

2 Objects are partially correctly identified with some errors,
but the caption is accurate enough to give an idea of what
is happening in the image. The caption identifies most of
the objects but might not identify everything. There is no
interpretation of what anything means.

1 Objects are incorrectly identified. The caption gives the
wrong idea about what is happening in the image.

3.2 Gamified Data Generation
To promote human rater engagement we frame the image-caption
rating task as a single-player, asynchronous, point-based game that
is played in a web browser. We draw inspiration from the image
labeling “ESP Game” [31]. In the ESP Game, two players play against
one another, trying to guess the word their opponent is thinking
for a given image. In our Rating Game, each player tries to predict
the community consensus rating for each image-caption pair in
order to maximize their point score.

Human Rater Training: Before their ratings are accepted into
our datasets, human raters must go through a tutorial to familiarize
themselves with the Rating Game and scale. In the tutorial, the rater
is guided through 10 image-caption pairs and asked to rate them.

Their answer is compared with the consensus and they are given a
score and feedback along with an explanation for why that rating
was chosen as the consensus. After the tutorial, they move on to
the Rating Game. The rater must score at least 25 points in the first
20 image-caption pairs or else they are put on “probation”: their
scores are reset and they must complete 20 image-caption pairs
from a curated set with a score of at least 25 before they can move
on. Point scores do not propagate into the game from the tutorial or
probation period. The tutorial and probation image-caption pairs
were not included in the final dataset.

Rating Game: The Rating Game is designed to provide a user
experience that is similar to that of the Human Rater Training:
an image-caption pair is displayed, and the player selects a rating
from the 5-level scale (Figure 2a). The player has to wait at least 3
seconds before submitting their answer. After the player submits
their rating they receive feedback and a score based on how their
rating compares to the consensus rating of the other players so far
(Figures 2b and 2c). The scoring algorithm, probation status, and
3 second delay are intended to discourage guessing and promote
higher-quality ratings.

(a) Image, caption and 5-
level scale. Themeanings of
the rating scale can be con-
sulted anytime through the
‘Rating Guide’ button.

(b) Player feed-
back when the
rating does not
match the con-
sensus.

(c) Player feed-
back when the
rating matches
the consensus.

Figure 2: Image caption rating game.

Scoring Algorithm: The consensus rating, 𝑟 , is computed by
rounding the average of all the previous ratings for that image-
caption pair. The score, 𝑠 , assigned to the player models two in-
tuitions: the first is that if the rating, 𝑥 , is near the consensus the
player should get a high score, and if the rating is far the player
should get a low score. The second intuition is that if there is a high
variance in the previous ratings the penalty for being far from the
consensus should be lower, and if there is a low variance the penalty
should be higher. These two intuitions are captured in Algorithm
1, which computes the player score, 𝑠 , where 𝑛 is the total number
of ratings available for the current image-caption pair (including
the player’s rating), 𝜎2 is the variance of the previous ratings, and
𝑉𝑚𝑎𝑥 = 4 is the largest possible value of the variance.

Since this scoring mechanism requires previous ratings, we have
a “cold start” problem for the initial ratings. We deal with this
problem by using computer generated initial ratings – from VSEPP
at first and from our models once we trained them. We include two
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computer generated initial ratings to make the scoring algorithm
smoother. As the human ratings are collected, the initial ratings are
replaced with human ratings.

Algorithm 1: Player score, 𝑠 .

𝑣 ← 1 + 1
𝑛 (1 +

(𝑛−1)𝜎2

𝑉𝑚𝑎𝑥
)

𝑑 ← |𝑥−𝑟 |
𝑣

if 𝑑 ≤ 0.25 then 𝑠 ← 2
else if 𝑑 ≤ 0.5 then 𝑠 ← 1
else if 𝑑 ≤ 1 then 𝑠 ← 0
else if 𝑑 ≤ 1.75 then 𝑠 ← −1
else 𝑠 ← −2

3.3 New Datasets
Our work contributes three new ICR datasets: CocoG, FlickrG,
and a combination of these two datasets, IICR16k. To generate
the datasets, human raters were invited to play the Rating Game
through a departmental mailing list and incentivized with monetary
rewards that depended on their scores. Participants were required
to fill out a consent form.

CocoG: For this dataset, 8,990 distinct images were chosen at
random from the MS-COCO 2014 validation set [22]. The captions
were selected from four sources: (1) the original MS-COCO captions,
(2) captions generated using the Pythia framework [14], (3) captions
generated using the GLACNet model [17], and (4) mismatched
MS-COCO captions from other images. Most images received one
caption but some received two captions, leading to 9,982 image-
caption pairs. The goal of sampling from these four sources was
to create a balanced and wide variety of caption quality examples.
The original captions (1) are known to be good quality, the Pythia
captions (2) and GLACNet captions (3) are medium quality, and
mismatched captions (4) are poor quality.

There were 72 college students who generated the ratings for the
CocoG dataset, earning about $15 per hour on average, depending
on their score, and averaging 102 minutes of rating time. The partic-
ipants took about 10 seconds on average to rate an image-caption
pair. Each image-caption pair received between 4 and 7 ratings for
a total of 44,252 ratings.

FlickrG: The intent of the FlickrG dataset was to be able to
compare our raters directly with Flickr8k-Expert raters. To generate
this dataset we used a subset of image-caption pairs from Flickr8k-
Expert. We held out 21 images and 2,350 image-caption pairs that
received all 1’s in the Flickr8k-Expert ratings. We held these out to
save time and money because they are known to be poor quality
captions. The remaining 979 images and 3,472 image-caption pairs
were rated in the game by our raters.

There were 41 college students who generated the ratings for
FlickrG, earning about $7.20 per hour in Amazon™ gift cards, on
average, depending on their score, and averaging 95 minutes of
rating time. The raters took about 13 seconds on average to rate
an image-caption pair. Each image-caption pair received between
5 and 7 ratings for a total of 17,721 ratings from the game. We
combined these with the known poor quality captions that were

held out, keeping the original Flickr8k-Expert ratings that were
all 1’s, and we removed the 158 pairs that are commonly excluded
from previous studies because the captions appear in references
for that image [10, 29]. This resulted in 5,664 image-caption pairs
with 23,965 total ratings where each image-caption pair received
between 3 and 7 ratings.

IICR16k: We have created a third dataset from the combination
of CocoG and FlickrG, which resulted in a final IICR16k dataset
with 9,990 images, 15,646 image-caption pairs, and a total of 68,217
ratings where each image-caption pair received between 3 and 7
ratings.

3.4 Model Design

Image

Caption

ViLBERT

Image 
Embedding

Caption 
Embedding

1024 64 Rating

Figure 3: Schematic diagram of our model architecture.

To evaluate and study our datasets, we develop a baseline reference-
free image-caption rating predictor (Figure 3). For the represen-
tation layer, the predictor takes a novel approach by employing
ViLBERT [23, 24] co-attention embeddings, which were trained on
the Conceptual Captions dataset [27]. Specifically, the input to the
model (image-caption pairs) is represented by a 2048-dimensional
vector created by concatenating the image and text embeddings
from the final hidden layer of a pretrained ViLBERT model.

For the rating prediction, our model uses a simple feedforward
neural network with two hidden layers. The first hidden layer has
1,024 neurons with a ReLU activation, and the second hidden layer
has 64 neurons with a ReLU activation. The output layer consists of
a single neuron. We use 80% dropout on both hidden layers. We use
mean squared error (MSE) for the loss. We train for 4,000 epochs,
with a batch size of 256, and with a learning rate of 10−5, decayed
by 1% every 15 epochs. All of our models in Table 4 were trained
with these hyperparameters.

4 RESULTS AND ANALYSIS
The standard benchmark in previous work for evaluating ICR
estimators is Kendall’s 𝜏 coefficient [15]. It measures the rank-
correlation between pairs of ratings. We take a new approach
and use Kendall’s 𝜏 to analyze inter-rater agreement, along with
Kendall’s𝑊 and Fleiss’ ^ , in Section 4.1, and in Section 4.2, we use
Kendall’s 𝜏 in the more traditional way to compare our work with
other state of the art methods.

4.1 Dataset Analysis
Rating Distributions: For comparative analysis, the rating distri-
butions of the Flickr8k, CocoG, FlickrG, and IICR16k datasets are
illustrated in Figure 4. For each image-caption pair, the rounded
average of all available ratings for that pair is used as the single
value rating for the pair. In Figure 4b, the CocoG dataset has more
ratings of 4 and 5, showing a bias toward higher quality captions.
In Figure 4c, the FlickrG dataset has a bias toward lower ratings
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Figure 4: Dataset rating distributions.

because it is based on Flickr8k-Expert, which has a known skew
toward lower quality captions (Figure 4a). Figure 4d shows the
IICR16k dataset is more balanced in its ratings distribution.

Inter-Rater Agreement: To determine inter-rater agreement
within each dataset we compute Kendall’s 𝜏 [15], Kendall’s𝑊 [16],
and Fleiss’^ [9], on virtual raters, scaled by 100. We define a “virtual
rater” to be a selection of one rating for each image-caption pair.
Flickr8k-Expert only has 3 ratings per image-caption pair, which
are sorted from lowest to highest. In order to compare our datasets
with Flickr8k-Expert, we construct 3 virtual raters by randomly
sampling 3 ratings for each image-caption pair and sorting those
ratings such that virtual rater 𝑋 has the lowest rating, rater 𝑌 has
the middle rating, and 𝑍 has the highest rating. We do this 20 times
and take the average for each metric.

Table 3: Inter-rater agreement metrics.

Flickr8k FlickrG CocoG IICR16k
𝜏𝑋−𝑌𝑍 47.7 48.9 70.9 75.6
𝜏𝑌−𝑋𝑍 54.8 54.4 70.8 77.8
𝜏𝑍−𝑋𝑌 54.0 54.9 70.6 78.1
𝑊 84.0 87.0 90.8 93.8
^ 48.8 48.9 34.7 44.5

^4=5 48.8 49.5 51.9 58.1

In Table 3, we use Kendall’s 𝜏 to see how well one virtual rater
agrees with the other virtual raters individually and Kendall’s𝑊 to
see how well the virtual raters agree with each other overall. For
example, the first row of Table 3, 𝜏𝑋−𝑌𝑍 , shows taking the Kendall’s
𝜏 measure of rater 𝑋 with respect to raters 𝑌 and 𝑍 . The fourth
row of Table 3 shows how well the raters, 𝑋 , 𝑌 , and 𝑍 , all agree
with one another. Kendall’s 𝜏 is on a scale of [-1, 1] where closer
to 1 is higher agreement, and Kendall’s𝑊 is on a scale of [0, 1]
where closer to 1 is higher inter-rater reliability. For Kendall’s 𝜏

we are using “method 𝐴” for aggregation and variant 𝜏𝐶 to handle
ties [10]. The resulting values show the highest correlations from
the IICR16k dataset, demonstrating a high amount of inter-rater
agreement.

Fleiss’ ^ measures how well the virtual raters categorically agree
with one another above random chance. In Table 3 there are two
rows, ^ and ^4=5, because it is sensitive to the number of categories,
and there are fewer categories in Flickr8k-Expert than there are in
the other datasets. We collapse categories for ratings 4 and 5 to all
be categorical rating 4 in the last row of Table 3. Without collapsing
the ratings to the same number of categories, the FlickrG dataset has
the highest categorical correlation and Flickr8k-Expert the second
highest. This is because those ratings distributions skew heavily
(the majority are 1’s and 2’s, Figures 4a and 4c). When the values
are collapsed, the highest categorical correlation is the IICR16k
dataset, demonstrating a high amount of categorical agreement.

In order to compare with Flickr8k-Expert, as previsouly ex-
plained, we randomly select 3 virtual raters, sort them, and av-
erage the metric of 20 runs. The standard deviations were all in
the range of 0.04 to 0.5 with the exception of the Kendall 𝜏𝑋−𝑌𝑍
for FlickrG, where it was 1.6. We believe this was because of the
imbalanced nature of that dataset and the larger range of rating
values. Another observation can be seen in the first two columns of
Table 3 where 𝜏𝑋−𝑌𝑍 shows a lower correlation with the other vir-
tual raters compared to 𝜏𝑌−𝑋𝑍 and 𝜏𝑍−𝑋𝑌 . This is a consequence of
the ratings being sorted from lowest to highest and those datasets
being skewed toward lower ratings.

4.2 Experimental Results
We summarize the results of our experiments in Table 4 where we
compare reference-based and reference-free metrics against our
trained models. Each dataset was split into 64% training, 16% val-
idation, and 20% test. All measurements are of Kendall’s 𝜏 scaled
by 100 and were computed on the corresponding test sets. Ta-
ble 4 is organized in two sections, one for reference-based and
one for reference-free metrics. The reference-based metrics are
common NLP metrics and include RefCLIPScore [10] as well as
ViLBERTScore [19]. RefCLIPScore is the reference-based version
of CLIPScore and ViLBERTScore extends BERTScore [34] to the
visual-linguistic domain by using ViLBERT embeddings. For ViL-
BERTScore, we used the fine-tuned model and reported the F1
metric. This corresponds to ViLBERTScore*F in [19]. During ex-
perimental validation on the entire Flickr8k-Expert dataset, the
reference-based metrics and CLIPScore were exactly the same as
reported in the CLIPScore paper [10], and ViLBERTScore was ex-
actly the same as reported in the ViLBERTScore paper [19], which
gave us confidence in the numbers we received on the results on
the test sets.

Besides our models, the other reference-free metrics are CLIP-
Score, VSEPP and VBAlignment. CLIPScore takes the weighted and
scaled cosine similarity of image and text feature embeddings from
pretrained CLIP [26] models. VSEPP [8] takes the cosine similarity
of image and text feature embeddings from CNN and RNN models.
VBAlignment refers to the visual-linguistic alignment prediction
task that is used in ViLBERT [23] pretraining. The outputs of this
task are two logits representing “alignment” and “non-alignment.”
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We apply softmax to the logits and use the “alignment” probabil-
ity as the VBAlignment value for the image-caption pair. We use
the pretrained model before fine-tuning on the 12 tasks from [24].
VBAlignment is a stand-in for a ViLBERT metric because ViLBERT
is not a caption rater.

We used publicly available code for reference-based metrics and
CLIPScore3; VSEPP4; ViLBERTScore5; and pretrained models and
VBAlignment code from ViLBERT6. Our model code is written from
scratch, based on Keras and Tensorflow in Python.

All experiments were run in-house on an Nvidia RTXA6000 GPU
server with AMD EPYC 7302 CPU and 256 Gigabytes of system
memory. All of our models took approximately 20 to 45 minutes
to train. Extracting ViLBERT embeddings was the slowest part
(approximately 930 milliseconds per image-caption embedding)
due to the serial nature of the ViLBERT model. Our models were
trained from scratch 5 times with different seeds and the average
Kendall’s 𝜏 value is reported. The standard deviations ranged from
0.03 to 0.3.

Our𝑀𝑜𝑑𝑒𝑙𝐼 𝐼𝐶𝑅16𝑘 shows the best performance across the board,
according to Kendall’s 𝜏 correlation with ground-truth ratings, with
the exception of𝑀𝑜𝑑𝑒𝑙𝐹𝑙𝑖𝑐𝑘𝑟8𝑘 . We believe that𝑀𝑜𝑑𝑒𝑙𝐼 𝐼𝐶𝑅16𝑘 gen-
eralizes the best because it was trained on a dataset with high-
fidelity, the largest number of samples, and has the most balanced
ratings distribution. However, 𝑀𝑜𝑑𝑒𝑙𝐹𝑙𝑖𝑐𝑘𝑟8𝑘 did the best on the
Flickr8k-Expert dataset. We believe this is because the Flickr8k-
Expert dataset has fewer categories and they skew toward lower
quality, making it more difficult for𝑀𝑜𝑑𝑒𝑙𝐼 𝐼𝐶𝑅16𝑘 to predict.

A final observation from Table 4 is that our best machine learning
model achieved an average Kendall’s 𝜏 of 53.7 on Flickr8k-Expert,
whereas in Table 3 the best human rater achieved 54.8 on Flickr8k-
Expert. It seems unreasonable to expect anything much higher from
a regression model, given the difficulty humans have in correlating
the ratings themselves, and it also seems satisfying that the model
did so well when compared with human raters.

5 CONCLUSIONS
The big discovery from the results of our work is that, given a high-
quality dataset, it is better to model a rating predictor than to use
previously available metrics for caption quality. We also showed
that higher quality ICR datasetsmay be generated by using a human-
in-the-loop game. Our datasets have greater inter-rater agreement
than previous work and are more easily modeled with machine
learning techniques. A reference-free, modeled approach allows
us to automate the caption quality rating process, which opens up
new possibilities, not only for more accurate, rich, and descriptive
image annotations, but also for searching through visual content
such as for image and video retrieval. The only downside to our
reference-free model is the dependence on a pretrained ViLBERT
model and the time it takes to extract image and text embeddings.

In this work we presented several novel contributions. We intro-
duced a gamified human-in-the-loop dataset generation methodol-
ogy to create new datasets, demonstrated a novel inter-rater agree-
ment validation approach on those datasets, and trained custom
3https://github.com/jmhessel/clipscore
4https://github.com/fartashf/vsepp
5https://github.com/hwanheelee1993/ViLBERTScore
6https://github.com/facebookresearch/vilbert-multi-task

Table 4: Kendall’s 𝜏 correlation with ground-truth ratings on
a test subset of each dataset for various metrics and predic-
tors. We used “method 𝐴” in aggregation [10] and 𝜏𝐶 to be
consistent with prior work.

Reference-based Flickr8k FlickrG CocoG IICR16k
BLEU-1 33.7 32.4 43.7 55.8
BLEU-4 31.6 28.7 42.9 51.8
METEOR 40.4 39.0 51.9 60.2
ROUGE 33.4 32.1 42.8 53.2
CIDEr 44.1 40.9 58.1 66.6
SPICE 41.2 39.1 54.4 60.4
RefCLIPScore 51.9 51.7 65.8 71.7
ViLBERTScore 50.1 52.2 59.3 66.9
Reference-free
CLIPScore 50.7 49.9 63.4 67.3
VSEPP 48.6 49.5 60.8 65.1
VBAlignment 49.9 50.8 60.7 65.8
ModelFlickr8k 53.7 54.1 61.2 71.8
ModelFlickrG 53.0 54.4 61.9 71.7
ModelCocoG 50.6 52.1 66.0 73.0
ModelIICR16k 53.1 54.7 66.1 75.8

machine learning models to be a reference-free metric. Another
discovery we made in the process of this work is the use of VBAlign-
ment as ametric, which has, as far as we know, not been done before.
It is essentially a reference-free ViLBERTScore, whereas the actual
ViLBERTScore [19] is reference-based.

Future work could extend the ViLBERT model to include a re-
gression head similar to our model and fine-tune from a pretrained
ViLBERT model like with the 12 tasks from [24]. It would also be
useful to pretrain ViLBERT on larger datasets to create richer image
and text embeddings. We would like to conduct more user studies
and collect larger datasets. Additionally, we would like to experi-
ment with different scale definitions. We had considered using a
multi-dimensional scale at first but decided on a single-dimensional
scale for this work. We would like to conduct a study with un-
paid volunteers to see if the monetary reward had undue influence.
Future work may also include experimenting with different multi-
modal embeddings as new algorithms are developed.
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