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Abstract: The timed up and go test (TUG) is a common clinical functional balance test often used
to complement findings on sensorimotor changes due to aging or sensory/motor dysfunction.
The instrumented TUG can be used to obtain objective postural and gait measures that are more
sensitive to mobility changes. We investigated whether gait and body coordination during TUG is
representative of walking. We examined the walking phase of the TUG and compared gait metrics
(stride duration and length, walking speed, and step frequency) and head/trunk accelerations to
normal walking. The latter is a key aspect of postural control and can also reveal changes in sensory
and motor function. Forty participants were recruited into three groups: young adults, older adults,
and older adults with visual impairment. All performed the TUG and a short walking task wearing
ultra-lightweight wireless IMUs on the head, chest, and right ankle. Gait and head/trunk acceleration
metrics were comparable across tasks. Further, stride length and walking speed were correlated
with the participants’ age. Those with visual impairment walked significantly slower than sighted
older adults. We suggest that the TUG can be a valuable tool for examining gait and stability during
walking without the added time or space constraints.

Keywords: timed up and go; walking; gait; instrumented TUG; IMU; motion tracking; head
stabilization; postural control; aging; visual impairment

1. Introduction

The timed up and go (TUG) test is a simple, commonly used clinical measure of
functional balance, requiring an individual to stand from a seated position, walk 3 m, turn,
and sit back down and is scored based on the task duration using a stopwatch [1]. The
test is used as a clinical tool for mobility and fall risk screening—though its diagnostic
accuracy has been debated [2]. The test has been used diagnostically in a whole host of
clinical applications, such as Parkinson’s disease [3,4], physical and mental health factors [5],
vestibular dysfunction [6], aging [7], and vision deficits, such as central visual field loss [8,9].
While the test has not been widely adopted in this latter population, it has been suggested
as a potentially effective way to assess fall risk in central field loss [10].

While the clinical TUG (where the measured outcome is task duration) may not always
be a sensitive enough measure for diagnostic purposes, the task itself is meaningful to
daily life and fall risk as it includes several ecological postural transitions (sit-to-stand,
gait initiation, turning), i.e., movements more susceptible to loss of balance [11,12], and
which therefore require better control. With the rise of lightweight wearable technology,
the instrumented TUG is increasingly used to obtain objective, quantifiable postural and
gait measures that are more sensitive to mobility changes, for example, in identifying
fall risk among older adults or severity in Parkinson’s disease [13–16]. Despite its own
criticisms [17], the instrumented TUG has the potential to become a simple and reliable
measure of changes in balance and mobility [18].

Head stabilization is a motor skill, important for providing a stable reference platform
for the visual and vestibular systems and to maintain stable gaze [19,20]. To maintain the
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head stabilized, the trunk and lower limbs act as shock absorbers by attenuating accelera-
tions that would otherwise be experienced by the head [21,22]. Moreover, stabilizing the
head in space is primarily driven by vestibular signals [23], and individuals with vestibular
dysfunction tend to adopt more rigid head stabilization strategies, blocking the head on
the trunk [24], thus experiencing greater head motion since attenuation between the trunk
and the head is reduced. With vestibular aging, this rigid stabilization is also more evident
during turns [25] and among fall-prone older adults [26]. Visual input also helps to stabilize
the head [27–29], and there is evidence of reduced head stabilization in visually impaired
individuals [30].

Examining head stabilization during the TUG may therefore provide a dual advantage
in using this test in older individuals, or those with visual and/or vestibular deficits:
on the one hand providing a measure of functional balance and on the other indicating
compensatory or adaptive changes in the integration and use of sensory information. It
is unknown, however, whether body coordination during the TUG is representative of
walking in daily life. We therefore sought to first determine if commonly studied gait
metrics (e.g., walking speed, stride length, and duration) during the straight walking
portion of the TUG can be used as an analog for normal walking and, second, whether head
and trunk accelerations (commonly used to assess stabilization) as measured during the
TUG are consistent with those during normal walking. We therefore recorded participants
performing the TUG and a simple walking task to compare body segment and gait metrics
between these tasks.

One of the barriers to instrumentation during walking tasks is the cumbersome nature
of the procedure, with (often frail) participants having to endure a lengthy process of sensor
or marker placement on multiple body locations. Prior studies that examined the utility
of the instrumented TUG have looked at using as few as a single sensor [31], while others
examined the use of a significantly larger number to parse the task as much as possible
(e.g., 17 in [32]). In this study, we wanted to understand the utility of instrumenting the
participant with a minimal number of motion sensors sufficient to not only record the
classic gait metrics but also examine head and trunk stabilization as a metric of functional
balance (one on the head, one on the trunk, and one on the ankle of a participant’s leg).

The TUG was initially developed and validated as a clinical assessment of functional
balance in older adults [1,33], with more recent studies looking at its usefulness in examin-
ing balance and mobility in younger individuals (e.g., [5]). Thus, we recruited participants
in two different age categories (younger adults and older adults) to see if the relationship
between inertial measurement unit (IMU)-based metrics in TUG and walk differed in these
groups. We also recruited a cohort of individuals with visual impairment to determine the
discriminative nature of the different metrics available from instrumenting the TUG, as
compared to the performance time commonly used.

2. Materials and Methods
2.1. Participants

All research was performed in accordance with the Declaration of Helsinki and was
approved by the Institutional Review Board at the Smith-Kettlewell Eye Research Institute.
Further, 40 participants (21 female) were recruited for this study: 30 individuals with
healthy vision and 10 with central visual field defect (CVF), and 19 were classified in the
younger adults (YA) group (age: 35.0 ± 10.6 years, 9 female), 11 were classified in the older
adults (OA) group (age: 72.9 ± 6.6 years, 8 female), and the 10 individuals with CVF were
classified in the visually impaired (VI) group (age: 71.0 ± 8.0, 4 female). All participants in
the VI group had standing diagnoses of advanced macular deficit in one or both eyes.

Inclusion criteria were that all participants were able to walk unassisted, had no
neurological or motor disorders that could affect their ability to complete the task, and no
profound hearing loss. Vestibular function was screened using the Dizziness Handicap
Inventory [34]. Visual impairment was assessed binocularly using the ETDRS chart for
visual acuity and Pelli–Robson chart for contrast sensitivity. Visual field loss was assessed
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monocularly using a scanning laser ophthalmoscope. None of the participants had any
electronic implanted devices, such as pacemakers.

2.2. Equipment

Participants were equipped with three 9-Axis Inertial Measurement Units (IMUs)
with Bluetooth 2.1 and 4.1 connectivity (LPMS-B2, LP Research, Tokyo, Japan) placed a
few centimeters above the right ankle, between the sternum and clavicle on the chest,
and on the forehead (turquoise, yellow, and magenta squares in Figure 1A, respectively).
Each IMU was securely attached using an ankle strap, chest harness, and ratcheting head
gear, respectively.

The IMU mounted on the ankle was used for gait event detection—specifically heel
strikes—according to prior literature (e.g., [35–38]). The sensors on the head and chest were
placed such that their coordinate frames were aligned with each other and both sensors’
local Z axes were aligned with the heading direction (see more details in Section 2.4 below).
Prior studies have used similar IMU placement to study head and trunk movement [39,40].
The signals from the trunk and head were used to understand how the corresponding
body segment was moving during that stride (trunk motion was assessed from the trunk
IMU and head motion was assessed from the head IMU). The data from the trunk IMU
were further used to obtain walking speed and stride length [41], as described in more
detail below.

IMU data were recorded using OpenMAT software, version 1.3.5 (LP Research). For
each IMU, the angular velocity, linear acceleration, and magnetic field data were recorded
over all three axes using a sampling frequency of 50 Hz. The quaternions were provided
at the time of recording by the recording software using a sensor fusion algorithm based
on only acceleration and angular velocity data filtered with a Kalman filter. In a few cases
when the quaternions were not recorded during the experiment, they were calculated
offline. To synchronize the three streams of data from the IMUs, we used three weak field
electromagnetic pulse emitters connected in parallel (vertical bar, Figure 1A). The EM pulse,
lasting 4.5 ms, was detected and recorded by the magnetometers of the IMUs. The EM pulse
was triggered using a digital output channel of a Power1401-3A data acquisition board
controlled from Spike2 software (Cambridge Electronic Design, CED, Ltd., Cambridge,
UK). The EM pulse timing, the event logging, and the synchronized video recording from a
webcam (Logitech, Lausanne, Switzerland) were simultaneously recorded and used offline
for data synchronization and data parsing.

For six participants, synchronization was instead performed using a fourth (wired)
IMU (LPMS-CURS2, LPMS Research), which was tapped against each of the IMUs on the
participant in succession. In these cases, the event logging was completed by tapping on
the wired IMU. The taps were detected offline as sharp peaks in the acceleration data and
used further for parsing the data.
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Figure 1. Experimental setup and example data traces. (A) IMU placement on the ankle (turquoise
box), chest (yellow box), and head (magenta box) of the participant. The axes along which acceleration
was calculated are marked: vertical (V), mediolateral (ML), anteroposterior (AP). Electromagnetic
pulse emitters used for synchronization are represented on the left, attached to a vertical bar. (B) Il-
lustration of a single stride cycle of an instrumented participant (IMUs shown as in A). The stride
cycle starts with the heel strike of the right (instrumented) foot. During each step, the head travels
along the vertical axis (bobs; the highest head position is indicated with the head in lighter gray).
The step ends with the left heel strike. At the end of the second step, the right heel again strikes
the ground, and the stride cycle is over. The right (instrumented) leg is highlighted in brown for
clarity. (C) Example acceleration traces from the head (top: vertical acceleration, magenta trace),
trunk (middle: forward (AP) acceleration, yellow trace), and leg (bottom: acceleration along the
AP axis, turquoise trace). Detected heel strikes are marked with black dots. Example stride cycle is
highlighted with a red rectangle.

2.3. Walking Tasks

Once equipped with the IMUs, participants were asked to perform two tasks: a 3 m
timed up and go test (TUG), where they were asked to stand up from a chair, walk 3 m,
turn, come back, and sit down in the chair without using the chair armrests (repeated
three times), and a loop-walking task (repeated twice). For the latter, participants were
asked to walk between two lines on the floor at 4 m apart, in a continuous way such
as to complete a wide loop trajectory (3 turns, after passing the floor mark each time).
Four visually impaired participants were tested off-site at the Envision Research Institute
(Wichita, KS, USA). For these individuals, the walking task was walking along a straight
7 m path, repeated twice. For both tasks, participants were asked to walk at their habitual
pace. At the beginning of each task, participants were asked to either sit (TUG) or stand
(walk) quietly without moving, facing the heading direction for a few seconds. This quiet
stance period was logged as an event.

2.4. Data Processing and Analysis

All data processing was performed in MATLAB (MathWorks, Natick, MA, USA). IMU
data from the three motion sensors were synchronized offline between the sensors and
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the event log. The peak in the magnetic field signal recorded by each magnetometer was
aligned with the rising edge of the triggering pulse (recorded in Spike2) of the EM pulse
emitters. Subsequent events logged in Spike2 software during recording were used to parse
the data. In the cases where tapping of a fourth IMU was used for synchronization and
event logging, the related peaks in acceleration signals of all IMUs were used to align the
data. The subsequent peaks in acceleration signals of the fourth IMU were used to parse
the data. The initial orientation of the IMUs was calculated during the quiet stance period
described above, using the quaternions, when available. In other cases, the quaternions
were calculated using Madgwick algorithm (script: https://github.com/xioTechnologies/
Fusion (accessed on 14 August 2023), algorithm details: https://ethos.bl.uk/OrderDetails.
do?uin=uk.bl.ethos.681552 (accessed on 14 August 2023)). Both sensor fusion algorithms
used only the accelerometer and gyroscope signals as there were ferrous objects in the
experiment room. As a result, the orientation of the IMUs in the horizontal plane is not
exact. However, we placed the sensors on the head and trunk with their local Z axis oriented
with the heading direction. An additional rotation around the global Z axis (gravity axis)
was calculated such that the local Z axes of the head and trunk sensors were aligned with
the global Y axis, thus aligning them with the heading direction.

The linear acceleration signals from the leg IMU were used to detect heel strikes. The
acceleration magnitude was low-pass filtered (3 Hz cutoff frequency 2nd order Butterworth
filter), and then sections of minimal motion of the foot were detected when the acceleration
signal was under a threshold chosen manually for each recording. Heel strikes were
detected by differentiating the acceleration signal along the heading direction from the
ankle IMU to calculate jerk during periods of leg motion. The heel strikes in this jerk signal
were identified as follows. The peaks’ minimum height threshold was chosen manually
(Figure 2B). Generally, there are two large peaks in the jerk signal during leg motion: one
due to toe off and the second due to heel strike (Figure 2A). The algorithm chose the
second peak if both were detected. An experimenter verified by visual inspection that the
algorithm picked the correct heel strike events. The time distance between successive heel
strikes defined the duration of a stride, or gait cycle.

The IMU data for the whole trial were linearly interpolated for missing samples (<1%
of samples on average across all participants) and filtered with a low-pass Butterworth 4th
order filter with a 5 Hz cutoff frequency.

The instrumented TUG duration for each participant was calculated as the mean of
all TUG trials available for that participant. Each TUG trial duration was calculated from
the “start” and “stop” event triggers made at the time of the recording by the experimenter.
This method is similar to the stopwatch method used in clinical settings.

The stride cycles that corresponded to straight line walking were chosen manually to
exclude gait initiation and termination cycles and turns. Previous studies have shown that
steady state gait is achieved within two steps (one cycle) when initiating gait [42,43]; thus,
our cycle selection approach allowed us to compare equivalent walking patterns on the
TUG and walk tasks.

The trunk linear acceleration along the heading direction was used to determine stride
length and walking speed. The acceleration signal was de-trended and direct-reverse
integrated [44] twice within the limits of walk initiation and walk termination in order
to obtain the displacement of the trunk along the heading direction (Figure 3). Thus, the
accuracy of the displacement estimate was affected by how stationary the participant was
at the start and end of the task, i.e., how much the acceleration signal deviated from zero.

https://github.com/xioTechnologies/Fusion
https://github.com/xioTechnologies/Fusion
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681552
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681552
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Figure 2. Heel strike detection method. (A) The linear acceleration magnitude from the leg IMU
(blue trace) was used to determine periods when the foot was flat on the floor—when the acceleration
was below the foot flat threshold (gray dashed line), and periods where the foot was moving—when
the acceleration magnitude was above the threshold (chosen manually for each recording). The
logical signal that highlights the foot flat periods is shown in red. (B) A peak detection algorithm
was used on the absolute value of the jerk signal along the heading direction (blue trace) during the
periods when the foot was moving. Toe off and heel strike events create large peaks in the jerk signal
during a period of significant foot movement. When the algorithm found more than one peak larger
than the minimum peak height threshold (gray dashed line, chosen manually for each recording) in
one period, the second peak was chosen as heel strike (red dots).

The stride length was calculated as the difference in the forward displacement of the
trunk at the end of the stride with respect to the beginning (Figure 3, bottom panel). The
stride speed was calculated as the ratio of stride length to stride duration. The walking
speed was defined as the average of the speed of the stride cycles selected for analysis (i.e.,
straight walking).

The trunk and head acceleration data were parsed over the chosen cycles. Data of all
chosen cycles from a given task were interpolated in time such that all cycles had the same
time duration. The average cycle was computed as the per-sample average of the data from
all chosen cycles.

Power spectrum for the average cycle was calculated to estimate the peak power and
the respective frequency for the head and the trunk segments. The peak frequency of
the linear acceleration of the head and trunk along the gravity direction (global Z axis)
was defined as the bobbing frequency (Figure 1A). This measure was used as a proxy for
step frequency to further analyze walking patterns between the two tasks since vertical
acceleration reaches a maximum twice within each stride cycle (during mid-stance on
each step). Additionally, the horizontal linear acceleration amplitudes of the average cycle,
defined as the ranges along the antero-posterior axis (heading direction) and along the
medio-lateral axis (orthogonal to the heading direction in the horizontal plane), were
compared between tasks for both head and trunk.
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Figure 3. Determining stride length and walking speed. Linear acceleration in the forward (AP)
direction (top panel) during one TUG task was integrated to obtain forward velocity (middle panel).
The signal was then integrated again to obtain displacement of the participant during one TUG
task. Green dots in all panels represent the time of the detected heel strikes and therefore demarcate
stride cycles between them. Stride length is defined as the change in trunk displacement during one
stride cycle.

2.5. Statistics

Gait (stride duration and length, walking speed, and bobbing frequency) and seg-
mental linear acceleration data were analyzed using MATLAB (2019b version, MathWorks,
Natick, MA, USA) and Prism (version 10.0.0, GraphPad, Boston, MA, USA) statistical
software. Two-way comparisons were completed using a repeated measures mixed effects
model with the Šidák test for multiple comparisons. Group comparisons were completed
only along a single dimension—age or visual impairment—meaning that older adults
with visual impairment were only compared with the older healthy-sighted group (impair-
ment dimension), and younger healthy-sighted adults were only compared with the older
healthy-sighted adults (age dimension). In other words, the older adult group was treated
as the control group. A Geisser–Greenhouse correction for non-sphericity was applied
where appropriate. Alpha level was set at 0.05.
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3. Results
3.1. TUG versus Walking

To evaluate if a participant walked differently during the straight walking phase of
the TUG and a walking task, we first compared the average stride duration of all chosen
cycles, the average stride length, and the walking speed between the two tasks for all three
groups (younger adults, older adults, and older adults with visual impairment).

3.1.1. Stride Duration

Using the heel strike detected by the ankle IMU, we directly calculated the stride
duration (time from the heel strike of the right leg to the subsequent right leg heel strike)
for each participant for each task. Figure 4 shows stride durations compared between tasks
for the three groups. There was no significant effect of task for stride duration (Figure 4,
F(1, 37) = 4.102, p = 0.0501). Because the comparison did approach significance, we provide
here the mean difference in stride durations in the two tasks. We found that, on average,
stride durations were 185 ms less on the walking task than the TUG.
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Figure 4. Pairwise comparison of stride durations between the TUG (disk) and walking (circle) tasks
for each participant in the younger adult (YA), older adult (OA), and visually impaired (VI) groups.
There was no significant difference in stride duration between tasks for all groups.

We did see an effect of participant group (F(2, 37) = 3.511, p = 0.0402), with the visually
impaired group having significantly longer stride durations than the older adult group
(p = 0.0372).

3.1.2. Stride Length and Walking Speed

Stride length was calculated based on the integration of the forward (AP, Figure 1A)
trunk acceleration and stride duration. There was no significant effect of task on stride
length (Figure 5, F(1, 36) = 0.0001, p = 0.9917). There was a significant effect of group
(F(2, 36) = 9.141, p = 0.0006), which did not persist for the group comparisons of healthy
older versus younger, or healthy versus visually impaired older groups (p > 0.08).

Given that walking speed is a function of stride length and duration, we predicted that
it too would be similar between tasks. Indeed, on average, all groups walked at a similar
speed during the TUG and walking tasks (VI: 0.83 ± 0.16 m/s versus 0.77 ± 0.31 m/s;
OA: 1.03 ± 0.18 m/s versus 1.08 ± 0.27 m/s; YA: 1.13 ± 0.20 m/s versus 1.21 ± 0.25 m/s;
F(1, 36) = 0.532, p = 0.4707). The difference between groups was significant (F(2, 36) = 9.679,
p = 0.0004), with the healthy-sighted older adults walking faster than the visually impaired
group (p = 0.0190).
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Figure 5. Pairwise comparison of stride lengths between the TUG (disk) and walking (circle) tasks
for each participant in the younger adult (YA), older adult (OA), and visually impaired (VI) groups.
There was no significant difference in stride length between tasks for all groups.

3.1.3. Bobbing Frequency (Step Frequency)

Prior metrics focused on the stride properties of our participants. While we would
have needed to equip both ankles of our participants with IMUs to obtain step properties in
the two tasks, we were able to estimate the peak frequency of the vertical acceleration (bob)
of the head (Figure 6A) and trunk (Figure 6B) as a proxy for the participants’ cadence and
as a way to examine step frequency during both tasks. For all groups, we found that the
participants had the same stepping frequency between the TUG and walking tasks (head:
F(1, 37) = 0.885, p = 0.3531; trunk: F(1, 37) = 1.142, p = 0.2922).
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Figure 6. Pairwise comparison of peak frequencies of vertical head (A) and trunk (B) movements
(bobs) between the TUG (disk) and walking (circle) tasks for each participant in the younger adult
(YA), older adult (OA), and visually impaired (VI) groups. There was no significant difference in
stride bobbing frequencies between tasks for all groups.

3.1.4. Head and Trunk Acceleration in the Horizontal Plane

A potential application of instrumenting the TUG could be to look at relative trunk and
head motion during the task as a way to measure vestibular function [45] and head/trunk
stabilization, for example, as a function of aging [46,47].

Thus, we next examined whether linear acceleration amplitudes along the antero-
posterior and medio-lateral axes measured during the TUG agreed with those during
the walking task for head (Figure 7A,C) and trunk (Figure 7B,D). First examining the
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ML axis, we did not observe a difference in head or trunk accelerations between tasks
(head: F(1, 37) = 1.456, p = 0.2352; trunk: F(1, 37) = 0.111, p = 0.7408). We did observe a
difference between groups for the head accelerations (F(2, 37) = 4.543, p = 0.0172), with
the younger adults having significantly lower accelerations than the older healthy-sighted
adults (p = 0.0125).
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Figure 7. Pairwise comparison of head (A,C) and trunk (B,D) accelerations along the ML (A,B) and
AP (C,D) axes, between the TUG (filled circle) and walking (open circle) tasks for each participant in
the younger adult (YA), older adult (OA), and visually impaired (VI) groups. There was no significant
difference between tasks for any of the acceleration amplitudes.

Along the AP axis, we also did not observe a difference in head or trunk accelerations
between tasks (head: F(1, 37) = 2.492, p = 0.1229; trunk: F(1, 37) = 2.622, p = 0.1139). We did
find a significant effect of group for trunk acceleration (F(2, 37) = 4.636, p = 0.0160), which
did not persist for the group comparisons of older versus younger, or visually healthy
versus visually impaired groups (p > 0.09).

We also examined the amplitude of the linear acceleration along the vertical axis.
For head accelerations, the amplitudes were similar between the TUG and walking tasks
(F(1, 37) = 0.455, p = 0.5044). For trunk vertical acceleration amplitudes, there was an overall
effect of task (F(1, 37) = 9.669, p = 0.0036); the difference did not reach significance for any
of the groups when adjusted for multiple comparisons (p > 0.1).

3.2. Effects of Age on TUG Time and Gait Parameters

We examined the relationship between age and TUG time (Figure 8A), stride duration
(Figure 8B), walking speed (Figure 8C), and stride length (Figure 8D). We found that the
latter two (walking speed and stride length) were significantly correlated with age in the
visually healthy participants (gray dots in Figure 8, Spearman correlation, ρ = −0.555,
p = 0.0018, ρ = −0.652, and p = 0.0001, respectively). The VI group is shown in blue for
reference. While this group’s data were consistent with the rest of the sample, they were
not included in the age analysis due to the additional confound of visual impairment.
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Figure 8. Relationship between age and TUG duration (A), stride duration (B), movement speed (C),
and stride length during TUG trials. There is a significant relationship between age and walking
speed ((C), p = 0.0018) and stride length ((D), p = 0.0001) for the non-visually impaired participants
(gray dots). Participants with visual impairment are marked in blue.

While TUG time itself was not significantly correlated with age, it did have a significant
correlation with stride duration (ρ = 0.736, p < 0.0001).

4. Discussion

The 3 m TUG is composed of several motor components, including sit-to-stand,
straight walking, turning, and stand-to-sit portions. In addition to its relevance to motor
abilities of daily life, the test is simple to perform, frequently completed in the clinic, and
has been used in a number of applications, including research in aging and sensory and
motor deficits [3–7,9,48]. While the walking portion itself is quite short, consisting of only
a few gait cycles for most individuals, prior studies have shown that individuals achieve
their steady-state gait pattern after only two steps (i.e., a single stride, or gait cycle) [42,43],
making it potentially feasible to use the TUG to examine gait in this context.

With the increasing availability and decreasing cost of motion tracking options, IMU-
based gait analysis has grown significantly [49–54] and investigators have leveraged instru-
menting the TUG as a way to enhance its predictive value (e.g., [13,14,16,18,55,56], but see
also [17]).

In this study, we evaluate the similarity in gait and head/trunk acceleration metrics
between the straight walking phase of the timed up and go test and a simple walking
task. By doing so, we wanted to establish if IMU-based measurements conducted during
the walking portion of the TUG are representative of those same metrics during habitual
walking and whether such measurements could be used to assess other behaviors during
walking, such as head/trunk acceleration. Because the TUG has different predictive value
for groups of different age, fitness, and medical conditions and these groups may find the
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TUG of variable difficulty, we compared the TUG to walking in three distinct groups—
younger adults, healthy-sighted older adults, and older adults with visual impairment.

To that end, we first looked at the similarity of several standard gait metrics to establish
if walking was overall similar between the two tasks. Indeed, we find that, both in
terms of the timing (stride duration, head and trunk bobbing frequency/step timing) and
spatial metrics (stride length, walking speed) we examined, the two tasks were similar for
all groups.

Having established that individuals do indeed have similar gait characteristics during
the TUG and a simpler walking task, we then examined head and trunk acceleration
amplitudes in the horizontal plane, which have been previously used as measures of
stabilization and vestibular function (e.g., [46,57]). While individuals had a wide range of
head and trunk acceleration profiles, we did indeed find that these tended to be consistent
between the straight walking portion of the TUG and the walking task across individuals.

Finally, we wanted to examine the predictive value of the gait metrics on the TUG
for age-related changes in walking. We found that, consistent with the walking litera-
ture [58], stride length and walking speed were significantly correlated with age, while
stride duration was not. Additionally, we found that, in our population, while there may
have been a slight trend (ρ = 0.287, p = 0.1240), TUG duration and age were not correlated.
As mentioned previously, the TUG is made of several different components (sit-to-stand,
gait initiation, turning, stand-to-sit, in addition to steady state walking) that may affect
overall performance differently. As such, it is the individual’s physical fitness, rather than
age, that will manifest in the task duration. Furthermore, we found that TUG duration
did significantly correlate with stride duration (which on its own had no relationship
with age, consistent with prior work [58]). This result also suggests that time to complete
the TUG may be dominated by stride duration to a degree sufficient to reduce TUG’s
predictive power.

The current study focuses on the similarities of gait and head/trunk stabilization
variables during the steady state gait portion of the TUG and a simple walking task. While
our findings are specific to walking in the laboratory, which may differ from everyday
overground walking [59], in-laboratory testing of gait is highly valuable in a number of
applications (e.g., [60–62]). Our results show that the metrics assessed were indeed compara-
ble for the three distinct populations tested. Instrumenting the TUG can, therefore, provide
additional metrics of walking behavior beyond those currently used (e.g., [13,16,55,56]),
such as head and trunk stabilization. Given our findings, we suggest that future work
should examine these variables during other parts of the TUG, including gait initiation and
turns. While these are beyond the scope of this study, they may provide additional markers
that can be compared to natural behavior and, if similar, be simply and quickly measured
in the clinic. Transition tasks, like gait initiation, are health-relevant given their association
with increased fall risk [12] and are a more challenging head stabilization condition, even in
healthy older adults [63]. Turns, on the other hand, are gaining attention as a more sensitive
measure of balance and gait deficits as compared to straight walking (e.g., [64,65]).

5. Conclusions

We suggest that the instrumented TUG can be used as a proxy for a walking task to
examine head and trunk stabilization, as well as classic gait variables, with the latter being
predictive of age and pathology when measured on the TUG [66]. A simple implementa-
tion, with three low-cost motion sensors, can thus allow IMU-based measures (shown to
have diagnostic value [13,14,16,18,55,56]) to be simply acquired in the clinic or in experi-
mental settings where a longer walk may be too complex or time- and space-prohibitive.
Researchers and clinicians can thus expand both the predictive value of the TUG as well
as their assessment of gait and body coordination changes that can be observed during
normal walking.
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