Oculomotor Control

The binocular coordination of movements of the eyes is a complex issue controlled by many brainstem nuclei, and is subject to a wide variety of forms of disruption by traumatic brain injury and oculomotor muscles disorders. The goal of this project is to characterize the natural range of the dynamics of the binocular ocuomotor system and their widespread disruptions across the spectrum of human ocolumotor control.

Tabs

  • Brain image with activated brain seen through a transparent skull

    Smith-Kettlewell Brain Imaging Center

    The Smith-Kettlewell Brain Imaging Center supports a wide variety of human brain imaging modalities, including MRI, MRI morphometry, functional MRI, fMR Iretonogrphy, fMRI dynamics, functional connectivity, Granger-causal connectivity, DTI, DTI tractography, whole-head EEG, EEG functional connectivity, ERG, EEG eye tracking, electroblepharography, etc. Our work centers on human visual neuroscience and computational vision, especially in the areas of human visual processing in adults, of the diagnosis of eye diseases and cortical deficits in infants and adults, on brain plasticity in relation to low vision and blindness, and on the processes of blindness rehabilitation. We are particularly interested in the normal capabilities of binocular visual processing and its disruption by forms of traumatic brain injury.

    Read More
  • Portrait photo of Christopher Tyler smiling

    Tyler Lab

    Research in human visual perception and the diagnosis of eye diseases.

    Read More