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1



Draft submitted to Arti�cial Intelligence
Figure 1: The di�culty of detecting the target path in clutter depends, by our theory [27],on the order parameter K. The larger K the less computation required. Left, an easydetection task with K = 0:8647. Middle, a harder detection task with K = 0:2105. Right,an impossible task with K = �0:7272.1 IntroductionHeuristic search is a fundamental problem of Arti�cial Intelligence [20],[24],[22]. The A*algorithm is a particularly important approach to heuristic search which has been elegantlyexpounded and analyzed by Pearl [20].More recently, it has become apparent [25] that a class of real world vision problems, for-mulated as Bayesian inference [17], can be solved using A* algorithms. This class includestasks such as the detection and tracking of paths in noise/clutter, see �gure (1). In particu-lar, it was shown [25] that many of the algorithms used to solve these tasks (see, for example,[19],[2],[9],[11],[10]) could be interpreted as special cases, or variants, of A* algorithms. In-cidently, a consequence of applying A* to Bayesian problems is that the prior probabilities,an essential component of the Bayesian approach, can be used to make stronger heuristicpredictions than in standard A*, see [11],[28], which can result in improved performance.An advantage of expressing algorithms in a uniform framework, such as A*, is that itenables us to do theoretical and experimental comparisons between di�erent algorithms todetermine which ones are most e�ective. Moreover, one may hope to identify characteristicsof the problem domain which determine the di�culty of the search tasks independently ofthe algorithm used. If so, then it may be possible to design optimally e�ective algorithmsto solve the problems. These are the issues that we investigate in this paper. (See also, ourrelated work [27]).Broadly speaking, there are two strategies for evaluating the e�ectiveness of algorithms.The �rst is the worst case analysis used in much of computer science [8]. The second involvesdetermining the convergence rates on typical problem situations (i.e. those which typicallyoccur). This form of analysis requires having a probability distribution on the ensembleof problem instances. Karp and Pearl provided a fascinating analysis of binary tree A*search using this approach (see Chp 5 [20],[14]). We argue that this second approach is ofmore relevance to the problems we are concerned with and so we will study it in our paper.Interestingly, however, there are some recent studies showing that order parameters exist forNP-complete problems and that these problems can be easy to solve for certain values of theorder parameters [4],[23]. The connection between this approach and our own is a topic forfurther research.We emphasize that the Bayesian formulation of our problems naturally gives rise to aprobability distribution on the ensemble of problem instances, which we call the Bayesian2
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Figure 2: A simulated road tracking problem where dark lines indicate strong edge responsesand dashed lines specify weak responses. The branching factor is three. The data wasgenerated by stochastic sampling using a simpli�ed version of the models analyzed in thispaper. In this sample there is only one strong candidate for the best path (the continuousdark line) but chance 
uctuations have created subpaths in the noise with strong edgeresponses. The A* algorithm must search this tree starting at the bottom node.Ensemble. This allows us to build on the foundations established by Karp and Pearl [20] toobtain expected convergence rates. Technically, our proofs involve adapting techniques frominformation theory, such as Sanov's theorem, which were developed to bound the probabilityof rare events occurring [6]. (For the road tracking problem, a rare event would be when asubpath in the background noise/clutter has greater reward than a subpath of the true road{ i.e. looks more like a road). Our proofs rely on three basic elements: (i) Sanov's theoremwhich shows that the probability of rare events decreases exponentially with the length ofthe subpath, (ii) An onion peeling strategy which allows us to recursively analyze the searchtree, and (iii) the use of standard techniques for summing, and bounding, exponential seriesgenerated by (i). See �gure (2) for an illustration of this search task.In particular, we formulate the problem of detecting object curves in images to be oneof Bayesian inference [17]. This assumes that statistical knowledge is determined for theimages and the curves, see sections (2). Such statistical knowledge has often been used incomputer vision for determining optimization criteria to be minimized and techniques havebeen developed to learn it form real data [29]. We want to go one step further and use thisstatistical knowledge to determine good search strategies. In particular, we can prove that3



Draft submitted to Arti�cial Intelligencefor certain curve and boundary detection algorithms we will, with high probability, obtainexpected A* convergence rates by examining a number of nodes which is linear in the sizeN of the problem. In addition, the expected sort time per node is constant (note that thisdoes not necessarily imply that the expected time for the problem is linear in N). More-over, our analysis helps determine important characteristics of the problem, similar to orderparameters in statistical physics, which quantify the di�culty of the problem. These orderparameters determine the constants in the convergence rate formulae and also determine theexpected errors.As we will show, our convergence bounds become in�nite at certain values of these orderparameters. Is this an artifact of our proofs? Or is it a limitation of the A* search strategy?In related work [27], we prove instead that it corresponds to a fundamental di�culty withthe problem. As proven in [27] similar order parameters characterize the di�culty of solvingthe problem independently of the algorithm employed. Moreover, at critical values of theseorder parameters there is a phase transition and the problem becomes insolvable. Thesefundamental bounds show that our proofs in this paper only break down as we enter theregime where the problem is unsolvable by any algorithm. The A* algorithm remains e�ectiveas we approach the critical value of the order parameters although, not surprisingly, theconvergence rates get very slow.The �rst section (2) of this paper describes the probabilistic formulation of road trackingthat we use to prove our results. Section (3) introduces Sanov's theorem and illustrates howit can be applied to bound the probabilities of rare events. (We give a proof of Sanov'sTheorem in Appendix 1). In section (4) we prove convergence rates of an admissible A*algorithm which uses pruning. In section (5), we extend our results to the more interesting,and challenging, case of inadmissible heuristics. We conclude by placing this work in a largercontext and summarizing recent extensions.2 Mathematical Formulation of Road TrackingTracking curved objects in real images is an important practical problem in computer vision.We consider a speci�c formulation of the problem of road tracking from aerial images byGeman (D.) and Jedynak [11]. Their approach used a novel active search algorithm to tracka road in an aerial photograph with empirical convergence rates of O(N) for roads of lengthN . Their algorithm is highly e�ective for this application and is arguably the best currentlyavailable. In previous work [25], we showed that Geman and Jedynak's algorithm was a closeapproximation to A*. Other search algorithms such as Dijktra and Dynamic Programmingused in related visual search problems [19], [2],[9], [16]. [10],[5] can be shown to be specialcases of A* [25].Our approach assumes that both the intensity properties and the geometrical shapes ofthe target path (i.e. the edge contour) can be determined statistically. This path can beconsidered to be a set of elementary path segments joined together. We �rst consider theintensity properties along the edge and then the geometric properties.The image properties of segments lying on the path are assumed to di�er, in a statisticalsense, from those o� the path. More precisely, we can design a �lter �(:) with output4



Draft submitted to Arti�cial Intelligencefyx = �(I(x))g for a segment at point x so that:P (yx) = Pon(yx); if \x00 lies on the true pathP (yx) = Poff(yx); if \x00 lies off the true path: (1)For example, we can think of the fyxg as being values of the edge strength at point xand Pon; Poff being the probability distributions of the response of �(:) on and o� an edge.The set of possible values of the random variable yx is the alphabet with alphabet size M .See [11],[5] examples of distributions for Pon; Poff used in computer vision applications.We now consider the geometry of the target contour. We require the path to be madeup of connected segments x1; x2; : : : ; xN . There will be a Markov probability distributionPg(xi+1jxi) which speci�es prior probabilistic knowledge of the target. It is convenient, interms of the graph search algorithms we will use, to consider that each point x has a set of Qneighbours. Following terminology from graph theory, we refer to Q as the branching factor.We will assume that the distribution Pg depends only on the relative positions of xi+1 andxi. In other words, Pg(xi+1jxi) = P�g(xi+1 � xi). An important special case is when theprobability distribution is uniform for all branches (i.e. P�g(�x) = U(�x) = 1=Q 8�x).By standard Bayesian analysis, the optimal path X� = fx�1; : : : ; x�Ng maximizes the sumof the log posterior:E(X) =Xi log Pon(y(xi))Poff(y(xi)) +Xi log P�g(xi+1 � xi)U(xi+1 � xi) ; (2)where the sum i is taken over all points on the target (which may, or may not, be a �xednumber). U(xi+1 � xi) is the uniform distribution and its presence merely changes the logposterior E(X) by a constant value. It is included to make the form of the intensity andgeometric terms similar, which simpli�es our later analysis.We will refer to E(X) as the reward of the path X which is the sum of the intensityrewards log Pon(y(xi))Poff (y(xi)) and the geometric rewards log P�g(xi+1�xi)U(xi+1�xi) .It is important to emphasize that our results can be extended to higher-order Markovchain models (provided they are shift-invariant). We can, for example, de�ne the x variableto represent spatial orientation and position of a small edge segment. This will allow ourtheory to apply to models, such as snakes, used in recent successful vision applications[2], [11]. (It is straightforward to transform the standard energy function formulation ofsnakes into a Markov chain by discretizing and replacing the derivatives by di�erences. Thesmoothness constraints, such as membranes and thin plate terms, will transform into �rstand second order Markov chain connections respectively). Recent work by Zhu [33] showsthat Markov chain models of this type can be learnt using Minimax Entropy Learning theoryfrom a representative set of examples. Indeed Zhu goes further by demonstrating that otherGestalt grouping laws can be expressed in this framework and learnt from representativedata.Reward functions, such as equation (2), are ideally suited to A* graph/tree search algo-rithms [20],[22] and we will therefore analyze A* algorithms later in this paper, see section (5).As we will describe, A* searches the nodes { possible branches of the road/snake { which aremost promising. The \goodness"f(n) of a node n is g(n)+h(n) where g(n) is the reward to5



Draft submitted to Arti�cial Intelligenceget to the node and h(n) is a heuristic reward to get to the �nish from n. The A* algorithmstarts at the top of the tree and evaluates the child nodes (i.e. those connected to the topnode by a single arc). These child nodes are placed in the queue. As the algorithm proceedsit selects the member of the queue with best evaluation, removes it from the queue, expandsits children and enters them in the queue.The evaluation of the nodes is based on the reward to reach it from the top node (i.e. thesum of the log posteriors) and on a heuristic reward based on anticipated future performance.More precisely, a path segment ending at x has a total reward f(x) = g(x) + h(x) (notethat the nonoverlapping path requirement implies that x determines a unique path to theinitialization point). The choice of heuristic reward h(x) is very important to the algorithm[20]. It can be proven that if h(x) is an upper bound on the reward to get to the end of thepath then A* is guaranteed to �nd the global maximum eventually. An A* algorithm whoseheuristic satis�es this bound is called admissible. One that does not is called inadmissible.The problem is that admissible A* algorithms are guaranteed to �nd the best result butmay do so slowly. By contrast, inadmissible A� algorithms are often faster but may fail incertain cases.Karp and Pearl [20] provided a theoretical analysis of convergence rates of A* search.They studied a binary tree where the rewards for each arc were 0 or 1 and were speci�ed bya probability p. They then studied the task of �nding the minimum cost path. This is aninteresting task but it di�ers from ours in many respects. From our perspective, it resemblesthe task of �nding the best path in the noise/clutter rather than detecting a true target inthe presence of noise/clutter.There are three elements to our proofs. The �rst is the use of Sanov's theorem toput exponential bounds on the probabilities of rare events { this theorem is described insection (3) and a proof is given in Appendix 1. The second is the onion peeling strategy torecursively explore the search tree, this is described in section (4). The third is the summationof exponential series, generated by Sanov's theorem, which is described in Appendix 2.3 Sanov's TheoremThis section introduces results from the theory of types [6] which we will use to prove ourresults. We will be particularly concerned with Sanov's theorem, which we give a proof ofin Appendix 1. To motivate this material we will apply it to the problem of determiningwhether a given set of measurements are more likely to come from a road or non-road butwithoutmaking any geometrical assumptions about the likely shape of the road. The theoremassumes that we have an underlying distribution Q which generates a set of N independentidentically distributed (i.i.d.) samples. From each sample set we can determine an empiricalhistogram, or type, see �gure (3,4). The law of large numbers states that these empiricalhistograms (when normalized) must become similar to the distributionQ asN 7! 1. Sanov'stheorem puts bounds on how fast the empirical histograms converge (in probability) to theunderlying distribution. Thereby it puts bounds on the probability of rare events.Recall, see Appendix 1, that Sanov Theorem states:Sanov's Theorem. Let y1; y2; :::; yN be i.i.d. from a distribution Q(y) with alphabet sizeJ and E be any closed set of probability distributions. Let Pr(~� 2 E) be the probability that6
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Figure 3: Samples from an underlying distribution. Left to right, the original distribution,followed by histograms, or types, from 10, 100, and 1000 samples from the original. Observethat for small numbers of samples the types tend to di�er greatly from the true distribu-tion. But for large N the law of large numbers says that they must converge (with highprobability).

Figure 4: Sequences of edge values rendered using four gray levels ranging from light grayto black. In each pair, one sequence is drawn i.i.d. from Pon = (0:1; 0:1; 0:3; 0:5) and theother from Poff = (0:5; 0:3; 0:1; 0:1). Although individual edge values are unreliable, takenas a whole it is clear that the top sequences are from Poff and the bottom sequences fromPon. The Cherno� distance between Pon and Poff is 0.2311 nats.
7
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Figure 5: Left, Sanov's theorem. The triangle represents the set of probability distributions.�source is the distribution which generates the samples. Sanov's theorem states that theprobability that a type, or empirical distribution, lies within the subset E is chie
y deter-mined by the distribution �� in E which is closest to �source. Right, Sanov's theorem for thecoin tossing experiment. The set of probabilities is one-dimensional and is labelled by theprobability p(head) of tossing a head. The unbiased distribution Q is at the centre, withP (head) = 1=2, and the closest element of the set E is P � such that P �(head) = 0:7.the type of a sample sequence lies in the set E. Then:2�ND(~��jjQ)(N + 1)J � Pr(~� 2 E) � (N + 1)J2�ND(~��jjQ); (3)where �� = argmin�2ED(�jjQ) is the distribution in E that is closest to Q in terms ofKullback-Leibler divergence, given by D(�jjQ) =PJy=1 �(y) log(�(y)=Q(y)).This is illustrated by �gure (5). Intuitively, it shows that, when considering the chanceof a set of rare events happening, we essentially only have to worry about the \most likely"of the rare events (in the sense of Kullback-Leibler divergence). Most importantly, it tells usthat the probability of rare events falls o� exponentially with the Kullback-Leibler divergencebetween the rare event (its type) and the true distribution. This exponential fall-o� is criticalfor proving the results in this paper. Note that Sanov' theorem involves an alphabet factor(N + 1)J . This alphabet factor becomes irrelevant at large N (compared to the exponentialterm). It does, however, require that the distribution Q is de�ned on a �nite space, or canbe well approximated by a quantized distribution on a �nite space.Sanov's theorem can be illustrated by a simple coin tossing example, see �gure (5).Suppose we have a fair coin and want to estimate the probability of observing more than700 heads in 1000 tosses. Then set E is the set of probability distributions for whichP (head) � 0:7 (P (head) + P (tails) = 1). The distribution generating the samples isQ(head) = Q(tails) = 1=2 because the coin is fair. The distribution in E closest to Qis P �(head) = 0:7; P �(tails) = 0:3. We calculate D(P �jjQ) = 0:119. Substituting intoSanov's theorem, setting the alphabet size J = 2, we calculate that the probability of morethan 700 heads in 1000 tosses is less than 2�119 � (1001)2 � 2�99.In this paper, we will only be concerned with sets E which involve the rewards of types.8



Draft submitted to Arti�cial IntelligenceThese sets will therefore be de�ned by linear constraints on the types { in particular, con-straints such as ~� � ~� � T , where �(y) = log(Pon(y)=Poff(y)); y = 1; :::; J . (We de�ne~� � ~� =PJy=1 �(y)�(y)). This will enable us to derive results which will not be true for arbi-trary sets E. We will often, however, be concerned with the probabilities that the rewardsof samples from one distribution are greater than those from a second. It is straightforwardto generalize Sanov's theorem to deal with such cases.Theorem 1. The probabilities that the loglikelihoods of sequence of samples with Nelements from o�-road or on-road are above, or below, the threshold T are bounded aboveand below as follows:(N + 1)�J2�ND(�T jjPon) � Prf~�on � ~� < Tg � (N + 1)J2�ND(�T jjPon); (4)(N + 1)�J2�ND(�T jjPoff) � Prf~�off � ~� > Tg � (N + 1)J2�ND(�T jjPoff); (5)where �T (y) = Pon(y)1��(T )Poff(y)�(T )=Z(T ), and �(T ) 2 [0; 1] is a scalar which depends onthe threshold T , and Z(T ) is a normalization factor. The value of �(T ) is determined by theconstraint ~�T � ~� = T .Proof. We apply Sanov's theorem setting Eon = f~�on : ~�on � ~� � Tg and Eoff = f~�off :~�off � ~� � Tg. Determining the closest distribution �T 2 Eon to Pon reduces to constrainedminimization using Lagrange multipliers (� and �):JXy=1 �T (y) log �T (y)Pon(y) + �f JXy=1 �T (y)� 1g+ �f~�T � ~�� Tg: (6)This can be solved to give �T (y) = P 1��(T )on (y)P �(T )off (y)=Z(T ) with �(T ) being determinedby the constraint ~�T � ~� = T (recalling �(y) = logfPon(y)=Poff(y)g). A similar argumentapplies to Poff and the same constraint, ~�T � ~� = T , applies to both cases. Hence results.We have not yet speci�ed the threshold T . There are two important natural choices.The �rst is based on minimizing the asymptotic error rate of the classi�cation { the rate offalsely classifying a sequence of on-road samples as coming from o�-road and vice versa (i.e.we give equal weight to the false positives and false negatives),Corollary 1. The asymptotic error rate is minimized by setting T = 0. The errorrate in this case is determined by the Cherno� information C(Pon; Poff), where the Cher-no� information is de�ned by the Kullback-Leibler divergence to the distribution �cT halfwaybetween Pon and Poff . More precisely, C(Pon; Poff) = D(�cT jjPon) = D(�cT jjPoff) for theunique distribution �cT , of form �T (y) = Pon(y)1��(T )Poff(y)�(T )=Z(T ), which satis�es thisconstraint.Proof. The error rates fall o� as 2�ND(�T jjPon) and 2�ND(�T jjPoff). �T (y) is of formP 1��(T )on (y)P �(T )off =Z(T ) and has only one degree of freedom. As �(T ) increases D(�T jjPon)decreases and D(�T jjPoff) increases. Therefore there is a unique minimum error rate for T csuch that D(�cT jjPon) = D(�cT jjPoff), which de�nes the Cherno� information. Observe thatPJy=1 �cT (y) logPon(y)=Poff(y) = 0.The second natural choice of T corresponds to estimating the probability that the rewardsof sequence of samples from on-road are less than the expected rewards for sequence of samplesfrom o�-road (or vice versa). This gives: 9



Draft submitted to Arti�cial IntelligenceCorollary 2. The probability that sequence of samples from on-road have lower rewardsthan the average reward for o�-road sequence of samples is less than (N +1)J2�ND(Poff jjPon)and greater than (N + 1)�J2�ND(Poff jjPon).Proof. We set the threshold T to be the average reward, �D(Poff jjPon), of a sequence ofsamples generated by o�-road. The result of Theorem 1 shows that we must set ~�T = Poffto satisfy the optimization constraint.The second case has two sequences of samples as input (one each from on-road and o�-road) and the task is to classify them correctly. The best decision rule to to classify thesequence of sample with higher reward to be on-road and the other to be o�-road. Thereforefor this task we only care about the chances that a sequence of samples from on-road willhave lower reward than a sequence of sample from o�-road. Our main result is:Theorem 2. The probability that a sequence of samples from on-road has lower rewardthan a sequence of samples from o�-road is bounded below by (N + 1)�2J2�2NB(Pon;Poff) andabove by (N +1)2J2�2NB(Pon;Poff ), where B(Pon; Poff) = � logfPJy=1 P 1=2off (y)P 1=2on (y)g. (N isthe number of elements in each sequence of sample.)Proof. This is a generalization of Sanov's theorem to the case where we have two proba-bility distributions and two types. We de�ne E = f(~�on; ~�off ) : ~�off � ~� � ~�on � ~�g. We thenapply the same strategy as for the Sanov proof but applied to the product space of the twodistributions Pon; Poff . This requires us to minimize:f(~�off ; ~�on) = ND(~�off jjPoff) +ND(~�onjjPon)+�1f JXy=1 �off (y)� 1g+ �2f JXy=1 �on(y)� 1g+ 
f~�on � ~�� ~�off � ~�g; (7)where the � 's and 
 are Lagrange multipliers. The function f(:; :) is convex in the ~� and theLagrange constraints are linear. Therefore there is a unique minimum which occurs at:�off�(y) = P 
on(y)P 1�
off (y)Z[1� 
] ; �on�(y) = P 1�
on (y)P 
off(y)Z[
] ; (8)subject to the constraint ~�on �~� = ~�off �~�. The unique solution occurs when 
 = 1=2 (becausethis implies ~�off� = ~�on� and so the constraints are satis�ed.) We de�ne ~�Bh = ~���1(1=2) =P 1=2on P 1=2off =Z[1=2] (\Bh" is short for Bhattacharyya). We therefore obtain:(N + 1)�2J2�NfD(~�BhjjPoff)+D(~�BhjjPon)g � Prf(~�off ; ~�on) 2 Eg� (N + 1)2J2�NfD(~�BhjjPoff)+D(~�BhjjPon)g: (9)We de�ne B(Pon; Poff ) = (1=2)fD(~�BhjjPoff) + D(~�BhjjPon)g. Substituting in for ~�Bhfrom above yields B(Pon; Poff) = � logfPJy=1 P 1=2off (y)P 1=2on (y)g. Hence result.This result tells us that the order parameter for the second task is 2B(Pon; Poff ). Thisis just another measure of the distance between Pon and Poff and we will refer to it as the10



Draft submitted to Arti�cial IntelligenceBhattacharyya distance (because it is identical to the Bhattacharyya bound for Bayes error,see [21]). Once again the problem becomes increasingly hard as the distributions becomemore similar but there is no critical point and no phase transition.4 Tree Search: A* and pruningIn this section we consider an algorithm which uses an admissible A* heuristic and a pruningmechanism. (In the subsequent section, we will show that better results can be achievedusing an inadmissible heuristic. But the results in this section are easier to prove and moreintuitive). The idea is to examine the paths chosen by the A* heuristic. As the length ofcandidate path reaches an integer multiple of N0 we prune it based on its intensity rewardand its geometric reward evaluated on the previous N0 segments, which we call a segmentblock. The reasoning is that few false paths will survive this pruning for long but the targetpath will survive with high probability.We prune on the intensity by eliminating all paths whose intensity reward, averaged overthe last N0 segments, is below a threshold T (recall that �D(Poff jjPon) < T < D(PonjjPoff)and we will usually select T to take values close to D(PonjjPoff)). In addition, we prune onthe geometry by eliminating all paths whose geometric rewards, averaged over the last N0segments, are below T̂ (where �D(U jjP�g) < T̂ < D(P�gjjU) with T̂ typically being closeto D(P�gjjU)). More precisely, we discard a path provided (for any integer i):1N0 (z+1)N0�1Xi=zN0 log Pon(yi)Poff (yi) < T; or 1N0 (z+1)N0�1Xi=zN0 log P�g(�xi)U(�xi) < T̂ : (10)There are two important issues to address: (i) With what probability will the algorithmconverge?, (ii) How long will we expect it take to converge? The next two subsections putbounds on these issues.4.1 Probability of ConvergenceWhen will the algorithm converge to the target? The admissible heuristic means that theA* algorithm will converge to the path with greatest reward that survives pruning. Thereare therefore two types of error to consider : (i) a false path has better reward than the truepath, and (ii) the true path gets eliminated by the pruning.We analyzed the �rst kind of errors in our related paper [27] where we put bounds onthese errors in terms of the order parameter K = 2B(PonjjPoff) + 2B(P�gjjU) � logQ.Essentially the expected size of the error (measured by the number of false segments on thepath of highest reward) decreases exponentially with K > 0. As K 7! 0 the error boundswe obtain become in�nite and at K = 0 there is a phase transition to a regime (K < 0)where the target is essentially undetectable (because, with high probability) there are manycompletely false paths which have higher rewards than the true path).To quantify the second type of error, we calculate the probability that the target (true)path survives the pruning. This gives a lower bound on the probability of convergence1.1An upper bound on the probability of failure is a lower bound on the probability of success.11



Draft submitted to Arti�cial IntelligenceWe choose T large and write the fall-o� factors as D(PT jjPon) = �1(T ); D(PT jjPoff) =D(PonjjPoff) � �2(T ) where �1(T ); �2(T ) are positive and (�1(T ); �2(T )) 7! (0; 0) as T 7!D(PonjjPoff). Similarly, we choose T̂ to be large and obtain fall-o� factors D(PT̂ jjP�g) =�̂1(T̂ ); D(PT̂ jjU) = D(P�gjjU)� �̂2(T̂ ):The pruning rules removes path segments for which the intensity reward rI or the geomet-ric reward rg fails the pruning test. The probability of failure by removing a block segmentof the true path, with rewards rtI ; rtg, is Pr(rtI < T or rtg < T̂ ) � Pr(rtI < T ) + Pr(rtg <T̂ ) � (N0+1)M2�N0�1(T )+(N0+1)Q2�N0�̂1(T̂ ), where we have used Theorem 1 to put boundson the probabilities. The probability of pruning out any N0 segments of the true path cantherefore be made arbitrarily small by choosing T; T̂ so as to make N0�1 and N0�̂1 large.It should be emphasized that the algorithm will not necessarily converge to the exacttarget path. The admissible nature of the heuristic means that the algorithm will convergeto the path with highest reward which has survived the pruning. It is highly probable thatthis path is close to the target path and results reported in [27] enable us to quantify thisclaim.4.2 Bounding the Number of False PathsSuppose we face a Q-nary tree. We can order the false paths by the stage at which theydiverge from the target (true) path, see �gure (6). For example, at the �rst branch pointthe target path lies on only one of the Q branches and there are Q� 1 false branches whichgenerate the �rst set of false paths F1. Now consider all the Q�1 false branches at the secondtarget branch, these generate set F2. As we follow along the true path we keep generatingthese false sets Fi. The set of all paths is therefore the target path plus the union of theFi (i = 1; : : : ; N). To determine convergence rates we must bound the amount of time wespend searching the Fi. If the expected time to search each Fi is constant then searching forthe target path will at most take constant �N steps.A key concept here is the onion-like structure of the tree representation, see �gure (6).This structure allows us to classify all paths in terms of sets F1; F2; F3; ::: which depend onwhere they branch o� from the true path. Paths which are always bad (i.e. completely false)correspond to F1. Paths which are good for one segment, and then go bad, form F2 and soon. Our previous results have compared the properties of paths in F1 to those of the truepath. To understand the probabilities of paths in F2 relative to the true path, we simplyhave to peel o� the �rst layer of the onion (i.e. remove the �rst arc of the true path) andthe comparison of the rest of the true path to F2 reduces to our previous result for F1. Thusour results for F1 can be readily adapted to F2; F3; :::. Observe that paths in Fi share the�rst (i� 1) arcs with the true path, by de�nition, and hence have the same partial rewardsfor these arcs. Therefore we often only need to compare the rewards for the remaining arcs.(Variants of this argument will be used throughout the paper.)Consider the set Fi of false paths which leave the true path at stage i. We will applyour analysis to block segments of Fi which are completely o� the true path. If (i� 1) is aninteger multiple of N0 then all block segments of Fi will satisfy this condition. Otherwise,we will start our analysis at the next block and make the worse case assumption that allpath segments until this next block will be searched. Since the distance to the next block is12
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F 1F 1

F 2F 2

F 3F 3 True

Figure 6: Left: We can divide the set of paths up into N subsets F1; :::; FN as shown here.Paths in F1 are completely o�-road. Paths in F2 have one on-road segment and so on.Intuitively, we can think of this as an onion where we peel o� paths stage by stage. Right:When paths leave the true path they make errors which we characterize by the number offalse arcs. For example, a path in F1 has error N , a path in Fi has error N + 1� i.at most N0�1, this gives a maximum number of QN0�1 starting blocks for any branch of Fi.Each Fi also has Q� 1 branches and so this gives a generous upper bound of (Q� 1)QN0�1starting blocks for each Fi.For each starting block, we wish to compute (or bound) the expected number of blocksthat are explored thereafter. This requires computing the fertility of a block, the averagenumber of paths in the block that survive pruning. Provided the fertility is smaller than one,we can then apply results from the theory of branching processes to determine the expectednumber of blocks searched in Fi.The fertility q is the number of paths that survive the geometric pruning times theprobability that each survives the intensity pruning. This can be bounded (using Theorem1) by q � q̂ where:q̂ = QN0(N0 + 1)Q2�N0fD(P�g jjU)��̂2(T̂ )g(N0 + 1)M2�N0fD(PonjjPoff)��2(T )g= (N0 + 1)Q+M2�N0fD(PonjjPoff)�H(P�g)��2(T )��̂2(T̂ )g; (11)where we used the fact that D(P�gjjU) = logQ�H(P�g).Observe that the condition q̂ < 1 can be satis�ed provided D(PonjjPoff) �H(P�g) > 0.This condition is intuitive, it requires that the edge detector information, quanti�ed byD(PonjjPoff), must be greater than the uncertainty in the geometry measured by H(P�g).In other words, the better the edge detector and the more predictable the path geometrythen the smaller q̂ will be.We now apply the theory of branching processes to determine the expected number ofblocks explored from a starting block in Fi ;P1z=0 q̂z = 1=(1� q̂). The number of branchesof Fi is (Q � 1), the total number of segments explored per block is at most QN0 , andwe explore at most QN0�1 segments before reaching the �rst block. The total number ofFi is N . Therefore the expected total number of segments wastefully explored is at mostN(Q� 1) 11�q̂Q2N0�1. We summarize this result in a theorem:13



Draft submitted to Arti�cial IntelligenceTheorem 3. Provided q̂ = (N0 + 1)Q+M2�N0K < 1, where the order parameter K =D(PonjjPoff)�H(P�g)� �2(T )� �̂2(T̂ ), then the expected number of false segments exploredis at most N(Q� 1) 11�q̂Q2N0�1.Comment The requirement that q̂ < 1 is chie
y determined by the order parameterK = D(PonjjPoff) � H(P�g) � �2(T ) � �̂2(T̂ ). Our convergence proof requires that K > 0and will break down if K < 0. Is this a limitation of our proof? Or does it correspond to afundamental di�culty in solving this tracking problem?In more recent work [27] we extend the concept of order parameters and show that theycharacterize the di�culty of visual search problem independently of the algorithm. In otherwords, as K 7! 0 the problem becomes impossible to solve by any algorithm. There willbe too many false paths which have better rewards than the target path. As K 7! 0 thereis a phase transition in the ease of solving the problem (see Karp and Pearl [20],[14] for anearlier example of a phase transition of this type).5 Tree Search: A* and Inadmissible Heuristics.We now consider the more important case of inadmissible heuristics. The convergence resultsfor these cases are harder to prove than those in the previous section. But the convergencerates are better (e.g. smaller convergence factors).Our main result of this section is to prove convergence of A* algorithms with inadmissibleheuristics. We prove that convergence is achieved with O(N) expected nodes opened and weput bounds on the expected errors of the solutions. We also prove that the expected sortingcosts per node explored are constant (i.e. independent of N).5.1 A* Convergence for the Bhattacharyya HeuristicWe now want to consider a traditional A* search strategy using a heuristic function but nopruning. In this section, we will formulate the problem for any heuristic and then obtainbounds for a special case, which we call the Bhattacharyya heuristic (again because it isdirectly related to the Bhattacharyya bound). In the following section, we will generalizeour results of other inadmissible heuristics.For a node WM , at distance M from the start, we let g(WM) be the measured rewardand h(WM) is the heuristic function. The A* algorithm proceeds by searching the node inthe queue for which the combined reward f(WM) = g(WM)+h(WM) is greatest. How manynodes (or arcs) do we expect to search by this strategy? And what are the expected errorsin our solutions?The reward to reach WM is just the reward of the log-likelihood data and prior termsalong the path from the start to WM . We de�ne the heuristic reward h(WM) = (N �M)(HL+HP ) where HL and HP are constants (HL and HP are heuristics for the likelihoodand the prior respectively). As we will show, there are optimal values for HL and HP to takeand convergence will break down for HL and HP outside a speci�c regime.Observe that a path segment will be visited only if the reward to get to it (including itsheuristic reward) is su�ciently high. More precisely, if a segment n of a false path is searchedthen this implies that its reward is better than the reward of at least one point on the target14



Draft submitted to Arti�cial Intelligencepath. This is because the A* algorithm always maintains a queue of nodes to explore andsearches the node segment with highest reward. The algorithm is initialized at the start ofthe target path and so an element of the target path will always lie in the queue of nodesthat A* considers searching. Hence a node will never be explored if its reward is lower thanall the rewards on the target path segments.Since the length of all possible paths is constant we can ignore the constant factor N(HL+HP ) and the heuristic will then merely penalize path segments which have been tested. Thena false path of length n and a true path of length m will have e�ective rewards denoted bythe random variables Soff (n) and Son(m):Soff(n) = nXi=1 flog Pon(yxi)Poff (yxi) �HLgoff + nXi=1 flog P�G(xi+1 � xi)U(xi+1 � xi) �HPgoff ;Son(m) = mXi=1 flog Pon(yxi)Poff(yxi) �HLgon + mXi=1 flog P�G(xi+1 � xi)U(xi+1 � xi) �HPgon; (12)where the subscripts off and on are used to denote false and true paths respectively (pathswith a mixture of true and false segments will be dealt with later).We now de�ne types ~�off ; ~ off ; ~�on; ~ on for false and true road samples with ~� correspond-ing to the data and ~ to the prior. These types are normalized so that their components sumto 1, i.e. PM�=1 �� = 1, PQ�=1  � = 1. The types will be computed for samples of variableslengths n;m. These lengths will be clear from the context so we will not label them explicitly(i.e. we will not use notation like ~�n to denote types taken from n samples).Therefore we express the rewards of two sequences Soff (n) and Son(m) by:Soff(n) = nf~�off � ~��HLg+ nf~ off � ~� �HPg;Son(m) = mf~�on � ~��HLg+ nf~ on � ~� �HPg; (13)where �(y) = log(Pon(y)=Poff(y)) and �(�x) = log(P�g(�x)=U(�x)).Recall that if a segment n of a false path is searched then its reward must be better thanat least one point on the target path. This means that we should consider Prf9m : Soff (n) �Son(m)g. This, however, is hard to compute so we bound it above by P1m=0 PrfSoff(n) �Son(m)g (using Boole's inequality).Our �rst result is Theorem 4, which is proven using Sanov's theorem (including theuse of constrained optimization to �nd the fall-o� coe�cients) and results for the sums ofexponential series. The main point of this result is to show that the chance of an o�-roadpath having greater reward than any true road path falls o� exponentially with the lengthof the o�-road path.We �rst de�ne two sub-order parameters 	1 = D(~�BhjjPoff) + D(~ BhjjU) and 	2 =D(~�BhjjPon) + D(~ BhjjP�G). These parameters will determine the convergence and errorrates of the algorithm by means of the two functions:C1(	) = f 11� 2�f	��g + �(�;	)g ; C2(	) = f e�f	��g(1� e�f	��g)2 + �̂(�;	)g; (14)15



Draft submitted to Arti�cial Intelligencewhere �; �̂ are de�ned in Appendix 2. The order parameter for the problem is K = 	1 +	2� logQ which, as was shown in [27], is the quantity which depends whether a solution tothe problem can be found by any algorithm.Theorem 4. The A* algorithm, using the Bhattacharyya heuristic H�L = ~�Bh � ~� andH�P = ~ Bh � ~�, gives:PrfSoff(n) � Son(m)g � f(n+ 1)(m+ 1)g2J+2Q2�(n	1�m	2): (15)Moreover, the probability of a particular false path segment being searched falls o�, to �rstorder in n, as C1(	2)2�n	1 where n is the number of segments by which this path segmentdiverges from the target path.Proof. This �rst part of the proof is again a generalization of Sanov applied to productdistributions, see Theorem 2. The new twist is that we have di�erent length factors n and mand the heuristics. But for the Bhattacharyya heuristics this will make no di�erence. (Wedeal with the more general heuristics later in subsection (5.2). De�ne:E = f(~�off ; ~ off ; ~�on; ~ on) : nf~�off � ~��H�L + ~ off � ~� �H�pg � mf~�on � ~��H�L + ~ on � ~� �H�pgg:(16)Applying the strategy from Theorem 2, we must minimize:f(~�off ; ~ off ; ~�on; ~ on) = nD(~�off jjPoff) + nD(~ off jjU) +mD(~�onjjPon) +mD(~ onjjP�G)+�1fX ~�off � 1g+ �2fX ~ off � 1g+ �3fX ~�on � 1g+ �4fX ~ on � 1g+
fmf~�on � ~��H�L + ~ on � ~� �H�pg � nf~�off � ~��H�L + ~ off � ~� �H�pgg;(17)where the � 's and 
 are Lagrange multipliers. As before, we know that this function f(:; :; :; :)is convex so there is a unique minimum. Observe that f(::::) consists of four terms of formnD(~�off jjPoff)+�1fP ~�offg�n
~�off �~� which are coupled by shared constants. These termscan be minimized separately to give:~�off� = P 
onP 1�
offZ[1� 
] ; ~�on� = P 1�
on P 
offZ[
] ; ~ off� = P 
�GU1�
Z2[1� 
] ; ~ on� = P 1�
�G U
Z2[
] ; (18)subject to the constraint given by equation (16).As before, we see that the unique solution occurs when 
 = 1=2. In this case:~�off� � ~� = H�L = ~�on� � ~�; ~ off� � ~� = H�P = ~ on� � ~�: (19)The solution occurs at ~�Bh; ~ Bh (~���1(1=2) and ~ ��1(1=2)). Hence the �rst result.We must now sum over m to obtain the bound that Pf9m : Soff (n) � Son(m)g. Forlarge m, the alphabet terms are unimportant and we just need to sum the geometric series.However, we must add extra terms �(�;	2) to correct for the alphabet factors for small m,see Appendix 2 for details. HencePrf9m : Soff (n) � Son(m)g � (n+ 1)2J+2QC1(	2)2�n	1: (20)16



Draft submitted to Arti�cial IntelligenceWe can now state our main result about the convergence of A* using the Bhattacharyyaheuristic. Our result, Theorem 5, builds on Theorem 4 by adding the onion peeling argumentcombined with the summation of exponential series.Theorem 5. Provided 	1 > logQ, the expected number of searches is O(N) in the sizeof the problem and is bounded above by C1(	2)C1(	1 � logQ)N . Moreover, the expectederror in convergence is bounded above by C1(	2)C2(	1� logQ), which is small, independentof the size N of the problem, and decays exponentially with 	1� logN . The order parameterK = 	1 +	2 � logQ.Proof. We use the onion peeling strategy to express the expectation in terms of theexpected number of nodes searched in F1; F2; F3:::; FN . By the structure of our problem theexpectations will be bounded by the same number for all Fi. Therefore the bound is linearprovided the expectation for F1 is �nite. More precisely, we get PNi=1f1 + jFijg, where jFijis the cardinality of Fi.Theorem 4 gives us a bound that a speci�c path of length n in F1 will have higher rewardthan any subpath of the true path (a subpath must start at the beginning of the target path).We determine that the expected number of paths of length n, with rewards higher than anysubpath of the target path, is bounded above by C1(	2)(n+1)2J+2QQn2�n	1, see equation (20),where C1(	) is speci�ed by equation (14). This can be summed over n again taking care withthe alphabet factors, see Appendix 2 to obtain C1(	2)f 11�2�(	1�logQ)+� +�(�; (	1� logQ))g =C1(	1 � logQ)C1(	2). This can always be summed provided 	1 > logQ. Our �rst resultfollows.To put bounds on the expected errors of the algorithm we measure the error in terms ofthe expected number of o�-road arcs. We use the onion peeling strategy again and considerthe probability Pr(n) that A* will explore a path in FN+1�n to the end, for any n, instead ofproceeding along the true path. If this happens we will get an error of size n. The expectederror can then be bounded above by P1n=0 Pr(n)n.We want to put an upper bound on Pr(n). Observe that a path in FN+1�n will be followedto the end only if its reward is greater than the heuristic reward along the true path, or thereward of one arc of the true path plus the heuristic reward for the remainder, or the rewardfor two true arcs plus the heuristic reward for the rest, and so on. We can apply Sanov to getprobability bounds for these by using the constraints nf~�off �~�+~ off �~�g � mf~�on�~�+~ on�~�g+(n�m)fH�L+H�Pg, where m = 0; :::; n is the number of arcs of the true path that are explored.These constraints, of course, are the same constraints nf~�off � ~� + ~ off � ~� �H�L �H�Pg �mf~�on � ~� + ~ on � ~� � H�L �H�Pg which we used in Theorem 4 above. Therefore, by Boole'sinequality, Pr(n) � Qn 1Xm=0f(n+ 1)(m+ 1)g2J+2Q � 2�fn	1+m	2g: (21)As before, we can sum the series with respect to m, see Appendix 2, to obtain:Pr(n) � C1(	2)(n + 1)2J+2Q2�nf	1�logQg: (22)17
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Figure 7: Left, D(~�T jjPon) is a convex function of T with its minimum at T = D(PonjjPoff).Right, similarly D(PT jjPoff) in convex with minimum at T = �D(Poff jjPon).The expected error is then bounded above by P1n=1 nPr(n). The dominant, exponentialterms, can be summed as before (see Appendix 2) yielding:< Error >� C2(	1 � logQ)C1(	2): (23)5.2 Alternative HeuristicsOur results in the previous section used the Bhattacharyya heuristics H�L; H�P . These choicesof heuristic were special in that they enabled us to put bounds on the probability ofPrfSoff(n) � Son(m)gwith fall-o� factors which depend only onD(~�BhjjPon) andD(~ BhjjP�G).But these results leave several unanswered questions. Are these speci�c heuristics optimalin some sense? Are our results stable to small changes in the heuristic values? This sectionanswers these questions by obtaining convergence results for other values of the heuristics.These new results show that the Bhattacharyya heuristics lead to faster convergence rates.These proofs are complicated because the sets E corresponding to the rare events, andthe exponential fall o� rates, depend nontrivially on the on- and o�- path lengths m and n.They requires us to �rst prove a convexity result concerning how the fall-o� factors, such asD(~�T jjPon), vary with the threshold T . This result, Theorem 6, is illustrated by �gure (7).Theorem 6. Let ~�T (y) = P 1��(T )on (y)P �(T )off (y)=Z(T ), then D(~�T jjPon) and D(PT jjPoff)are convex functions of T which attain minima of zero at T = D(PonjjPoff) and T =�D(Poff jjPon) respectively, see �gure (7). Moreover, D(~�T jjPon) = D(~�T jjPoff)� T .Proof. The statement D(~�T jjPon) = D(~�T jjPoff)� T follows from the identity:Xy ~�T (y) logf ~�T (y)Pon(y)g =Xy ~�T (y) logf ~�T (y)Poff(y) Poff (y)Pon(y) g: (24)By di�erentiating equation (24) we observe that the equations (28) are consistent. Ittherefore is su�cient to prove the �rst equation.18



Draft submitted to Arti�cial IntelligenceDi�erentiating D(~�T jjPon) =Py ~�T (y) log ~�T (y)Pon(y) yields:ddT D(~�T jjPon) =Xy d~�T (y)dT log ~�T (y)Pon(y) +Xy d~�T (y)dT =Xy d~�T (y)dT log ~�T (y)Pon(y) ; (25)because Py d~�T (y)dT = d=dTPy ~�T (y) = 0. Using ~�T (y) = P 1��(T )on (y)P �(T )off (y)=Z(T ) we re-express this as:ddT D(~�T jjPon) =Xy d~�T (y)dT log P �(T )off (y)P �(T )on (y)Z(T ) = ��(T )Xy d~�T (y)dT log Pon(y)Poff(y) : (26)The Lagrange term in equation (6) implies Py ~�T (y) log Pon(y)Poff(y) = T and di�erentiatingyields: Xy d~�T (y)dT log Pon(y)Poff (y) = 1: (27)Combining equations (26) and (27) gives the result:ddT D(~�T jjPon) = ��(T ); ddT D(~�T jjPoff) = 1� �(T ); (28)We can solve explicitly for �(D(PonjjPoff)) = 0 and �(�D(Poff jjPon)) = 1. It is clearthat as the threshold T decreases then �(T ) decreases because ~�T becomes closer to Poff .Hence d�=dT < 0. The result follows.Armed with this theorem, we now proceed to prove results about convergence rates. We�rst de�ne a function �(T ) which is the analogue of �(T ) for P�G and U . Observe that thereis an ambiguity in HL and HP because only their sum, HL + HP , appears in the rewards.To remove this ambiguity we impose the constraint that �(HL) = �(HP ). We then de�neĤL; ĤP by the conditions �(ĤL) + �(HL) = 1 and �(ĤP ) + �(HP ) = 1.We start by proving an analogue of the �rst part of Theorem 4. This shows that thechance of an o�-road path of length n having greater reward than a true road path of lengthm falls o� exponentially with a factor g(m;n). Unfortunately this factor is no longer linearin m and n as it was for the Bhattacharyya heuristic (this linearity enables us to sum theresulting series easily). Instead we need to bound g(m;n) below by a function of formc1m+ c2n (for some constants c1; c2). This requires the use of Theorem 6 and an analysis ofhow g(m;n) varies with n;m, see �gure (8).Theorem 7. PrfSoff(n) � Son(m)g � f(n+ 1)(m+ 1)g2J+2Q2�g(m;n); (29)where:g(m;n) � nfD(�ĤLjjPoff) +D( ĤP jjU)g+mfD(�HLjjPon) +D( HP jjP�G)g; if HL > ĤL;g(m;n) � nfD(�HLjjPoff) +D( HP jjU)g+mfD(�ĤLjjPon) +D( ĤP jjP�G)g; if HL < Ĥ:(30)19
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Draft submitted to Arti�cial IntelligenceProof. We start by following the proof of Theorem 4 but with the de�nition of set Echanged to allow for di�erent heuristics HL; HP . We minimize f(:; :; :; :) and obtain similarexpressions for �T1 = �off�;  W1 =  off�; �T2 = �on�;  W2 =  on� except that the minimiza-tion no longer occurs at 
 = 1=2. The fall-o� rate is determined by:g(m;n) = nfD(�T1 jjPoff) +D( W1jjU)g+mfD(�T2jjPon) +D( W2jjP�G)g; (31)where mfT2 +W2 �HL �HPg = nfT1 +W1 �HL �HPg; (32)and �(T1) + �(T2) = 1 = �(W1) + �(W2);�(T1) = �(W1); �(T2) = �(W2): (33)Recall, that to remove the ambiguity in HL and HP we imposed the constraint that�(HL) = �(HP ). We also de�ned ĤL; ĤP by the conditions �(ĤL) + �(HL) = 1 and�(ĤP ) + �(HP ) = 1 which implies that �(ĤL) = �(ĤP ).There are two situations to consider: (i) HL � ĤL, which implies HP � ĤP (this followsfrom the equations at the end of the previous paragraph plus the fact that �(:) and �(:) aremonotonically decreasing functions), and (ii) HL � ĤL, which implies HP � ĤP .We claim, in case (i), that T1; T2 2 [ĤL; HL] and W1;W2 2 [ĤP ; HP ], see �gure (8).Moreover,g(m;n) � nfD(�ĤLjjPoff) +D( ĤP jjU)g+mfD(�HLjjPon) +D( HP jjP�G)g: (34)Moreover, in situation (ii) we claim that T1; T2 2 [HL; ĤL] and W1;W2 2 [HP ; ĤP ], andg(m;n) � nfD(�HLjjPoff) +D( HP jjU)g+mfD(�ĤLjjPon) +D( ĤP jjP�G)g: (35)We prove the results only for situation (i) because the proofs for situation (ii) are exactlyanalogous. The condition �(T1) + �(T2) = 1 implies that there are only three possible cases:either both T1; T2 2 [ĤL; HL] or, using the monotonicity of �(T ), that T1 > HL and T2 < ĤL,or T1 < ĤL and T2 > HL. The �rst case will ensure that W1;W2 2 [ĤP ; HP ] which solvesthe problem. The second requires that W1 > HP and W2 < ĤP but this is inconsistent withthe requirement that mfT2 +W2 � HL � HPg = nfT1 +W1 � HL � HPg (because the lefthand side is negative and the right hand side is positive). Similarly, the third case impliesthat W1 < ĤP and W2 > HP which again contradicts the equality. Thus the only possiblesituation is the �rst case.Moreover, as n 7! 1, we have T1 7! HL;W1 7! HP ; T2 7! ĤL;W2 7! ĤP . (This isbecause T1 � HL and W1 � HP so as n 7! 1 we have T1 +W1 �HL �HP 7! 0).Given this result, it is now straightforward to prove the analogues of the second half ofTheorem 4 and of Theorem 5 (using almost exactly the same proofs). More precisely, we�rst prove that the chance of an o�-road path having greater reward than any part of the21



Draft submitted to Arti�cial Intelligencetrue road path falls o� exponentially with the length of the o�-road path. Then we obtainthe rate of convergence and an upper bound on the expected error.Theorem 8. Let 	̂1 = D(~�ĤLjjPoff) +D(~ HP jjU), 	̂2 = D(~�HLjjPon) +D(~ HP jjP�G),then the probability that an o�-road path has greater reward than any on-road path is boundedabove by: Prf9m : Soff (n) � Son(m)g � C1(	̂2)(n+ 1)2J+2Q2�n	1; (36)and, provided 	̂1 > logQ, the expected number of searches is O(N) in the problem size N andis less than C1(	̂2)C1(	̂1� logQ)N . The expected error is bounded above by C1(	̂2)C2(	̂1�logQ), which is independent of N and decays exponentially with 	̂1 � logN . The orderparameter K = 	̂1 + 	̂2 � logQ.Proof. We adapt the proofs of Theorems 4,5 but replacing 	1;	2 with 	̂1; 	̂2.5.3 How to Sort the QueueWe have shown that the expected number of nodes searched is linear in N . But the con-vergence rate of the algorithm will depend on sorting the queue of nodes that we want toexpand. After all, if we have order N nodes in the queue then we may have to spend O(logN)time searching the queue to determine which node to expand.We now show that this may not be necessary and the expected search time for eachstep is constant. To see this, let us use a simple linked list data structure where we orderthe nodes in the queue according to their rewards (instead of a more sophisticated datastructure, like a heap { see, for example, [10], [5]). By our previous theorems, the queue willcontain, on average, order N elements. A* proceeds by expanding the top node and mustadjust the queue to accommodate its children. Provided we can place the children in theircorrect position in the queue by only looking, at most, at a constant set of queue elementsthen the expected search time is constant.How bad can the children of the best node be? The worst incremental reward they canget will be a negative number. It is convenient to represent this as ��, where � is positiveand where �� = miny logPon(y)=Poff(y) + minx logP�G(x)=U(x)�HL �HP .We wish to put bounds on the expected number of nodes in the queue with rewards whichare smaller by at most � than that of the best node. We do not know the reward of the bestnode, but we do know that there is always a true path segment (i.e. it consists entirely ofon-road arcs) in the queue, whose length we can call n. It therefore su�ces to put boundson the expected number of paths in the queue with rewards greater than the reward of theon-path of length n minus �.This can be done by a slightly more complicated variant of the proofs of Theorems 7 and8. We consider the case when HL > ĤL and HP > ĤP (the alternative case can be solvedby adapting the following argument). Suppose the longest true partial path in the queue isof length n and has reward rt. We must consider the probabilities that paths in F1; :::; Fnhave rewards higher than rt � �. (We do not need to consider paths in Fi; i > n becausethey involve children of nodes in the queue and so cannot be in the queue.) Applying theonion argument, for each m � n, we must bound the probability that any o�-path of any22



Draft submitted to Arti�cial Intelligencelength has reward higher than the true reward for n arcs minus �. Following the standardapplication of Sanov's theorem, we de�ne the set:E = f(~�off ; ~ off ; ~�on; ~ on) : m(~�off � ~� + ~ off � ~� �HL �HP ) + � � n(~�on � ~� + ~ on � ~� �HL �HP )g:(37)Following the proof of Theorem 7 this gives thresholds: T1; T2;W1;W2 (as before, thesethresholds are functions of n and m), where:m(T1 +W1 �HL �HP ) + � = n(T2 +W2 �HL �HP ); (38)�(T1) + �(T2) = 1; �(W1) + �(W2) = 1; �(T1) = �(W1); �(T2) = �(W2): (39)The fall-o� depends ong(n : m) = mfD(~�T1jjPoff) +D(~ W1 jjU)g+ nfD(~�T2jjPon) +D(~ W2 jjP�G)g: (40)Now, again following Theorem 7, we would like to put lower bounds on g(n : m). ForTheorem 7 we were able to prove that T1; T2 2 [ĤL; HL] and W1;W2 2 [ĤP ; HP ] (for thesituation where HL > ĤL and analogous results hold for the situation with HL < ĤL). The� term prevents these results from being true. However, for large enough n or m the �term becomes negligible and we will prove that T1; T2 2 [ĤL � �;HL + �] and W1;W2 2[ĤP � �;HP + �]. These contain the most important terms and, as we will show, make onlya constant contribution to the expected sorting cost. The contributions for small m and nare, of course, also constant.We �rst show, that for any �xed n, the thresholds T1;W1 increase monotonically withm and tend to HL; HP as m 7! 1 and, similarly, T2;W2 decrease monotonically with mand tend to ĤL; ĤP . From �(T1) = �(W1), see equation (39), and the monotonicity of thefunctions �(:) and �(:), we see that the coupling between T1 and W1 means that they haveto increase, or decrease, together. Similarly, T2 and W2 must either decrease, or increase,together. By equation (38), we see that at m = 0 we have T2(0) +W2(0) = HL +HP +�=nwhich implies, by equation (39), that T1(0)+W1(0) < ĤL+ĤP . Equation (38) enforces thatT1 7! HL; W1 7! HP as m 7! 1 which implies that T2 7! ĤL and W2 7! ĤP . Therefore,we see that T1 + W1 increases overall from m = 0 as m 7! 1 and conversely T2 + W2decreases. But are these changes monotonic? From equation (38), we see that providedT1+W1 < HL+HP then it is inconsistent for T1 andW1 to decrease and T2 andW2 to increase.However, it is impossible for T1+W1 > HL+HP because, by equation (38), this would implythat T2 +W2 > HL +HP (recall that � > 0) which is inconsistent with equations (39). Sowe conclude that the only possibility is for T1 and W1 to increase monotonically and T2 andW2 to decrease monotonically.Now select a number N0, chosen so that N0(�) � �=�, and let n � N0. Then for m = 0,we see that T2 < HL + � and W2 < HP + � (this follows from equations (38,39)). Moreover,T1 > ĤL � �̂ and W1 > ĤP � �̂ (where �̂ is de�ned by equation (39)). As m increases T1;W1increase monotonically to HL; HP and T2;W2 decrease monotonically to ĤL; ĤP . Thereforewe have:g(m : n) � mfD(~�ĤL��̂jjPoff) +D(~ ĤP��̂jjU)g+ nfD(~�HL+�jjPon) +D(~�HP+�jjP�G)g 8 n > N0(�);(41)23



Draft submitted to Arti�cial Intelligencewhich ensures that the fall-o� factors are bounded below for large n.We now deal with the case of small n (i.e. n < N0(�)) and largem. We claim that there isa speci�c valueM0 such that for m > M0 we have T1; T2 2 [ĤL; HL] and W1;W2 2 [ĤP ; HP ],in which case we can use the same bounds for g(m;n) as above (see equation (41)). Thisclaim is proven by settingM0 = �=(HL+HP�ĤL�ĤP ) and substituting into equation (38)to obtain �(T1 +W1 � ĤL � ĤP ) = n(T2 +W2 � HL � HP )(HL + HP � ĤL � ĤP ). Theconsistency conditions, imposed by equation (39), mean that this equation's only solutionis T1 = ĤL, W1 = ĤP , T2 = HL, and W2 = HP (all other possibilities can be shown tobe inconsistent using equation (39). The monotonicity increase of T1;W1, and decrease ofT2;W2, ensure that, for m > M0, the T1; T2 2 [ĤL; HL] and W1;W2 2 [ĤP ; HP ].2The �nal situation is when n < N0(�) andm < M0. This is a �nite case so we do not needto obtain bounds. We can simply exhaustively count the number of arc segments. (This isextremely conservative).We now put all these results together. Let n̂ be the length of the true path segment in thequeue (by the nature of A* there can only be one such true path segment in the queue at anytime). The expected number of queue members with rewards higher than the true segmentminus � is obtained by summing over the possible segments in F1; F2; ::::; Fn̂. We can dealwith the cases m < M0 and n < N0(�) by exhaustive counting which yields a �nite number.For each n � n̂ we can use the bounds given by equation (41) and apply the arguments fromTheorem 7 to sum over m for �xed n obtaining a term which decays exponentially with n.Finally, we can apply the arguments from Theorem 8 to sum over n. The exponential decayfactor means that this sum will converge for any value of n̂ (even as n̂ 7! 1). Hence we getconstant expected sorting costs.We summarize this result as a theorem:Theorem 9 The expected sorting rate per node is constant and independent of the sizeN of the problem.6 ConclusionOur analysis shows it is possible to track certain classes of image contours with linear ex-pected node expansions (and linear expected sorting time per node). We have shown howthe convergence rates, and the choice of A* heuristics, depend on order parameters whichcharacterize the problem domain. In particular, the entropy of the geometric prior and theKullback-Leibler distance between Pon and Poff allow us to quantify intuitions about thepower of geometrical assumptions and edge detectors to solve these tasks. Not surprisingly,the easiest target curves to detect are those for which the edge detector is most informativeand the prior geometric knowledge most constraining. Our analysis allows us to quantifythese intuitions. See [18] for analysis of the forms of Pon; Poff arising in typical images.Our more recent work [27] has extended this work by showing that similar order pa-rameters can be used to specify intrinsic (algorithm independent) di�culty of the search2Observe that M becomes in�nite if we use the Bhattacharyya heuristic (i.e. when HL = ĤL andHP = ĤP ). This is because the regions [ĤL; HL] and [ĤP ; HP ] shrink to points H�L and H�P and the T 'sand W 's only reach them asymptotically. This requires a modi�cation of the proof to obtain bounds on Mfor which maxfjT1 �H�Lj; jW1 �H�P j; jT2 �H�Lj; jW2 �H�Ljg < �.24



Draft submitted to Arti�cial Intelligenceproblem and that phase transitions occur when these order parameters take critical values.Fortunately, the proofs in this paper break down at closely related critical points. ThereforeA* algorithms are an e�ective way to solve this problem in the regime for which it can besolved.As shown in [25] many of the search algorithms proposed to solve vision search problems[19],[2], [11] are special cases of A* (or close approximations). We therefore hope that theresults of this paper will throw light on the success of the algorithms and may suggestpractical improvements and speed ups, see [5] for promising preliminary results.Crucial to our analysis has been the use of Bayesian probability theory both to determinean optimization criterion for the problem we wish to solve and to de�ne the Bayesian en-semble of problem instances. Analysis of the Bayesian ensemble led to the de�nition of orderparameters which characterized the di�culty of the problem. It will be interesting to com-pare our results with those obtained by [4],[23] for completely di�erent classes of problemsand using di�erent techniques. This is a topic for further research.AcknowledgementsWe want to acknowledge funding from NSF with award number IRI-9700446, from the Centerfor Imaging Sciences funded by ARO DAAH049510494, and from the Smith-Kettlewell coregrant, and the AFOSR grant F49620-98-1-0197 to A.L.Y. Lei Xu drew our attention to Pearl'sbook on heuristics and we thank Abracadabra books for obtaining a second hand copy for us.We would also like to thank Dan Snow and Scott Konishi for helpful discussions as the workwas progressing and Davi Geiger for providing useful stimulation. Also in
uential was BobWestervelt's joking request that he hoped James Coughlan's PhD thesis would be technicalenough to satisfy the Harvard Physics Department. David Forsyth, Jitendra Malik, PreetiVerghese, Dan Kersten, Suzanne McKee and Song Chun Zhu gave very useful feedback andencouragement. Finally, we wish to thank Tom Ngo for drawing our attention to the workof Cheeseman and Selman.7 Appendix 1: The Theory of TypesThis appendix derives the basic concepts and mathematical machinery that we will need toprove our results.For concreteness, we will assume that we dealing with the likelihood function terms only.In other words, we are only concerned with the measurements of the local road detectorsand we ignore any knowledge about the likely geometrical con�gurations of the road.We have a sequence of samples ~y = y1; y2; :::; yN of the responses of the road detector.The optimal tests for determining whether the samples come from Pon or Poff will dependon the log-likelihood ratio3 (see the Neyman-Pearson lemma [6]):3This can be thought of as the maximum likelihood test between two hypotheses which are equally likelya priori.
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logf Pon(y1; ::::yN)Poff(y1; ::::yN)g = logf NYi=1 Pon(yi)Poff(yi)g = NXi=1 logf Pon(yi)Poff (yi)g: (42)The larger the log-likelihood ratio then the more probable that the measurement sample~y = (y1; y2; :::; yN) came from the on-road rather than o�-road (if the log-likelihood ratiois zero then both on-road and o�-road are equally probable). But we need to considerthe probabilities that a random sample from o�-road has higher log-likelihood ratio than asample from on-road. This requires us to put probabilistic bounds on the probabilities ofunlikely events. This can be done by adapting the theory of types, see [6].Any sample ~y = (y1; y2; :::; yN) determines an empirical histogram, or type, ~�(~y) whichis an J-dimensional vector whose components �1; :::; �J are the proportions of responses �iwhich take values 1; :::; J . (i.e. �(y) = (1=N)PNi=1 �yi;y). The key point is that all the relevantproperties of the sample will depend only on its type (in view of the i.i.d. assumption). Thisincludes the result of the log-likelihood test, see equation (42), which we can re-express as:logf Pon(y1; ::::yN)Poff(y1; ::::yN)g = JXy=1(N�(y)) logfPon(y)=Poff(y)g: (43)It is important to observe that this is simply the dot-product, N~� � ~�, of the type ~� witha weight vector ~� (for the equation above, ~� has components �(y) = logfPon(y)=Poff(y)g).Most of the quantities that we are concerned with, such as the rewards of paths and theconvergence rates of algorithms, will depend on dot products of this form. The theory oftypes proceeds by putting probabilistic bounds on types which can then be used to putprobability bounds on the dot products. For the results which follow it is convenient todivide out by the size factor N . We therefore consider the average of the log-likelihood withrespect to the sequence of samples { i.e. (1=N)PNi=1 logPon(yi)=Poff (yi).There are �ve key lemmas that we will use about types [6]:Lemma 1. The total number of types � (N+1)J . (This is a very generous upper boundwhich occurs because each component of the type vector ~� can take at most N + 1 possiblevalues).Lemma 2. The probability QN (~y) for any sequence of samples ~y drawn i.i.d. from Q(y)depends only on the entropy H(~�(~y)) of the type of the sequence and the Kullback-Leiblerdistance D(~�(~y)jjQ) between the type and the distribution Q, and is given by:QN(~y) = F (~�(~y)) = 2�NfH(~�(~y))+D(~�(~y)jjQ)g: (44)(The probability of the sequence can be expressed asQJy=1Q(y)N�(y) = 2NPJy=1 �(y) logQ(y)and we use H(~�) +D(~�jjQ) = �PJy=1 �(y) logQ(y) to obtain the result.)Lemma 3. The probability P (~�) that a sequence has type ~� is given by:P (~�) = F (~�) ���T (~�)��� ; (45)26



Draft submitted to Arti�cial Intelligencewhere ���T (~�)��� = P~y:~�(~y)=~� 1 is the number of distinct sequences with type ~�. (This followsfrom P (~�) =P~y �~�;~�(~y)QN(~y) and substituting equation (44)).Lemma 4. We can bound the size of each type class by [6]:2NH(~�)(N + 1)J � ���T (~�)��� � 2NH(~�): (46)(Not surprisingly, the larger the entropy H(~�) the bigger the type class.)Lemma 5. We can put a bound on P (~�) by combining Lemmas 2, 3, and 4. This gives:2�ND(~�jjQ)(N + 1)J � P (~�) � 2�ND(~�jjQ): (47)From these basic lemmas we can derive the main result we need. We are particularlyinterested in putting bounds of the probability that a type ~� lies within a certain set of typesE. For example, for our road tracking task we de�ne the reward of a type ~� to be ~� � ~�.It will then be important to bound the probability that sequences of samples from o�-roadhave rewards above a speci�c threshold T . To do this, we de�ne ET = f~� : ~� � ~� � Tg andask for the probability, Pr(~��ET ), that the type of a sequence of samples from o�-road willlie within ET .The main result is called Sanov's theorem:Sanov's Theorem. Let y1; y2; :::; yN are i.i.d. from a distribution Q(y) with alphabetsize J and E be any closed set of probability distributions. Let Pr(~� 2 E) be the probabilitythat the type of a sample sequence lies in the set E. Then:2�ND(~��jjQ)(N + 1)J � Pr(~� 2 E) � (N + 1)J2�ND(~��jjQ); (48)where �� = argmin�2ED(�jjQ) is the distribution in E that is closest to Q in terms ofKullback-Leibler divergence.Proof. It is straightforward to see that max~��E P (~�) � Pr(~��E) � jEjmax~��E P (~�).From Lemma 5, we can put upper and lower bounds on max~��E P (~�) in terms of ~�� =argmin~��ED(~�jjQ). This gives the result using Lemma 1 to put 1 � jEj � (N + 1)J :Appendix 2: Bounding the Sums of Exponential SeriesWe often need to sum series which contain geometric decay terms and alphabet factors. Thegeometric terms dominate the series for large m but for small m the alphabet terms becomeimportant. Our approach is to sum the geometric series and add a correction factor for thealphabet terms. 27



Draft submitted to Arti�cial IntelligenceBounding series like P1m=0(m+ 1)A2�Bm.We describe two methods for summing, or bounding, series which contain exponential decayterms and alphabet factors. The alphabet factors are usually bounded by polynomial terms(see section (5)). It should be emphasized, however, that the polynomial bounds on thealphabet factors are not tight and, in particular, will be misleading for small m. We see twostrategies.The �rst strategy is to sum the series directly using the polynomial bounds for thealphabet factors. To do this, we de�ne G1(B;A) = P1m=0(m + 1)A2�Bm, where A is apositive integer corresponding to the alphabet factors and B is the exponential decay factor.Observe that G1(B; 0) = P1m=0 2�Bm = 11�2�B . Di�erentiating G1(B; 0) with respect to Bintroduces polynomial terms inside the summation. It is then straightforward to verify that:G1(B;A) = eB(loge 2)A (�1)A dAdBA 11� 2�B : (49)The second strategy takes into account the inaccuracies of the alphabet factor terms. Forsmall m, the alphabet factors become important and so they should be modelled accurately.We will not do this here. Instead we observe that given any number � we can pick a numberM(�; A) such that (m+ 1)A � 2m� 8 m �M0(�; A). We can sum the series to obtain:G2(B;A) = 11� 2�(B��) + �(A;B; �); (50)where �(A;B; �) is a (positive) correction caused by the terms for m < M0(�; A) (the sumunderestimates these terms because (m + 1)A � 2(M�); 8 m < M0(�; A).)Bounding series like P1m=0m(m+ 1)A2�Bm.In addition, we will often need to bound sums such as:1Xm=0m2�Bm(m+ 1)A: (51)As above, we pick a number � and M0(�; A) such that (m+ 1)A < em�; 8 m > M0(�; A).We can divide the sum into two parts:1Xm=0m2�(B��)m + �̂(�; A;B); (52)where �̂(�; A;B) is a correction factor used to correct for the alphabet factors for smallm < M0(�; A).Let f(x) =P1m=0 2xm = 1=(1� 2x). Then it is straightforward to di�erentiate both sideswith respect to x to obtain P1m=0m2xm = 2x(1�2x)2 . We can therefore express:28
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