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Abstract This paper develops a theory for the convergence rates of A* algorithms for
Bayesian inference. We are specifically concerned with real-world vision problems, such as
road tracking [11], which can be formulated in terms of mazimizing a reward function
derived using Bayesian probability theory. Such problems are well suited to A* tree search
and it can be shown [25] that many algorithms proposed to solve them are special cases, or
variants, of A*. Moreover, the Bayesian formulation naturally defines a probability
distribution on the ensemble of problem instances (see Pearl Chp 5, [20]), which we call the
Bayesian Ensemble. We analyze the Bayesian ensemble, using techniques from
information theory, and mathematically prove expected time convergence rates of
algorithms. These rates depend on an “order parameter” which characterizes the difficulty
of the problem. In particular, we study: (i) an admissible A* algorithm which uses pruning
and (ii) an inadmissible A* algorithm. In both cases we prove expected convergence rates
with O(N) node expansions (where N is the problem size) and also expected constant time
sorting per node expansion. We also characterize the expected errors as functions of the
order parameter. QOur proofs break down at critical values of the order parameters but, in
related work [27], we prove that the search task becomes impossible by any algorithm at
critical values of closely related order parameters. We conclude that A* is a very effective
way of solving such problems in the regimes in which they can be solved.

Keywords: (I) Heuristic Search, (II) A*, (III) Order Parameters and Phase Transitions,
(IV) NP-complexity versus Typical Complexity, (V) Bayesian Computer Vision.
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Figure 1: The difficulty of detecting the target path in clutter depends, by our theory [27],
on the order parameter K. The larger K the less computation required. Left, an easy
detection task with K = 0.8647. Middle, a harder detection task with K = 0.2105. Right,
an impossible task with K = —0.7272.

1 Introduction

Heuristic search is a fundamental problem of Artificial Intelligence [20],[24],[22]. The A*
algorithm is a particularly important approach to heuristic search which has been elegantly
expounded and analyzed by Pearl [20].

More recently, it has become apparent [25] that a class of real world vision problems, for-
mulated as Bayesian inference [17], can be solved using A* algorithms. This class includes
tasks such as the detection and tracking of paths in noise/clutter, see figure (1). In particu-
lar, it was shown [25] that many of the algorithms used to solve these tasks (see, for example,
[19],[2],[9],[11],[10]) could be interpreted as special cases, or variants, of A* algorithms. In-
cidently, a consequence of applying A* to Bayesian problems is that the prior probabilities,
an essential component of the Bayesian approach, can be used to make stronger heuristic
predictions than in standard A*, see [11],[28], which can result in improved performance.

An advantage of expressing algorithms in a uniform framework, such as A*, is that it
enables us to do theoretical and experimental comparisons between different algorithms to
determine which ones are most effective. Moreover, one may hope to identify characteristics
of the problem domain which determine the difficulty of the search tasks independently of
the algorithm used. If so, then it may be possible to design optimally effective algorithms
to solve the problems. These are the issues that we investigate in this paper. (See also, our
related work [27]).

Broadly speaking, there are two strategies for evaluating the effectiveness of algorithms.
The first is the worst case analysis used in much of computer science [8]. The second involves
determining the convergence rates on typical problem situations (i.e. those which typically
occur). This form of analysis requires having a probability distribution on the ensemble
of problem instances. Karp and Pearl provided a fascinating analysis of binary tree A*
search using this approach (see Chp 5 [20],[14]). We argue that this second approach is of
more relevance to the problems we are concerned with and so we will study it in our paper.
Interestingly, however, there are some recent studies showing that order parameters exist for
NP-complete problems and that these problems can be easy to solve for certain values of the
order parameters [4],[23]. The connection between this approach and our own is a topic for
further research.

We emphasize that the Bayesian formulation of our problems naturally gives rise to a
probability distribution on the ensemble of problem instances, which we call the Bayesian
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Figure 2: A simulated road tracking problem where dark lines indicate strong edge responses
and dashed lines specify weak responses. The branching factor is three. The data was
generated by stochastic sampling using a simplified version of the models analyzed in this
paper. In this sample there is only one strong candidate for the best path (the continuous
dark line) but chance fluctuations have created subpaths in the noise with strong edge
responses. The A* algorithm must search this tree starting at the bottom node.

Ensemble. This allows us to build on the foundations established by Karp and Pearl [20] to
obtain expected convergence rates. Technically, our proofs involve adapting techniques from
information theory, such as Sanov’s theorem, which were developed to bound the probability
of rare events occurring [6]. (For the road tracking problem, a rare event would be when a
subpath in the background noise/clutter has greater reward than a subpath of the true road

i.e. looks more like a road). Our proofs rely on three basic elements: (i) Sanov’s theorem
which shows that the probability of rare events decreases exponentially with the length of
the subpath, (ii) An onion peeling strategy which allows us to recursively analyze the search
tree, and (iii) the use of standard techniques for summing, and bounding, exponential series
generated by (i). See figure (2) for an illustration of this search task.

In particular, we formulate the problem of detecting object curves in images to be one
of Bayesian inference [17]. This assumes that statistical knowledge is determined for the
images and the curves, see sections (2). Such statistical knowledge has often been used in
computer vision for determining optimization criteria to be minimized and techniques have
been developed to learn it form real data [29]. We want to go one step further and use this
statistical knowledge to determine good search strategies. In particular, we can prove that
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for certain curve and boundary detection algorithms we will, with high probability, obtain
expected A* convergence rates by examining a number of nodes which is linear in the size
N of the problem. In addition, the expected sort time per node is constant (note that this
does not necessarily imply that the expected time for the problem is linear in N). More-
over, our analysis helps determine important characteristics of the problem, similar to order
parameters in statistical physics, which quantify the difficulty of the problem. These order
parameters determine the constants in the convergence rate formulae and also determine the
expected errors.

As we will show, our convergence bounds become infinite at certain values of these order
parameters. Is this an artifact of our proofs? Or is it a limitation of the A* search strategy?
In related work [27], we prove instead that it corresponds to a fundamental difficulty with
the problem. As proven in [27] similar order parameters characterize the difficulty of solving
the problem independently of the algorithm employed. Moreover, at critical values of these
order parameters there is a phase transition and the problem becomes insolvable. These
fundamental bounds show that our proofs in this paper only break down as we enter the
regime where the problem is unsolvable by any algorithm. The A* algorithm remains effective
as we approach the critical value of the order parameters although, not surprisingly, the
convergence rates get very slow.

The first section (2) of this paper describes the probabilistic formulation of road tracking
that we use to prove our results. Section (3) introduces Sanov’s theorem and illustrates how
it can be applied to bound the probabilities of rare events. (We give a proof of Sanov’s
Theorem in Appendix 1). In section (4) we prove convergence rates of an admissible A*
algorithm which uses pruning. In section (5), we extend our results to the more interesting,
and challenging, case of inadmissible heuristics. We conclude by placing this work in a larger
context and summarizing recent extensions.

2 Mathematical Formulation of Road Tracking

Tracking curved objects in real images is an important practical problem in computer vision.
We consider a specific formulation of the problem of road tracking from aerial images by
Geman (D.) and Jedynak [11]. Their approach used a novel active search algorithm to track
a road in an aerial photograph with empirical convergence rates of O(N) for roads of length
N. Their algorithm is highly effective for this application and is arguably the best currently
available. In previous work [25], we showed that Geman and Jedynak’s algorithm was a close
approximation to A*. Other search algorithms such as Dijktra and Dynamic Programming
used in related visual search problems [19], [2],[9], [16]. [10],[5] can be shown to be special
cases of A* [25].

Our approach assumes that both the intensity properties and the geometrical shapes of
the target path (i.e. the edge contour) can be determined statistically. This path can be
considered to be a set of elementary path segments joined together. We first consider the
intensity properties along the edge and then the geometric properties.

The image properties of segments lying on the path are assumed to differ, in a statistical
sense, from those off the path. More precisely, we can design a filter ¢(.) with output
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{y, = ¢(I(z))} for a segment at point x so that:

P(y.) = Pou(y.), if “x" lies on the true path
P(ys) = Popp(ys), if “a” lies of f the true path. (1)

For example, we can think of the {y,} as being values of the edge strength at point x
and P,,, P,s; being the probability distributions of the response of ¢(.) on and off an edge.
The set of possible values of the random variable y, is the alphabet with alphabet size M.
See [11],[5] examples of distributions for P,,, P,ss used in computer vision applications.

We now consider the geometry of the target contour. We require the path to be made
up of connected segments x1,xs,...,xy. There will be a Markov probability distribution
P,(x;11|z;) which specifies prior probabilistic knowledge of the target. It is convenient, in
terms of the graph search algorithms we will use, to consider that each point x has a set of )
neighbours. Following terminology from graph theory, we refer to @ as the branching factor.
We will assume that the distribution P, depends only on the relative positions of z;;,; and
x;. In other words, Py(x;11|%;) = Pag(xit1 — x;). An important special case is when the
probability distribution is uniform for all branches (i.e. Pa,(Ax) = U(Az) =1/Q VAz).

By standard Bayesian analysis, the optimal path X* = {z},... , 23} maximizes the sum
of the log posterior:

OTZ I P 2
Zlog 2 +Zlog 8 (@is1 = ), (2)

Pos(y ()) Uiy — ;)

where the sum i is taken over all points on the target (which may, or may not, be a fixed
number). U(x;41 — x;) is the uniform distribution and its presence merely changes the log
posterior F(X) by a constant value. It is included to make the form of the intensity and
geometric terms similar, which simplifies our later analysis.

We will refer to F(X) as the reward of the path X which is the sum of the intensity

rewards log % and the geometric rewards log W_

It is important to emphasize that our results can be extended to higher-order Markov
chain models (provided they are shift-invariant). We can, for example, define the x variable
to represent spatial orientation and position of a small edge segment. This will allow our
theory to apply to models, such as snakes, used in recent successful vision applications
[2], [11]. (It is straightforward to transform the standard energy function formulation of
snakes into a Markov chain by discretizing and replacing the derivatives by differences. The
smoothness constraints, such as membranes and thin plate terms, will transform into first
and second order Markov chain connections respectively). Recent work by Zhu [33] shows
that Markov chain models of this type can be learnt using Minimax Entropy Learning theory
from a representative set of examples. Indeed Zhu goes further by demonstrating that other
Gestalt grouping laws can be expressed in this framework and learnt from representative
data.

Reward functions, such as equation (2), are ideally suited to A* graph/tree search algo-
rithms [20],[22] and we will therefore analyze A* algorithms later in this paper, see section (5).
As we will describe, A* searches the nodes possible branches of the road/snake which are
most promising. The “goodness” f(n) of a node n is g(n) + h(n) where g(n) is the reward to
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get to the node and h(n) is a heuristic reward to get to the finish from n. The A* algorithm
starts at the top of the tree and evaluates the child nodes (i.e. those connected to the top
node by a single arc). These child nodes are placed in the queue. As the algorithm proceeds
it selects the member of the queue with best evaluation, removes it from the queue, expands
its children and enters them in the queue.

The evaluation of the nodes is based on the reward to reach it from the top node (i.e. the
sum of the log posteriors) and on a heuristic reward based on anticipated future performance.
More precisely, a path segment ending at = has a total reward f(z) = g(z) + h(x) (note
that the nonoverlapping path requirement implies that x determines a unique path to the
initialization point). The choice of heuristic reward h(z) is very important to the algorithm
[20]. It can be proven that if A(x) is an upper bound on the reward to get to the end of the
path then A* is guaranteed to find the global maximum eventually. An A* algorithm whose
heuristic satisfies this bound is called admissible. One that does not is called inadmissible.
The problem is that admissible A* algorithms are guaranteed to find the best result but
may do so slowly. By contrast, inadmissible Ax algorithms are often faster but may fail in
certain cases.

Karp and Pearl [20] provided a theoretical analysis of convergence rates of A* search.
They studied a binary tree where the rewards for each arc were 0 or 1 and were specified by
a probability p. They then studied the task of finding the minimum cost path. This is an
interesting task but it differs from ours in many respects. From our perspective, it resembles
the task of finding the best path in the noise/clutter rather than detecting a true target in
the presence of noise/clutter.

There are three elements to our proofs. The first is the use of Sanov’s theorem to
put exponential bounds on the probabilities of rare events — this theorem is described in
section (3) and a proof is given in Appendix 1. The second is the onion peeling strategy to
recursively explore the search tree, this is described in section (4). The third is the summation
of exponential series, generated by Sanov’s theorem, which is described in Appendix 2.

3 Sanov’s Theorem

This section introduces results from the theory of types [6] which we will use to prove our
results. We will be particularly concerned with Sanov’s theorem, which we give a proof of
in Appendix 1. To motivate this material we will apply it to the problem of determining
whether a given set of measurements are more likely to come from a road or non-road but
without making any geometrical assumptions about the likely shape of the road. The theorem
assumes that we have an underlying distribution ) which generates a set of N independent
identically distributed (i.i.d.) samples. From each sample set we can determine an empirical
histogram, or type, see figure (3,4). The law of large numbers states that these empirical
histograms (when normalized) must become similar to the distribution @ as N + oc. Sanov’s
theorem puts bounds on how fast the empirical histograms converge (in probability) to the
underlying distribution. Thereby it puts bounds on the probability of rare events.

Recall, see Appendix 1, that Sanov Theorem states:

Sanov’s Theorem. Let yi,ys, ..., yn be i.i.d. from a distribution Q(y) with alphabet size
J and E be any closed set of probability distributions. Let Pr(cf; € E) be the probability that
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Figure 3: Samples from an underlying distribution. Left to right, the original distribution,
followed by histograms, or types, from 10, 100, and 1000 samples from the original. Observe
that for small numbers of samples the types tend to differ greatly from the true distribu-
tion. But for large N the law of large numbers says that they must converge (with high

probability).

Figure 4: Sequences of edge values rendered using four gray levels ranging from light gray
to black. In each pair, one sequence is drawn i.i.d. from P,, = (0.1,0.1,0.3,0.5) and the
other from P,;; = (0.5,0.3,0.1,0.1). Although individual edge values are unreliable, taken
as a whole it is clear that the top sequences are from P,7; and the bottom sequences from
P,,. The Chernoff distance between P,, and P,fsis 0.2311 nats.
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Figure 5: Left, Sanov’s theorem. The triangle represents the set of probability distributions.
Osource 18 the distribution which generates the samples. Sanov’s theorem states that the
probability that a type, or empirical distribution, lies within the subset F is chiefly deter-
mined by the distribution ¢* in E which is closest to ¢ ource. Right, Sanov’s theorem for the
coin tossing experiment. The set of probabilities is one-dimensional and is labelled by the
probability p(head) of tossing a head. The unbiased distribution @ is at the centre, with
P(head) = 1/2, and the closest element of the set E is P* such that P*(head) = 0.7.

the type of a sample sequence lies in the set E. Then:

9-ND("|Q) Jo-ND($"(|Q)
i < PrEe )< (V1) Y, i

where ¢* = argmingep D(¢||Q)) is the distribution in E that is closest to @ in terms of
Kullback-Leibler divergence, given by D(6]|Q) = Z;Zl o(y) log(o(y)/Q(y)).-

This is illustrated by figure (5). Intuitively, it shows that, when considering the chance
of a set of rare events happening, we essentially only have to worry about the “most likely”
of the rare events (in the sense of Kullback-Leibler divergence). Most importantly, it tells us
that the probability of rare events falls off ezponentially with the Kullback-Leibler divergence
between the rare event (its type) and the true distribution. This exponential fall-off is critical
for proving the results in this paper. Note that Sanov’ theorem involves an alphabet factor
(N +1)7. This alphabet factor becomes irrelevant at large N (compared to the exponential
term). It does, however, require that the distribution @) is defined on a finite space, or can
be well approximated by a quantized distribution on a finite space.

Sanov’s theorem can be illustrated by a simple coin tossing example, see figure (5).
Suppose we have a fair coin and want to estimate the probability of observing more than
700 heads in 1000 tosses. Then set E is the set of probability distributions for which
P(head) > 0.7 (P(head) + P(tails) = 1). The distribution generating the samples is
Q(head) = Q(tails) = 1/2 because the coin is fair. The distribution in E closest to @
is P*(head) = 0.7, P*(tails) = 0.3. We calculate D(P*||Q) = 0.119. Substituting into
Sanov’s theorem, setting the alphabet size J = 2, we calculate that the probability of more
than 700 heads in 1000 tosses is less than 2719 x (1001)* < 27%.

In this paper, we will only be concerned with sets £ which involve the rewards of types.



Draft submitted to Artificial Intelligence

These sets will therefore be defined by linear constraints on the types in particular, con-
straints such as ¢ - @ > T, where a(y) = log(Pon(y)/ Porr(y)), v = 1,...,J. (We define
$-@= Z;Zl é(y)a(y)). This will enable us to derive results which will not be true for arbi-
trary sets F. We will often, however, be concerned with the probabilities that the rewards
of samples from one distribution are greater than those from a second. It is straightforward
to generalize Sanov’s theorem to deal with such cases.

Theorem 1. The probabilities that the loglikelihoods of sequence of samples with N
elements from off-road or on-road are above, or below, the threshold T are bounded above
and below as follows:

(N + 1)~ 72 NP@rlIFon) < prigom . & < T} < (N 4 1)727NP(@r[Fon), (4)
(N + 1)7J27ND(¢THPoff) < pr{qgoff .a>T}< (N+ 1)J27ND(¢THPOH), (5)

where ¢r(y) = Pon(y) Py () /Z(T), and N(T) € [0,1] is a scalar which depends on
the threshold T', and Z(T) is a normalization factor. The value of A(T) is determined by the
constraint <5T ca="T.

Proof. We apply Sanov’s theorem setting E,, = {(50" Lo d < T} and Epp = {(50” :
qg"ff -ad > T}. Determining the closest distribution ¢p € Egy, to Py, reduces to constrained
minimization using Lagrange multipliers (v and X):

> ontu)log 510 4+ oY drl) - 1)+ Mdred T, (6)

This can be solved to give ¢p(y) = PJ{/\(T)(y)PO)‘f(P(y)/Z(T) with \(T') being determined
by the constraint ¢ - & = T (recalling a(y) = log{Pon(y)/Pors(y)}). A similar argument

—

applies to P,sy and the same constraint, ¢ - & =T, applies to both cases. Hence results.

We have not yet specified the threshold 7. There are two important natural choices.
The first is based on minimizing the asymptotic error rate of the classification — the rate of
falsely classifying a sequence of on-road samples as coming from off-road and vice versa (i.e.
we give equal weight to the false positives and false negatives),

Corollary 1. The asymptotic error rate is minimized by setting T = 0. The error
rate in this case is determined by the Chernoff information C(P,y,, P,ss), where the Cher-
noff information is defined by the Kullback-Leibler divergence to the distribution ¢S halfway
between P,, and P,rr. More precisely, C(Pyy,, Pyrs) = D(¢%||Pon) = D(¢7||Pors) for the
unique distribution ¢S, of form ¢r(y) = Pon(y)* 2Py (y) ) ) Z(T), which satisfies this
constraint.

Proof. The error rates fall off as 2~ NPOrlFen) gpd 2-ND@rlIPors) = (y) is of form
P;{’\(T)(y)PoAf(?/Z(T) and has only one degree of freedom. As MN(T) increases D(¢r||P,y,)
decreases and D(¢r||P,sf) increases. Therefore there is a unique minimum error rate for T°

such that D(¢%||P,y,) = D(¢%||Pogy), which defines the Chernoff information. Observe that
J c
> 1 97(y) log Pon(y)/ Pogs(y) = 0.
The second natural choice of T corresponds to estimating the probability that the rewards
of sequence of samples from on-road are less than the expected rewards for sequence of samples
from off-road (or vice versa). This gives:
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Corollary 2. The probability that sequence of samples from on-road have lower rewards
than the average reward for off-road sequence of samples is less than (N + 1)727NP(FosslFon)
and greater than (N + 1)772-NP(PossliFon),

Proof. We set the threshold T to be the average reward, —D(P,s¢||P,y,), of a sequence of
samples generated by off-road. The result of Theorem 1 shows that we must set qZT = Pyss
to satisfy the optimization constraint.

The second case has two sequences of samples as input (one each from on-road and off-
road) and the task is to classify them correctly. The best decision rule to to classify the
sequence of sample with higher reward to be on-road and the other to be off-road. Therefore
for this task we only care about the chances that a sequence of samples from on-road will
have lower reward than a sequence of sample from off-road. Our main result is:

Theorem 2. The probability that a sequence of samples from on-road has lower reward
than a sequence of samples from off-road is bounded below by (N + 1)~2/272NB(FonFors) gpd
above by (N + 1) 272NBFonsboss) “where B(P,,, Pyys) = —log{Z; | Polﬁ( )P, 1/2( )}. (N is
the number of elements in each sequence of sample.)

Proof. This is a generalization of Sanov’s theorem to the case where we have two proba-
bility distributions and two types. We define E = {(q;"”, qg"ff) : ¢?0ff ca > q;"” -a}. We then
apply the same strateqy as for the Sanov proof but applied to the product space of the two
distributions Py, Pyrr. This requires us to minimize:

F(@°7,87) = ND(6°|| Payy) + ND(G™|| Pon)

+r > (y) — 1+ D 6™ (y) — 1} +9{e™ - d — ¢ - ay, (7)

where the T’s and «y are Lagrange multipliers. The function f(.,.) is convex in the ¢ and the
Lagrange constraints are linear. Therefore there is a unique minimum which occurs at:

(y)Poff (y) B Pc}nﬂ(y)ngf(?J)

T (y) = 7 (y) = 77 :

(8)

subject to the constraint qﬁ"" a= qﬁ"ff a. The unique solution occurs when = 1/2 (because
this implies ¢"ff* ¢0"* and so the constraints are satisfied.) We define ¢Bh = ¢/\ 11/2) =
P0171/2P1/2/Z[1/2] (“Bh” is short for Bhattacharyya). We therefore obtain:

(N + ]_)72]27N{D($BhHPoff)‘}’D((EBhHPon)} S Pr{(éoff’ 50”) e E}
< (N + 1)2J2*N{D(¢_§BhHPaff)+D(<gBhHPGTL)}_ (9)

We define B(Poy, Pyrs) = (1/2){D(épnl|Poss) + D(Gpnl|Po)}. Substituting in for ¢p,
from above yields B(P,,, Pyrs) = — log{Z; | Polﬁ( )Pl/Q( )}. Hence result.
This result tells us that the order parameter for the second task is 2B(P,,, P,sf). This

is just another measure of the distance between P,, and P,;; and we will refer to it as the

10
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Bhattacharyya distance (because it is identical to the Bhattacharyya bound for Bayes error,
see [21]). Once again the problem becomes increasingly hard as the distributions become
more similar but there is no critical point and no phase transition.

4 Tree Search: A* and pruning

In this section we consider an algorithm which uses an admissible A* heuristic and a pruning
mechanism. (In the subsequent section, we will show that better results can be achieved
using an inadmissible heuristic. But the results in this section are easier to prove and more
intuitive). The idea is to examine the paths chosen by the A* heuristic. As the length of
candidate path reaches an integer multiple of Ny we prune it based on its intensity reward
and its geometric reward evaluated on the previous Ny segments, which we call a segment
block. The reasoning is that few false paths will survive this pruning for long but the target
path will survive with high probability.

We prune on the intensity by eliminating all paths whose intensity reward, averaged over
the last Ny segments, is below a threshold T (recall that —D(P,sf||Pyn) < T < D(P,,||Posy)
and we will usually select 7" to take values close to D(P,,||P,sf)). In addition, we prune on
the geometry by eliminating all paths whose geometric rewards, averaged over the last No
segments, are below T (where —D(U||Pa,) < T < D(Pa,||U) with T typically being close
to D(Pa,!|U)). More precisely, we discard a path provided (for any integer 7):

(z+1)No—1 (z+1)No—1

Pon (yl) 1 PAg(ATZ) ~
log ——= < T, or — log ———+ < T. 10
i—ZZ]\f[] Pogr(yi) No i;vg U(Ax;) (10)

1
No

There are two important issues to address: (i) With what probability will the algorithm
converge?, (ii) How long will we expect it take to converge? The next two subsections put
bounds on these issues.

4.1 Probability of Convergence

When will the algorithm converge to the target? The admissible heuristic means that the
A* algorithm will converge to the path with greatest reward that survives pruning. There
are therefore two types of error to consider : (i) a false path has better reward than the true
path, and (ii) the true path gets eliminated by the pruning.

We analyzed the first kind of errors in our related paper [27] where we put bounds on
these errors in terms of the order parameter K = 2B(P,,||Pys) + 2B(Pa,l|U) — log Q.
Essentially the expected size of the error (measured by the number of false segments on the
path of highest reward) decreases exponentially with K > 0. As K +— 0 the error bounds
we obtain become infinite and at K = 0 there is a phase transition to a regime (K < 0)
where the target is essentially undetectable (because, with high probability) there are many
completely false paths which have higher rewards than the true path).

To quantify the second type of error, we calculate the probability that the target (true)
path survives the pruning. This gives a lower bound on the probability of convergence'.

! An upper bound on the probability of failure is a lower bound on the probability of success.

11
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We choose T large and write the fall-off factors as D(Pr||P,,) = e1(T), D(Pr||Poss) =
D(P,,||P,s) — €2(T') where €,(T'), e2(T") are positive and (&(7),e(T)) — (0,0) as T —
D(P,,||Pysy). Similarly, we choose T to be large and obtain fall-off factors D(Pj||Pa,) =
&(1), D(PIU) = D(Ps|lU) — &x(T).

The pruning rules removes path segments for which the intensity reward r; or the geomet-
ric reward 7, fails the pruning test. The probability of failure by removing a block segment

of the true path, with rewards r7, 7}, is Pr(r; <T or r) < T) < Pr(rl < T) + Pr(rl <
T) < (No+1)M2-Noer(T) 4 (Ny41)Q2-Noer(T) \where we have used Theorem 1 to put bounds
on the probabilities. The probability of pruning out any /Ny segments of the true path can
therefore be made arbitrarily small by choosing T, T so as to make Nye; and Nyé; large.

It should be emphasized that the algorithm will not necessarily converge to the exact
target path. The admissible nature of the heuristic means that the algorithm will converge
to the path with highest reward which has survived the pruning. It is highly probable that
this path is close to the target path and results reported in [27] enable us to quantify this

claim.

4.2 Bounding the Number of False Paths

Suppose we face a Q-nary tree. We can order the false paths by the stage at which they
diverge from the target (true) path, see figure (6). For example, at the first branch point
the target path lies on only one of the ) branches and there are () — 1 false branches which
generate the first set of false paths F;. Now consider all the () —1 false branches at the second
target branch, these generate set Fy. As we follow along the true path we keep generating
these false sets F;. The set of all paths is therefore the target path plus the union of the
F; (i =1,...,N). To determine convergence rates we must bound the amount of time we
spend searching the F;. If the expected time to search each Fj is constant then searching for
the target path will at most take constant - N steps.

A key concept here is the onion-like structure of the tree representation, see figure (6).
This structure allows us to classify all paths in terms of sets Fi, Fy, Fj, ... which depend on
where they branch off from the true path. Paths which are always bad (i.e. completely false)
correspond to Fj. Paths which are good for one segment, and then go bad, form F, and so
on. Our previous results have compared the properties of paths in F} to those of the true
path. To understand the probabilities of paths in F; relative to the true path, we simply
have to peel off the first layer of the onion (i.e. remove the first arc of the true path) and
the comparison of the rest of the true path to F; reduces to our previous result for F;. Thus
our results for F} can be readily adapted to Fj, F3,.... Observe that paths in F; share the
first (¢ — 1) arcs with the true path, by definition, and hence have the same partial rewards
for these arcs. Therefore we often only need to compare the rewards for the remaining arcs.
(Variants of this argument will be used throughout the paper.)

Consider the set F; of false paths which leave the true path at stage :. We will apply
our analysis to block segments of F; which are completely off the true path. If (i — 1) is an
integer multiple of Ny then all block segments of F; will satisfy this condition. Otherwise,
we will start our analysis at the next block and make the worse case assumption that all
path segments until this next block will be searched. Since the distance to the next block is

12
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Figure 6: Left: We can divide the set of paths up into N subsets F},..., Fiy as shown here.
Paths in F} are completely off-road. Paths in F, have one on-road segment and so on.
Intuitively, we can think of this as an onion where we peel off paths stage by stage. Right:
When paths leave the true path they make errors which we characterize by the number of
false arcs. For example, a path in F; has error N, a path in F; has error N + 1 — 4.

at most Ny — 1, this gives a maximum number of Q™°~! starting blocks for any branch of Fj.
Each Fj also has @Q — 1 branches and so this gives a generous upper bound of (Q — 1)Q"o !
starting blocks for each Fj.

For each starting block, we wish to compute (or bound) the expected number of blocks
that are explored thereafter. This requires computing the fertility of a block, the average
number of paths in the block that survive pruning. Provided the fertility is smaller than one,
we can then apply results from the theory of branching processes to determine the expected
number of blocks searched in F;.

The fertility ¢ is the number of paths that survive the geometric pruning times the
probability that each survives the intensity pruning. This can be bounded (using Theorem
1) by ¢ < ¢ where:

45— (ONo Qo—No{D(Pa4||U)—é2(T)} Mo—No{D(Pon||Pos)—e2(T)}
Gg=Q"(Ny+1)%2 (No +1)"2
_ Q+Mo—No{D(Pou||Posf)—H(Pag)—e2(T)—é2(T)}
(Np +1)@+M2 : (11)

where we used the fact that D(Px,||U) = logQ — H(Pa,).

Observe that the condition ¢ < 1 can be satisfied provided D(P,,||P,ss) — H(Pag4) > 0.
This condition is intuitive, it requires that the edge detector information, quantified by
D(P,,||P,ss), must be greater than the uncertainty in the geometry measured by H(Pag).
In other words, the better the edge detector and the more predictable the path geometry
then the smaller ¢ will be.

We now apply the theory of branching processes to determine the expected number of
blocks explored from a starting block in F; ;> >° ¢* = 1/(1 — ¢). The number of branches
of F; is (Q — 1), the total number of segments explored per block is at most Q™°, and
we explore at most Q™o~! segments before reaching the first block. The total number of
F; is N. Therefore the expected total number of segments wastefully explored is at most

N(Q — 1)1%11622%’1. We summarize this result in a theorem:

13
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Theorem 3. Provided § = (Ny + 1)9tM2-NFK < 1 where the order parameter K =
D(Pon||Poss) — H(Pay) — €2(T) — éx(T'), then the expected number of false segments explored
is at most N(Q — 1)1%@@2%71'

Comment The requirement that ¢ < 1 is chiefly determined by the order parameter
K = D(Py||Pos) — H(Pa,) — €(T) — é(T). Our convergence proof requires that K > 0
and will break down if K < 0. Is this a limitation of our proof? Or does it correspond to a
fundamental difficulty in solving this tracking problem?

In more recent work [27] we extend the concept of order parameters and show that they
characterize the difficulty of visual search problem independently of the algorithm. In other
words, as K +— 0 the problem becomes impossible to solve by any algorithm. There will
be too many false paths which have better rewards than the target path. As K — 0 there
is a phase transition in the ease of solving the problem (see Karp and Pearl [20],[14] for an
earlier example of a phase transition of this type).

5 Tree Search: A* and Inadmissible Heuristics.

We now consider the more important case of inadmissible heuristics. The convergence results
for these cases are harder to prove than those in the previous section. But the convergence
rates are better (e.g. smaller convergence factors).

Our main result of this section is to prove convergence of A* algorithms with inadmissible
heuristics. We prove that convergence is achieved with O(N) expected nodes opened and we
put bounds on the expected errors of the solutions. We also prove that the expected sorting
costs per node explored are constant (i.e. independent of N).

5.1 A* Convergence for the Bhattacharyya Heuristic

We now want to consider a traditional A* search strategy using a heuristic function but no
pruning. In this section, we will formulate the problem for any heuristic and then obtain
bounds for a special case, which we call the Bhattacharyya heuristic (again because it is
directly related to the Bhattacharyya bound). In the following section, we will generalize
our results of other inadmissible heuristics.

For a node W), at distance M from the start, we let g(W),,) be the measured reward
and h(WW),) is the heuristic function. The A* algorithm proceeds by searching the node in
the queue for which the combined reward f(Wus) = g(War) + h(Way) is greatest. How many
nodes (or arcs) do we expect to search by this strategy? And what are the expected errors
in our solutions?

The reward to reach Wy, is just the reward of the log-likelihood data and prior terms
along the path from the start to W)y,. We define the heuristic reward h(Wy) = (N —
M)(H;, + Hp) where H;, and Hp are constants (H;, and Hp are heuristics for the likelihood
and the prior respectively). As we will show, there are optimal values for H;, and Hp to take
and convergence will break down for H;, and Hp outside a specific regime.

Observe that a path segment will be visited only if the reward to get to it (including its
heuristic reward) is sufficiently high. More precisely, if a segment n of a false path is searched
then this implies that its reward is better than the reward of at least one point on the target

14
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path. This is because the A* algorithm always maintains a queue of nodes to explore and
searches the node segment with highest reward. The algorithm is initialized at the start of
the target path and so an element of the target path will always lie in the queue of nodes
that A* considers searching. Hence a node will never be explored if its reward is lower than
all the rewards on the target path segments.

Since the length of all possible paths is constant we can ignore the constant factor N(Hy+
Hp) and the heuristic will then merely penalize path segments which have been tested. Then
a false path of length n and a true path of length m will have effective rewards denoted by
the random variables S,r;(n) and S, (m):

ym Pag(Tip1 — ;)
S, log =7 o+ S {lo — Hploss,
rr(n E {log Pors () LYoss E :{ T pe— Plofs

Z{l Lon(y) ~Hp) 0n+2{10 AG(%“ ) — Hplon, (12)

Pos(Ya;) U(wipr — ;)

where the subscripts of f and on are used to denote false and true paths respectively (paths
with a mixture of true and false segments will be dealt with later).

We now define types $°ff, 1;"”, q;"”, 1/70” for false and true road samples with q?correspond—
ing to the data and 1/7 to the prior. These types are normalized so that their components sum
to 1, i.e. Z 1Oy =1, Z ¥, = 1. The types will be computed for samples of variables
lengths n, m. These lengths will be clear from the context so we will not label them explicitly
(i.e. we Will not use notation like ¢, to denote types taken from n samples).

Therefore we express the rewards of two sequences S,ss(n) and S, (m) by:

Sopp(n) = n{¢®! @ — Hp} +n{y® - 3 — Hp},
Son(m) = m{¢™ - & — Hy,} + n{d”" - § — Hp}, (13)

where a(y) = log(Pun(y)/Poss(y)) and 5(dx) = log(Pay(0x)/U(dx)).
Recall that if a segment n of a false path is searched then its reward must be better than

at least one point on the target path. This means that we should consider Pr{3m : Sy;;(n) >
Son(m)}. This, however, is hard to compute so we bound it above by > Pr{S,ss(n) >
Son(m)} (using Boole’s inequality).

Our first result is Theorem 4, which is proven using Sanov’s theorem (including the
use of constrained optimization to find the fall-off coefficients) and results for the sums of
exponential series. The main point of this result is to show that the chance of an off-road
path having greater reward than any true road path falls off exponentially with the length
of the off-road path.

We first define two sub-order parameters Uy = D(¢pp||Poss) + D(¥pa||U) and ¥, =
D(é5n!|Pon) + D(pn||Pac). These parameters will determine the convergence and error
rates of the algorithm by means of the two functions:

(v} )
C\¥) = {5y + W} Gl = (g + 20 W) (14
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~
—_

where =, = are defined in Appendix 2. The order parameter for the problem is K = ¥; +
U, — log @) which, as was shown in [27], is the quantity which depends whether a solution to
the problem can be found by any algorithm.

Theorem 4. The A* algorithm, using the Bhattacharyya heuristic H; = Q;Bh - a and

Hp =g - 3, gives:

Pr{Soss(n) > Son(m)} < {(n+1)(m + 1)}/ 202 (mhmmbs), (15)

Moreover, the probability of a particular false path segment being searched falls off, to first
order in n, as Cy(W9)2 "Y1 where n is the number of segments by which this path segment
diverges from the target path.

Proof. This first part of the proof is again a generalization of Sanov applied to product
distributions, see Theorem 2. The new twist is that we have different length factors n and m
and the heuristics. But for the Bhattacharyya heuristics this will make no difference. (We
deal with the more general heuristics later in subsection (5.2). Define:

B = (G4, 909, o0, ) - Hy 4§ H2 2 @ Hy G H
(16)
Applying the strategy from Theorem 2, we must minimize:
F(@°1 01 67 ) = nD(§°7 || Pogg) + nD(0°|[U) + mD(67|| Pon) + mD (4" Pac)
—i—ﬁ{Z gl — 1} + TQ{Z eIt — 1} + 7'3{2 ¢ — 1} + 7'4{2 o — 1}
t{m{o™ @~ Hy+ 9§ - Hyy - n{@*! @ Hy + 90§ HY(T)

where the T’s and vy are Lagrange multipliers. As before, we know that this function f(.,.,.,.)
is convez so there is a unique minimum. Observe that f(....) consists of four terms of form
nD(g{;"ffHPoff) + {1} — nyg®t - @ which are coupled by shared constants. These terms
can be minimized separately to give:

1—y 1—y p7 _ 1—
&off* _ P‘;ynpoff Tonsk _ Pon ’YPOff Tof fx _ PXGUI K 7,/;0”* _ F)AG’YUWy (18)
Z[1—A] Z Zo[1 =] Zyly)

subject to the constraint given by equation (16).
As before, we see that the unique solution occurs when v = 1/2. In this case:

Gt -a = Hy = ¢ -a, - f = Hy =g B (19)

The solution occurs at ¢Z‘Bh, JB,Z (5/\71(1/2) and Juﬂ(l/z)). Hence the first result.

We must now sum over m to obtain the bound that P{3m : S,sp(n) > Sen(m)}. For
large m, the alphabet terms are unimportant and we just need to sum the geometric series.
However, we must add extra terms Z(e, Wy) to correct for the alphabet factors for small m,
see Appendix 2 for details. Hence

Pr{3m : S,rr(n) > Sen(m)} < (n+ 1)27+2R 0 (Wy)2 Y1, (20)
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We can now state our main result about the convergence of A* using the Bhattacharyya
heuristic. Our result, Theorem 5, builds on Theorem 4 by adding the onion peeling argument
combined with the summation of exponential series.

Theorem 5. Provided ¥, > log @), the expected number of searches is O(N) in the size
of the problem and is bounded above by Cy(Vy)C1 (¥ — log Q)N. Moreover, the expected
error in convergence is bounded above by C1(Ws)Cy(W; —log @), which is small, independent
of the size N of the problem, and decays exponentially with Wy —log N. The order parameter
K=39,+9, logQ.

Proof. We use the onion peeling strategy to express the expectation in terms of the
expected number of nodes searched in Fi, Fy, Fs..., Fy. By the structure of our problem the
expectations will be bounded by the same number for all F;. Therefore the bound is linear
provided the expectation for Fy is finite. More precisely, we get Zi]\il{l + |F;|}, where |Fj|
15 the cardinality of F;.

Theorem 4 gives us a bound that a specific path of length n in Fy will have higher reward
than any subpath of the true path (a subpath must start at the beginning of the target path).
We determine that the expected number of paths of length n, with rewards higher than any
subpath of the target path, is bounded above by Cy(Vy)(n+1)>/+2@Qn2 %1 see equation (20),
where Cy (V) is specified by equation (14). This can be summed over n again taking care with
the alphabet factors, see Appendiz 2 to obtain Cy (Vo) { —=mrmrar + (6 (1 —logQ))} =
C1(¥y — log Q)C1(Vy). This can always be summed provided Wy > log Q. Our first result
follows.

To put bounds on the expected errors of the algorithm we measure the error in terms of
the expected number of off-road arcs. We use the onion peeling strateqy again and consider
the probability Pr(n) that A* will explore a path in Fyy1_, to the end, for any n, instead of
proceeding along the true path. If this happens we will get an error of size n. The expected
error can then be bounded above by Y " Pr(n)n

We want to put an upper bound on Pr(n). Observe that a path in Fy 1, will be followed
to the end only if its reward is greater than the heuristic reward along the true path, or the
reward of one arc of the true path plus the heuristic reward for the remainder, or the reward
for two true arcs plus the heuristic reward for the rest, and so on. We can apply S(mov to get
probability bounds for these by using the constraints n{¢°ff a+w"ff ﬂ} > m{¢0" &Jrz/)“" ﬁ}—i—
(n—m){H;+H}}, wherem = 0, ...,n is the number of arcs of the true path that are explored.
These constraints, of course, are the same constraints n{qg"ff a et f - H; — Hy} >
m{<50" -+ 15"” . 5— H; — H}} which we used in Theorem 4 above. Therefore, by Boole’s
inequality,

Pr(m) < Q3 -+ 1)(m + 1} x 2 b 1)

m=0

As before, we can sum the series with respect to m, see Appendiz 2, to obtain:

Pr(n) < Cy(Wy)(n + 1)2/+2Qg n{¥i-log @} (22)
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Figure 7: Left, D(¢y||P,,) is a convex function of T’ with its minimum at T’ = D(P,,||Pysy)-
Right, similarly D(Py||P,ss) in convex with minimum at 7" = —D(Py¢|| Pon)-

The expected error is then bounded above by > >° nPr(n). The dominant, exponential
terms, can be summed as before (see Appendiz 2) yielding:

< Error >< Cy(¥; — log Q)C1(V,). (23)

5.2 Alternative Heuristics

Our results in the previous section used the Bhattacharyya heuristics H;, H},. These choices

of heuristic were special in that they enabled us to put bounds on the probability of

Pr{S,sr(n) > Sy, (m)} with fall-off factors which depend only on D($3h||Pon) and D(z/thHPAG).

But these results leave several unanswered questions. Are these specific heuristics optimal

in some sense? Are our results stable to small changes in the heuristic values? This section

answers these questions by obtaining convergence results for other values of the heuristics.

These new results show that the Bhattacharyya heuristics lead to faster convergence rates.
These proofs are complicated because the sets E corresponding to the rare events, and

the exponential fall off rates, depend nontrivially on the on- and off- path lengths m and n.

They requires us to first prove a convexity result concerning how the fall-off factors, such as

D(¢7||P,y), vary with the threshold T. This result, Theorem 6, is illustrated by figure (7).
Theorem 6. Let ¢r(y) = Pon " (y)Pors) (¥)/Z(T), then D(ér]|Pon) and D(Pr||Pyyy)
are conver functions of T which attain minima of zero at T = D(Ppy||Pops) and T =

—D(P,ss||Py) respectively, see figure (7). Moreover, D(¢7]|P,n) = D(&THPOff) —T.
Proof. The statement D(¢r||P,,) = D($T||Poff) — T follows from the identity:

- or(y) , 7 o1(y) Pors(v)
2 onlosly 5} =2 dr sty o 0y 2y

—

By differentiating equation (24) we observe that the equations (28) are consistent. It
therefore is sufficient to prove the first equation.
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Differentiating D(&THPOH) =2, ¢TT( ) log 3 (( )) yields:

d y d¢T N Br(y) | o)
D67/ Pun) Z ) +Z _; i 8p oy %)

because ), dd’T =d/dT}_, or(y) = 0. Using ¢r(y) = P;{/\(T)(y)Poff (y)/Z(T) we re-

erpress thze (19

d NGy P Aér(y) | Ponly)
dTD(¢T||Pon) - Z dT 1 g Po)‘n(T)(y)Z(T) - )‘(T) Z dT 1 g Poff(y). (26)

y y
The Lagrange term in equation (6) implies >y q;T( ) log 2 e (( )) = T and differentiating
yields:
d¢ P,
Y dr Poff (y)
Combining equations (26) and (27) gives the result:
d d
DG Po) = ~A(T), D@l Pogs) = 1= N(T) (28)

We can solve explicitly for N(D(P,,||Pyr)) = 0 and N(—D(Pyyys||Pon)) = 1. 1t is clear
that as the threshold T' decreases then A(T) decreases because br becomes closer to P,y
Hence d\/dT < 0. The result follows.

Armed with this theorem, we now proceed to prove results about convergence rates. We
first define a function p(7") which is the analogue of A(T) for Pa¢ and U. Observe that there
is an ambiguity in H;, and Hp because only their sum, H; + Hp, appears in the rewards.
To remove this ambiguity we impose the constraint that A(H.) = u(Hp). We then define
H;, Hp by the conditions A(H) + A(Hy) = 1 and pu(Hp) 4+ p(Hp) = 1.

We start by proving an analogue of the first part of Theorem 4. This shows that the
chance of an off-road path of length n having greater reward than a true road path of length
m falls off exponentially with a factor g(m;n). Unfortunately this factor is no longer linear
in m and n as it was for the Bhattacharyya heuristic (this linearity enables us to sum the
resulting series easily). Instead we need to bound g(m;n) below by a function of form
c1m + con (for some constants c¢q, ¢z). This requires the use of Theorem 6 and an analysis of
how g(m;n) varies with n, m, see figure (8).

Theorem 7.

Pr{Seps(n) = Son(m)} < {(n+1)(m+1)}>/+2@27otmn), (29)
where:

g(min) > n{D(b, || Puys) + Dl 1)} +m{D(G1, 1P + Do |Pac)}. if Hy > H,
g(min) > n{D (b, |Pogs) + D, |0V} + m{ D4, |Po) + Dlwog, || Pac)}, if Hy < H.(30)
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Figure 8: This figure illustrates the three cases of the argument in Theorem 7. The vari-
ables T, Ty, Wy, Wy are functions of m,n and their values determine g(m;n). If we use the
Bhattacharyya heuristic then 71 = 175, = H; and W, = W, = H}, for all values of m,n.
They can therefore be thought of as “effective heuristics” and it is necessary to understand
their “dynamics” as m,n vary. In Theorem 7, we show that they are restricted to lie in the
ranges illustrated by the left-most column (the configurations in the centre and rightmost
column are inconsistent with the three constraints (32,33) which enables us to put bounds
on g(m;n).
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Proof. We start by following the proof of Theorem 4 but with the definition of set F
changed to allow for different heuristics Hy,, Hp. We minimize f(.,.,.,.) and obtain similar
expressions for ¢p, = 11 by = oI by = ¢ by, = YO except that the minimiza-
tion no longer occurs at v = 1/2. The fall-off rate is determined by:

g(m;n) = n{D(¢n || Poss) + D(w, [[U)} + m{D(¢m,||Fon) + D(dws||Pac)}, (31)

where
m{TQ-I-WQ*HL*HP}:n{Tl"‘Wl*HL*HP}a (32)
and

MT) + MTo) =1 = p(Wh) + p(Wy),
MTy) = (W), MT) = p(Wa). (33)

Recall, that to remove the ambiguity in Hy and Hp we imposed the constraint that
NHL) = p(Hp). We also defined Hy, Hp by the conditions AN(H.) + A(H;) = 1 and
w(Hp) + p(Hp) = 1 which implies that \(H;) = pu(Hp).

There are two situations to consider: (i) Hy, > Hj, which implies Hp > Hp (this follows
from the equations at the end of the previous paragraph plus the fact that X(.) and p(.) are
monotonically decreasing functions), and (ii) H;, < _HL, which implies Hp < Hp.

We claim, in case (i), that Ti, Ty € [I:IL,HL} and Wy, Wy € [ﬁp,Hp], see figure (8).

Moreover,

g(msn) > n{D(¢y, ||Poss) + D(Vg, [[U)} + m{D(dm, [|Pon) + D(Vu,p||Pac)}. (34)
Moreover, in situation (ii) we claim that Ty, T, € [Hyp,, ﬁ[] and Wy, W, € [Hp, I:Ip}, and

g(m;n) = n{D(@nu || Poss) + D(bup||U)} + m{D(djy, [|Pon) + Dy, [ Pac)}- (35)

We prove the results only for situation (i) because the proofs for situation (ii) are exactly
analogous. The condition N(Ty) + A(Ty) = 1 implies that there are only three possible cases:
either both Ty, T, € [I:IL, Hy| or, using the monotonicity of N(T), that Ty > Hy, and Ty < H;,
or Ty < ﬁL and Ty > Hy. The first case will ensure that Wy, W, € [I:IP,HP} which solves
the problem. The second requires that Wi > Hp and Wy < I:Ip but this is inconsistent with
the requirement that m{Ty, + Wy — H;, — Hp} = n{T} + Wy — H;, — Hp} (because the left
hand side is negative and the right hand side is positive). Similarly, the third case implies
that Wy < Hp and Wy > Hp which again contradicts the equality. Thus the only possible
situation 1s the first case.

Moreover, as n — oo, we have Ty — H;, Wi — Hp, Ty — I:IL,WQ > I:Ip. (This is
because Ty < Hy, and Wy < Hp so as n +— oo we have Ty + Wy — H;, — Hp — 0).

Given this result, it is now straightforward to prove the analogues of the second half of
Theorem 4 and of Theorem 5 (using almost exactly the same proofs). More precisely, we
first prove that the chance of an off-road path having greater reward than any part of the
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true road path falls off exponentially with the length of the off-road path. Then we obtain
the rate of convergence and an upper bound on the expected error.

Theorem 8. Let W) — D6y, ||Poys) + D0, |[U), W5 = D(G, || Pon) + D(Gp || Pac),
then the probability that an off-road path has greater reward than any on-road path is bounded
above by:

Pr{3m : S,;5(n) > Son(m)} < C(Wy)(n 4 1)>/+2Q2n¥1, (36)

and, provided U, > log Q, the expected number of searches is O(N) in the problem size N and
18 less than C’l(\ifg)Cl(\ill ~logQ)N. The expected error is bounded above by C’l(\ifg)CQ(\ill —
log Q), which is independent of N and decays exponentially with T, — log N. The order
parameter K = U, + Uy — log ().

Proof. We adapt the proofs of Theorems 4,5 but replacing Vi, Wy with \ill, W,

5.3 How to Sort the Queue

We have shown that the expected number of nodes searched is linear in N. But the con-
vergence rate of the algorithm will depend on sorting the queue of nodes that we want to
expand. After all, if we have order N nodes in the queue then we may have to spend O(log N)
time searching the queue to determine which node to expand.

We now show that this may not be necessary and the expected search time for each
step is constant. To see this, let us use a simple linked list data structure where we order
the nodes in the queue according to their rewards (instead of a more sophisticated data
structure, like a heap see, for example, [10], [5]). By our previous theorems, the queue will
contain, on average, order N elements. A* proceeds by expanding the top node and must
adjust the queue to accommodate its children. Provided we can place the children in their
correct position in the queue by only looking, at most, at a constant set of queue elements
then the expected search time is constant.

How bad can the children of the best node be? The worst incremental reward they can
get will be a negative number. It is convenient to represent this as —A, where A is positive
and where —A = min, log P,,(y)/Poss(y) + min, log Pa¢(z)/U(z) — H;, — Hp.

We wish to put bounds on the expected number of nodes in the queue with rewards which
are smaller by at most A than that of the best node. We do not know the reward of the best
node, but we do know that there is always a true path segment (i.e. it consists entirely of
on-road arcs) in the queue, whose length we can call n. It therefore suffices to put bounds
on the expected number of paths in the queue with rewards greater than the reward of the
on-path of length n minus A.

This can be done by a slightly more complicated variant of the proofs of Theorems 7 and
8. We consider the case when H; > HL and Hp > Hp (the alternative case can be solved
by adapting the following argument). Suppose the longest true partial path in the queue is
of length n and has reward r!. We must consider the probabilities that paths in Fy, ..., F},
have rewards higher than 7" — A. (We do not need to consider paths in F;, i > n because
they involve children of nodes in the queue and so cannot be in the queue.) Applying the
onion argument, for each m < n, we must bound the probability that any off-path of any
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length has reward higher than the true reward for n arcs minus A. Following the standard
application of Sanov’s theorem, we define the set:

E = {(§1, 41,8 o) - m(@°1 - @+~ Hy = Hp) + A > (@™ @ + 4™ - § — Hy — Hp)}.
(37)

Following the proof of Theorem 7 this gives thresholds: T, T,, Wi, W, (as before, these
thresholds are functions of n and m), where:

m(Tl+W1*HL*HP)—FA:TL(TQ—FWQ*HL*HP), (38)
M) + AMT) =1, p(Wy) + p(Wa) =1, MTh) = p(Wh), MT2) = p(W). (39)

The fall-off depends on

g(n:m) = m{D(r,||Poss) + D [|U)} + n{D (b1, ]| Pon) + D(Whws||Pac)}.  (40)

Now, again following Theorem 7, we would like to put lower bounds on g(n : m). For
Theorem 7 we were able to prove that 1,7 € [ﬁL,HL] and Wy, Wy € [flp,Hp] (for the
situation where H; > I:IL and analogous results hold for the situation with H;, < ﬁ;) The
A term prevents these results from being true. However, for large enough n or m the A
term becomes negligible and we will prove that T),T, € [I:I; — ¢, Hy, + €| and W, W, €
[flp — ¢, Hp + €. These contain the most important terms and, as we will show, make only
a constant contribution to the expected sorting cost. The contributions for small m and n
are, of course, also constant.

We first show, that for any fixed n, the thresholds T}, W; increase monotonically with
m and tend to Hp, Hp as m +— oo and, similarly, Ty, Wy decrease monotonically with m
and tend to Hy, Hp. From A(T}) = u(W)), see equation (39), and the monotonicity of the
functions A(.) and wu(.), we see that the coupling between 7} and W, means that they have
to increase, or decrease, together. Similarly, 7, and W5 must either decrease, or increase,
together. By equation (38), we see that at m = 0 we have T5(0) + W5(0) = H, + Hp + A/n
which implies, by equation (39), that T} (0) + W, (0) < Hy, + Hp. Equation (38) enforces that
T, — Hyp, Wiy — Hp as m — oc which implies that T5 — ﬁL and Wy — ﬁp. Therefore,
we see that 77 + W; increases overall from m = 0 as m — oo and conversely T, + W,
decreases. But are these changes monotonic? From equation (38), we see that provided
T,+W, < Hr+Hp then it is inconsistent for 77 and W to decrease and T5 and W, to increase.
However, it is impossible for T} + W, > H;, + Hp because, by equation (38), this would imply
that Ty + Wy > Hy, + Hp (recall that A > 0) which is inconsistent with equations (39). So
we conclude that the only possibility is for 77 and W; to increase monotonically and 75 and
W3 to decrease monotonically.

Now select a number Ny, chosen so that Ny(e) > A/e, and let n > Ny. Then for m = 0,
we see that Ty < Hy, + € and Wy < Hp + € (this follows from equations (38,39)). Moreover,
Ty > H; —éand W, > Hp — ¢ (where € is defined by equation (39)). As m increases T}, W,
increase monotonically to H;, Hp and T5, W5 decrease monotonically to fIL, I:Ip. Therefore
we have:

g(m :n) > m{D(Gg, _o||Poss) + D, _o|[U)} + n{D(Su, sl Pon) + D(bprpi| Pac)} ¥ > No(e),
(41)
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which ensures that the fall-off factors are bounded below for large n.

We now deal with the case of small n (i.e. n < Ny(€)) and large m. We claim that there is
a specific value M, such that for m > M, we have T}, T, € [I:IL, Hy] and Wi, W, € [ﬁp, Hpl,
in which case we can use the same bounds for g(m;n) as above (see equation (41)). This
claim is proven by setting My = A/(H,+ Hp — H;, — Hp) and substituting into equation (38)
to obtain A(Ty + Wy — H, — Hp) = n(Ty + Wy — H, — Hp)(H, + Hp — H, — Hp). The
consistency conditions, imposed by equation (39), mean that this equation’s only solution
is Ty = ﬁL, W, = ﬁp, Ty = Hy, and Wy = Hp (all other possibilities can be shown to
be inconsistent using equation (39). The monotonicity increase of 17, Wi, and decrease of
Ty, W,, ensure that, for m > M, the T}, T, € [ﬁL,HL] and W, W, € [HP,HP].2

The final situation is when n < Ny(¢) and m < My. This is a finite case so we do not need
to obtain bounds. We can simply exhaustively count the number of arc segments. (This is
extremely conservative).

We now put all these results together. Let n be the length of the true path segment in the
queue (by the nature of A* there can only be one such true path segment in the queue at any
time). The expected number of queue members with rewards higher than the true segment
minus A is obtained by summing over the possible segments in Fy, Fy, ...., F;. We can deal
with the cases m < My and n < Ny(e) by exhaustive counting which yields a finite number.
For each n < 7 we can use the bounds given by equation (41) and apply the arguments from
Theorem 7 to sum over m for fixed n obtaining a term which decays exponentially with n.
Finally, we can apply the arguments from Theorem 8 to sum over n. The exponential decay
factor means that this sum will converge for any value of 7 (even as n — oc). Hence we get
constant expected sorting costs.

We summarize this result as a theorem:

Theorem 9 The expected sorting rate per node is constant and independent of the size
N of the problem.

6 Conclusion

Our analysis shows it is possible to track certain classes of image contours with linear ex-
pected node expansions (and linear expected sorting time per node). We have shown how
the convergence rates, and the choice of A* heuristics, depend on order parameters which
characterize the problem domain. In particular, the entropy of the geometric prior and the
Kullback-Leibler distance between P,, and P,s; allow us to quantify intuitions about the
power of geometrical assumptions and edge detectors to solve these tasks. Not surprisingly,
the easiest target curves to detect are those for which the edge detector is most informative
and the prior geometric knowledge most constraining. Our analysis allows us to quantify
these intuitions. See [18] for analysis of the forms of P,,, P,s; arising in typical images.
Our more recent work [27] has extended this work by showing that similar order pa-
rameters can be used to specify intrinsic (algorithm independent) difficulty of the search

2Observe that M becomes infinite if we use the Bhattacharyya heuristic (i.e. when Hj = Hj, and
Hp = pr). This is because the regions [ﬁL,HL] and [ﬁp,Hp] shrink to points H; and Hj and the T’s
and W'’s only reach them asymptotically. This requires a modification of the proof to obtain bounds on M
for which max{|Ty — Hj|,|W1 — H}|,|T» — H}|,|W2 — Hj |} < €.
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problem and that phase transitions occur when these order parameters take critical values.
Fortunately, the proofs in this paper break down at closely related critical points. Therefore
A* algorithms are an effective way to solve this problem in the regime for which it can be
solved.

As shown in [25] many of the search algorithms proposed to solve vision search problems
[19],]2], [11] are special cases of A* (or close approximations). We therefore hope that the
results of this paper will throw light on the success of the algorithms and may suggest
practical improvements and speed ups, see [5] for promising preliminary results.

Crucial to our analysis has been the use of Bayesian probability theory both to determine
an optimization criterion for the problem we wish to solve and to define the Bayesian en-
semble of problem instances. Analysis of the Bayesian ensemble led to the definition of order
parameters which characterized the difficulty of the problem. It will be interesting to com-
pare our results with those obtained by [4],[23] for completely different classes of problems
and using different techniques. This is a topic for further research.
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7 Appendix 1: The Theory of Types

This appendix derives the basic concepts and mathematical machinery that we will need to
prove our results.

For concreteness, we will assume that we dealing with the likelihood function terms only.
In other words, we are only concerned with the measurements of the local road detectors
and we ignore any knowledge about the likely geometrical configurations of the road.

We have a sequence of samples § = y1, o, ..., yy of the responses of the road detector.
The optimal tests for determining whether the samples come from P,, or F,;; will depend
on the log-likelihood ratio® (see the Neyman-Pearson lemma [6]):

3This can be thought of as the maximum likelihood test between two hypotheses which are equally likely
a priori.
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N

lOg{ Pon(yla ----yN) } _ lOg{H Pon(yi) } _ Zlog{ Pon(yi) } (42)

Pors(y1, --yn) “ L Poss(yi)” =7 Popp(yi)

The larger the log-likelihood ratio then the more probable that the measurement sample
¥ = (y1,Y2, ..., yn) came from the on-road rather than off-road (if the log-likelihood ratio
is zero then both on-road and off-road are equally probable). But we need to consider
the probabilities that a random sample from off-road has higher log-likelihood ratio than a
sample from on-road. This requires us to put probabilistic bounds on the probabilities of
unlikely events. This can be done by adapting the theory of types, see [6].

Any sample § = (1, ¥y, ..., yn) determines an empirical histogram, or type, q;(gj') which
is an J-dimensional vector whose components ¢, ..., ¢; are the proportions of responses ¢;
which take values 1, ..., J. (i.e. ¢(y) = (1/N) 32N, 8,.,). The key point is that all the relevant
properties of the sample will depend only on its type (in view of the i.i.d. assumption). This
includes the result of the log-likelihood test, see equation (42), which we can re-express as:

log{

(Né(y)) log{ Pon(y)/ Poss(y)}. (43)

Pon(yr, - yn) |
)2

J
Posi(yr, - yn o

It is important to observe that this is simply the dot-product, ng- a, of the type q; with
a weight vector @ (for the equation above, @ has components a(y) = log{ P, (y)/Pors(y)})-
Most of the quantities that we are concerned with, such as the rewards of paths and the
convergence rates of algorithms, will depend on dot products of this form. The theory of
types proceeds by putting probabilistic bounds on types which can then be used to put
probability bounds on the dot products. For the results which follow it is convenient to
divide out by the size factor N. We therefore consider the average of the log-likelihood with
respect to the sequence of samples i.e. (1/N) SN log P, (y:)/ Poss(ys).

There are five key lemmas that we will use about types [6]:

Lemma 1. The total number of types < (N+1)7. (This is a very generous upper bound
which occurs because each component of the type vector q; can take at most N + 1 possible
values).

Lemma 2. The probability Q" (i) for any sequence of samples ¢ drawn i.i.d. from Q(y)

—

depends only on the entropy H(¢(7)) of the type of the sequence and the Kullback-Leibler

—

distance D(¢(7)||Q) between the type and the distribution @), and is given by:

QN () = F(&(gj)) — 9 N{H(e@))+D($]Q)} (44)

(The probability of the sequence can be expressed as H;Zl Q(y)N¢(y) — QN Xy 6(y) log Qy)
and we use H(¢) + D(¢||Q) = — Z;Zl #(y)log Q(y) to obtain the result.)
Lemma 3. The probability P(q;) that a sequence has type ¢ is given by:

: (45)
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where ‘T Z 7d—a 1 19 the number of distinct sequences with type qﬁ (This follows

from P(¢) = >5053w) QY () and substituting equation (44)).
Lemma 4. We can bound the size of each type class by [6]:

oNH()

< <71 ‘ < oNH(@), 46
(N+1)J—‘ (9)] < (46)
(Not surprisingly, the larger the entropy H((E) the bigger the type class.)

Lemma 5. We can put a bound on P(¢) by combining Lemmas 2, 3, and 4. This gives:

9-ND(d]|Q) - —ND(4||Q)
Wiy <P <2 | "

From these basic lemmas we can derive the main result we need. We are particularly
interested in putting bounds of the probability that a type ¢ lies within a certain set of types
E. For example, for our road tracking task we define the reward of a type ¢ to be ¢ a.
It will then be important to bound the probability that sequences of samples from off-road
have rewards above a specific threshold 7. To do this, we define By = {qg $-a> T} and
ask for the probability, Pr(&eET), that the type of a sequence of samples from off-road will
lie within E.

The main result is called Sanov’s theorem:

Sanov’s Theorem. Let yi,ys,...,yn are i.i.d. from a distribution Q(y) with alphabet
size J and E be any closed set of probability distributions. Let Pr(q; € E) be the probability
that the type of a sample sequence lies in the set E. Then:

9—ND($"[|Q) Pr(lc B v o ND@* Q)
— < < 1)72™ 48
(N+1)7 = r(p € E) < (N+1) ; (48)
where ¢* = argmingeg D(¢||Q) is the distribution in E that is closest to () in terms of
Kullback-Leibler divergence. . . .
Proof. It is straightforward to see that maxg , P(¢) < Pr(¢eE) < |E|maxz, P(¢).

From Lemma 5, we can put upper and lower bounds on max$€EP($) in terms of q;* =
arg ming, D(8||Q). This gives the result using Lemma 1 to put 1 < |E| < (N +1)7.

Appendix 2: Bounding the Sums of Exponential Series

We often need to sum series which contain geometric decay terms and alphabet factors. The
geometric terms dominate the series for large m but for small m the alphabet terms become
important. Our approach is to sum the geometric series and add a correction factor for the
alphabet terms.
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Bounding series like > °°_ (m + 1)42-5m,

m=0

We describe two methods for summing, or bounding, series which contain exponential decay
terms and alphabet factors. The alphabet factors are usually bounded by polynomial terms
(see section (5)). It should be emphasized, however, that the polynomial bounds on the
alphabet factors are not tight and, in particular, will be misleading for small m. We see two
strategies.

The first strategy is to sum the series directly using the polynomial bounds for the
alphabet factors. To do this, we define Gy(B, A) = S>> (m + 1)*275™ where A is a
positive integer corresponding to the alphabet factors and B is the exponential decay factor.
Observe that G1(B,0) = Y°_ 127%™ = — 4 Differentiating G (B, 0) with respect to B
introduces polynomial terms inside the summation. It is then straightforward to verify that:

el A d* 1

W(— ) dBA1_2 B (49)

G1(B,A) =
The second strategy takes into account the inaccuracies of the alphabet factor terms. For
small m, the alphabet factors become important and so they should be modelled accurately.

We will not do this here. Instead we observe that given any number € we can pick a number
M (e, A) such that (m +1)4 < 2™V m > My(e, A). We can sum the series to obtain:

1

G2(B,A) = —5—m

+ Z(A, B,e), (50)

where Z(A, B, €) is a (positive) correction caused by the terms for m < Mj(e, A) (the sum
underestimates these terms because (m + 1)4 > 2(M9 Y m < M (e, A).)

Bounding series like > >°_ m(m + 1)42- 5™,

In addition, we will often need to bound sums such as:

im?Bm(m—l- nA. (51)

m=0

As above, we pick a number € and My(e, A) such that (m + 1)4 < e™, V m > My(e, A).
We can divide the sum into two parts:

D m2 FIm 4 5(e, A, B), (52)

m=0

where Z(e, A, B) is a correction factor used to correct for the alphabet factors for small
m < Mo(G, A)
Let f(x)=>."°_ 2" =1/(1—2%). Then it is straightforward to differentiate both sides

m=0
with respect to x to obtain Z;C:o m2T = (IE;)Q. We can therefore express:
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—-B

00 . 9 N
> m2 " (m+1)A:m+:(e,A,B). (53)

m=0
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