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ABSTRACT
People with visual impairments (PVI) increasingly rely on camera-
enabled smartphone apps for tasks like photography, navigation,
and text recognition. Despite the growing use of these applications,
precise camera aiming remains a significant challenge. This study
explores the impact of virtual reality (VR) exploration compared to
traditional text/audio (TA) instructions in the context of learning to
use a walk-light detector app at traffic intersections. We developed
a VR exploration tool based on insights gathered from interviews
with PVI. A user study was conducted, involving 13 PVI partici-
pants divided into two groups: VR exploration and TA instructions.
Following indoor training using the respective approaches, partici-
pants from both groups used the walk light detector app outdoors.
According to the participants’ subjective feedback, a higher pro-
portion of participants in the TA group found the training easier,
potentially due to shortcomings in our VR protocol and differences
between the real world and VR. However, more VR participants
gained insights into walk light detection and felt unable to use the
detector without VR training, compared to the TA group.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); Empirical studies in interaction design; Ubiqui-
tous and mobile devices.

KEYWORDS
Blind photography; virtual reality; walk light; navigation; blindness
and low vision

ACM Reference Format:
Jonggi Hong and James M. Coughlan. 2023. Enhancing Walk-Light Detector
Usage for the Visually Impaired: A Comparison of VR Exploration and
Verbal Instructions. In The 21st International Web for All Conference, May
13–14, 2024, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/
XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
W4A ’24, May 13–14, 2024, Singapore
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The growing importance of smartphones as tools used to complete
a wide range of everyday tasks means that the ability to use a cam-
era has become an essential skill for nearly all smartphone users.
The smartphone camera is used to take photographs and videos of
friends and family and to document special places and occasions,
scan QR codes and product barcodes to access menus and other
information, scan paper receipts and credit cards, perform Opti-
cal Character Recognition (OCR) to read text, and even to acquire
imagery of nearby landmarks to enhance GPS localization accu-
racy in navigation apps such as Apple Maps1. To better understand
their surroundings and specific objects in it, PVI smartphone users
often use scene/object recognition apps such as Seeing AI [3], Tap-
TapSee [38], and Envision [2] and apps to obtain assistance from
sighted online agents such as Be My Eyes [15] and Aira [4].

However, aiming the smartphone camera properly to frame an
object or scene of interest, and capturing clear, high-quality im-
ages, is challenging for many PVI users [21, 25, 43]. While most
sighted users can monitor the content and quality of the images
they acquire in the camera viewfinder, this feedback is inaccessible
to many PVI users, who may inadvertently aim the camera at the
wrong target or acquire blurred images because of poor lighting
or excessive camera motion. Previous research has explored the
use of non-visual feedback to enhance the quality of photos taken
by PVI [6, 25, 39, 44, 47]. However, not all camera-enabled apps
provide audio and haptic feedback to help the user aim the camera
properly (e.g., [16]). Worse still, apps that use computer vision/AI
to recognize visual targets often make mis-recognition mistakes
(e.g., false positive and false negative recognitions) even when the
imagery is clear, so the feedback provided by these apps may cause
additional confusion for the user. While omnidirectional cameras
have also been utilized to simplify camera aiming [20, 46], they
may not provide an ideal solution in scenarios where users must
capture a specific target, such as detecting a walk light in a specific
direction at an intersection or capturing an object of interest in a
cluttered environment. Therefore, it is important that PVI users
learn to use the camera as effectively as possible to be able to use
camera-enabled apps whether or not they provide such feedback.

PVI has traditionally acquired knowledge of assistive technology
through verbal instructions, videos, and sighted assistance. Notably,
there has been a recent shift towards leveraging virtual reality (VR)
as a tool for novice users to familiarize themselves with new tech-
nologies, as highlighted in the study by Zhu et al. [48]. PVI has
been increasingly using VR to explore unfamiliar environments
virtually [17, 18, 24, 32, 34, 40]. Previous research has demonstrated
that immersing PVI in a virtual simulation of a real space through
1https://developer.apple.com/documentation/arkit/argeotrackingconfiguration
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Figure 1: A participant using a walk light detector in a virtual space (left) and at a real intersection (right).

VR can enhance their spatial knowledge [10, 12, 17]. Furthermore,
VR emerges as a promising tool for PVI to learn assistive technology
specifically tailored for navigation, as emphasized by Theodorou et
al. [40]. Despite the positive impact of VR on real-world navigation
with assistive technology, there remains a scarcity of studies that
effectively distinguish between the outcomes of VR-based learning
and traditional text/audio instructions. This study aims to bridge
this gap by investigating and uncovering the distinctive character-
istics of these two instructional methods in the context of learning
how to use a walk light detector at a traffic intersection.

To this end, we conducted a user study aimed at comparing the
efficacy of a VR training tool against text/audio (TA) instructions
in equipping users with camera manipulation skills, focusing par-
ticularly on their ability to detect pedestrian walk lights at traffic
intersections. Our study involved 13 participants with visual im-
pairments, who were divided into two groups: one receiving VR
training and the other receiving TA instructions. Following either
an indoor VR session or TA instruction session, participants pro-
ceeded outdoors to utilize a designated app across various traffic
intersections. Before the study, we designed the VR training tool
specifically tailored for PVI, providing audio feedback to the user (in
contrast with the visual feedback that most VR applications empha-
size for sighted users). Our tool concentrated on helping the user
refine their camera orientation techniques and take good-quality
images (e.g., with minimal blur). Our VR application incorporated
virtual visual targets within the user’s environment, challenging
participants to capture them within the camera’s field of view. The
tool provided guidance for camera orientation and speed control
through non-visual feedback, informed by preliminary experiments
assessing the impact of camera parameters on the accuracy of walk
light detection by an object detection model.

The analysis of results, encompassing both quantitative and qual-
itative dimensions, highlights distinct outcomes arising from VR
training and TA instructions. Despite the quantitative assessment
indicating no significant difference in the quality of photos cap-
tured by participants or the efficacy of walk light detection between
the two groups, a nuanced perspective emerges through qualita-
tive analysis: a greater number of participants in the VR group
expressed acquiring skills for manipulating a camera and conveyed
a perceived inability to use the walk light detector proficiently with-
out VR training, in contrast to the TA group. Conversely, a higher

proportion of participants in the TA group found the learning pro-
cess easy compared to their counterparts in the VR group.

2 RELATEDWORK
Prior research on camera-based assistive technologies has empha-
sized the need to develop skills for capturing high-quality images
or videos. In this section, we explore previous research on virtual
reality applications for training and blind photography. Addition-
ally, we focus on camera-based systems aimed at aiding PVI in
navigating their surroundings, which is directly aligned with the
research scenario we emphasized.

2.1 Virtual Reality for Training
Prior studies have consistently demonstrated the effectiveness of
VR in elevating student participation, confidence, and enthusi-
asm [11, 19, 33]. Beyond these benefits, VR offers distinct bene-
fits that set it apart from traditional learning methods. It excels in
simulating scenarios that would be challenging or impossible to
recreate in real-life settings. Notable instances include the devel-
opment of VR learning environments tailored for the internet of
things [48], chemistry experiments [27], surgical training [26], and
aviation training [30]. Moreover, VR contributes to a heightened
understanding of spatial context by immersing students in the same
virtual environments [22, 29, 41]. This immersive approach proves
especially beneficial in teaching abstract concepts rich in spatial
information, such as molecular structures [28, 45], astronomical
objects [7], and sorting algorithms [35].

Due to these advantages, VR has proven effective in assisting
people with disabilities to acquire spatial knowledge and learn how
to use assistive technology. Theodorou et al. [40] have demonstrated
high satisfaction with PVI learning new technology for navigation
using VR. They highlighted that VR training can effectively em-
power PVI users to utilize assistive technologies and enhance the
acceptance rate. Moreover, VR has been actively employed to facili-
tate the learning and exploration of unfamiliar environments for
people with disabilities. Previous studies indicate that VR enables
people with disabilities to gather information about unfamiliar en-
vironments, including identifying comfort areas [32] and getting
general spatial knowledge [5, 10, 17, 23, 24], and assessing acces-
sibility [18, 34] through exploration of simulated environments
before encountering real-world settings.
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2.2 Blind Photography
As camera-based assistive applications become popular, PVI have
been actively using a camera for daily tasks. A prior study has re-
vealed that blind people regularly take photos for various purposes
such as sharing memories, reading texts, and identifying colors [21].
However, taking clear and well-framed photos remains a challenge
for camera-based assistive applications. To address this issue, prior
studies have presented real-time guidance for image framing in
various applications, including text or barcode readers [39, 44], face
detectors [6, 47], object recognizers [25], and blind navigation sys-
tems [42, 43]. These assistive systems for blind photography employ
different types of non-visual feedback to provide guidance, such as
verbal instructions (e.g.“left”, “right”, “up”, “down”) [6, 8, 21, 43, 44],
sonification [8, 25], and haptic feedback [21, 25].

Although prior studies have shown that real-time non-visual
feedback can improve the quality of images taken by PVI, they have
some limitations. Firstly, many of these approaches rely on com-
puter vision techniques to locate the object of interest in an image
frame, which can be unreliable in practice due to blurry images, low
light conditions, and cluttered backgrounds. Secondly, when the
target object is outside the image frame, users must rely on their
own skills without any feedback to adjust the camera’s position
and orientation. Lastly, there is no agreement on what types of
feedback are suitable for blind photography across various camera-
based assistive systems, meaning that PVI would need to learn new
feedback for different applications. Due to these limitations, PVI
still require further learning to capture photos for camera-based
assistive applications, eliminating the need for external guidance.

3 DESIGNING THE VR TRAINING TOOL
To identify the challenges and skills in using a walk light detector
effectively and navigating their surroundings with camera-based
assistive applications, we interviewed PVI. We also carried out a
series of experiments to assess the impact of users’ proficiency in
camera manipulation on the accuracy of walk light detection.

3.1 Understanding Blind Users’ Challenges
We conducted interviews with PVI to discuss their experience using
a camera and camera-based navigation systems through Zoom. We
explored how participants learned to take photos or videos, how
frequently they use assistive navigation systems, and the gestures
they use to operate camera-based navigation systems. We also
inquired about what types of objects they capture using a camera
for navigation, as well as their preferred form factor for the camera.
When assessing the frequencies of utilizing camera-based assistive
apps and navigation systems, we employed an absolute 7-point scale
adapted from Rosen et al. [37]. We identified the primary themes
that emerged from their responses through thematic coding [9].

3.1.1 Participants. We recruited 10 participants from our email
lists, including six females and four males, whose ages ranged from
30 to 75 (𝑀 = 46.4, 𝑆𝐷 = 18.3). Of the 10 participants, seven re-
ported being totally blind, two reported having light perception,
and one reported being legally blind. On average, participants main-
tained their current level of vision for 35.5 years (𝑆𝐷 = 21.4). Nine
participants had been using a smartphone for an average of 10.7

years (𝑆𝐷 = 4.5), while one participant had never used one. Seven
participants reported using a camera several times a week or more.

3.1.2 Findings. How do PVI learn to take photos or videos?
Only four reported having experience in learning or practicing
using a camera. Two of these participants learned through a process
of trial and error, relying on the feedback from assistive apps (e.g.,
sound feedback for document positioning in the camera frame). The
other two received guidance from sighted individuals to capture
high-quality photos. The most frequently performed tasks using a
camera were reading text (𝑁 = 8), preserving or sharing memories
(𝑁 = 6), video calling (𝑁 = 5), and object identification (𝑁 = 3).

How frequently do they use assistive navigation systems?
Participants reported using navigation systems, with or without
a camera, once a month (𝑁 = 3), several times a month (𝑁 = 4),
once a week (𝑁 = 2), and several times a week (𝑁 = 1). The
navigation systems they used included systems using sensors (e.g.,
global positioning system, compasses) such as Google Maps and
BlindSquare (𝑁 = 10), video calling apps for seeking assistance from
sighted people such as Aira and Be My Eyes (𝑁 = 7), and computer-
vision systems such as OneStep Reader and Google Lookout (𝑁 = 2).

What challenges do they encounter when using a camera
for navigation? They faced several challenges while using a cam-
era for navigation, including difficulties in image framing (𝑁 = 7),
controlling internet connection (𝑁 = 4), adjusting light conditions
(𝑁 = 3), focusing (𝑁 = 2), and holding the camera steady (𝑁 = 1).
Drawing from these responses, we focused on assisting PVI in
acquiring image framing and focusing skills through VR training.

What types of objects do PVI capture using a camera for
navigation? Most participants captured landmarks such as stores
and restaurants (𝑁 = 7). Participants also commonly reported
capturing images of rooms in buildings (𝑁 = 5), people (𝑁 = 5),
signs (𝑁 = 5), and pedestrian walk lights or traffic lights (𝑁 = 3).
In this study, we focused on the scenario of detecting walk lights
using a camera to show the feasibility of the VR training method.
We discuss the potential of using VR training in other scenarios in
the discussion section.

What are their preferred form factors for the camera?
Participants expressed their preferences for different form factors
for camera-based navigation systems. Smart glasses were the most
preferred form factor (𝑁 = 8), followed by a smartphone (𝑁 = 3),
and a shoulder-mounted camera (𝑁 = 1). The ease of aiming the
camera influenced the participants’ preference for a particular form
factor. For instance, P4 who preferred smart glasses said that “No
need to point the camera (on glasses) to a specific place.” However,
some participants preferred a smartphone because wearing a device
is an inconvenience for them. P8 said, “... I don’t like glasses because
it is cumbersome to have glasses and masks together.” Although smart
glasses were the most preferred form factor of a camera for PVI, we
chose the smartphone as the form factor because it is still the most
commonly used device for camera-based assistive technology. The
discussion section explores the feasibility of employing VR training
for wearable devices.

3.2 Understanding the Walk-Light Detector
To understand the effect of a user’s proficiency in manipulating
a camera on the performance of a walk light detector, we built a
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walk light detector (i.e., the outdoor app) and conducted experi-
ments with it. Rather than relying on off-the-shelf applications like
OKO [31], we developed a specialized outdoor app to conduct an
in-depth analysis of the walk light detector’s characteristics and
explore the impact of VR training in our user study.

To create the outdoor app, we customized a YOLO v2 object
detection model [36] pre-trained on ImageNet dataset [14] with
transfer learning. We used a dataset comprised of images of the six
walk lights along our route for the user study (shown in Figure 6).
The dataset comprised 21,208 images, including 1,928 original im-
ages and 19,280 augmented images. Each image represented one of
four states of the walk lights: “Walk”, “Count down”, “Don’t walk”,
and ‘Nothing” (i.e., no walk light visible in the image), which were
used as labels for the images. We annotated the images by marking
bounding boxes around the walk lights and including labels de-
noting their respective states. To augment the dataset, we applied
brightness variation and channel shift to each image [1], result-
ing in 10 new images per original image (i.e., five from brightness
variation and five from channel shift). During the development
of the outdoor app, we observed that the walk lights captured in
the images were too small to properly resolve visual features in a
resized image (416x416) using the YOLO model. To address this, we
modified the outdoor app and the VR training app to only process
the central part of the image with half its original width and height.
In this study, the output of the outdoor app consists of synthesized
speech representing the walk light state, with no consideration for
the locations of the bounding boxes.

3.2.1 Effect of Yaw on Walk Light Detection. When it comes to
camera geometry, PVI need to control yaw, pitch, and roll to orient
a camera correctly as shown in Figure 2. Out of these three rotations,
pitch and roll affect the presence of the object in the frame, while
yaw affects the orientation of the object captured in the image.
Therefore, we conducted an experiment to investigate how yaw
affects the accuracy of detecting objects. We captured 5650 images
of walk lights in three states (“Walk”, “Don’t walk”, “Countdown” as
illustrated in Figure 3), taken at different yaw angles at intersections
near our lab. Using the outdoor app, we measured the accuracy
of detecting walk lights. We considered the output of the outdoor
app for an image as accurate when the label of the bounding box
with the highest confidence score matched the state of the walk
light in the image, as annotated by a member of our research team,
regardless of the bounding box’s position.We analyzed the accuracy
of detecting walk lights across images with different yaw angles,

Figure 2: Feedback from the VR training app.

Figure 3: Images with three states of walk lights: Count down,
Don’t walk, and Walk.

as shown in Figure 4. Our findings reveal a substantial decrease
in accuracy, nearly 20 percent, when the yaw deviates from the
straight-up position by more than 10 degrees. These results were
employed to determine the appropriate timing for issuing a warning
to a user based on the device’s yaw orientation.

3.2.2 Effect of Camera Movement Speed on Walk Light Detection.
We produced 500 images with varying levels of blur by applying
horizontal and vertical motion blur filters to 25 original images of
walk lights. These filters are represented by 𝑘 × 𝑘 matrices with
ones at (⌊𝑘/2⌋ + 1, 𝑖) and (𝑖, ⌊𝑘/2⌋ + 1), respectively, while all other
elements are zero. For each original image, we applied 10 horizontal
and 10 vertical filters with varying sizes of 3, 5, 9, 17, 33, 65, 129,
257, 513, and 1025. The levels of blur were measured using the
variance of pixels in the edge images generated through Laplacian
edge detection [13]. A higher variance value indicates a less blurry
image (since high variance is partly caused by the presence of crisp
edges with strong image gradients). The edge images ranged from
pixel values 0 to 255. The variance values of the 500 images fell
between 1.8 and 354.2.

In Figure 5, we present the accuracy of walk light detection with
images with different blur levels. We noticed that the accuracy
begins to decline when the variance value falls below 180, which is
the average variance value of images produced using a filter of size
5. Therefore, we established the threshold of a point movement in
an exposure time to 5 pixels for the VR training app. Based on the
pinhole camera model, the camera rotation speed corresponding to
the threshold is 𝑑𝑡ℎ = 𝑑𝑢/𝑓 where 𝑑𝑡ℎ is the rotation threshold, 𝑑𝑢
is the size of the filter (5 pixels), and 𝑓 is the focal length (around
1200 pixels in our setup).

4 VR TRAINING APP PROTOTYPE
We developed an interactive training app that allows PVI to practice
using a camera for a walk-light detector in a virtual traffic intersec-
tion. We built the virtual environment using ARKit in iOS on an
iPhone 8, as illustrated in Figure 1. The app does not require addi-
tional devices such as head-mounted displays or wearable devices,
allowing PVI to interact with the virtual environment using their
smartphones. The app provides audio and haptic feedback related
to two key interactions: image framing and focusing.

The users can practice using the walk-light detector, which indi-
cates the real-time status of the walk light (“Walk”, “Don’t Walk”,
“Countdown”), at the virtual intersection. The virtual walk lights
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have the same size, distance, and height as those in the real world
under typical viewing conditions. We chose the size (33.3 x 30.5
cm) and height (3.05 m) of the virtual walk lights based on design
guidelines for pedestrian control features from the US Department
of Transportation2. The training app simulates a range of distances
between the user and the virtual walk light, with the distances
based on the widths of roads in the vicinity of our lab, correspond-
ing to the widths of roads near our laboratory. To account for the
variability of real-world environments, including factors such as
the slope of the road, the user’s location, and height, which can
affect the relative position of the walk light with respect to the
user’s camera, we introduced a random offset ranging from 0 to 2
meters to the x- and y- axis positions of the virtual walk light.

We designed the training app to replicate the experiences of using
the outdoor app, except that the training app provides feedback on
proper camera orientation, which is unavailable in the outdoor app.
The training app, like its outdoor counterpart, detects the virtual
walk light when it is fully included in the central portion of the
image. The training app provides the following feedback (Figure 2):

• If a walk light is detected, give verbal feedback about the
status (“Walk”, “Don’t Walk”, “Countdown”)

• If no walk light is detected, say “Nothing”
• Say “Roll left”/“Roll right” if yaw is too far from zero
• Say “Tilt up”/“Tilt down” if pitch is too far from zero
• Issue vibration if the image is blurry

2https://mutcd.fhwa.dot.gov/htm/2009/part4/part4e.htm

Figure 4: Yaw in degrees (x) and object detection accuracy
(y). The smartphone is straight up when the yaw angle is 90
degrees.

Figure 5: Variance of pixels in edge images (x) and object
detection accuracy (y).

• In each video frame, with 5% probability, the app randomly
acts as if a walk light has been detected to simulate the
incidence of false positive detection.

Based on the experiments in Section 3.2, we have established the
thresholds for the yaw angle of the device and the speed of rotating
the device. The app provided a verbal warning whenever the yaw
deviated from the upright position by 10 degrees. To address the
pitch angle of the device, we established a threshold of 0.5𝑓 𝑜𝑣 ,
where 𝑓 𝑜𝑣 represents the field of view, to alert users when the
virtual walk light is either above or below the central region of the
image. The device vibrated when the pixels in the image shifted
more than 5 pixels between consecutive frames.

5 USER STUDY
To compare the effect of VR training and TA instructions, we con-
ducted a user study with two groups of PVI: the VR and TA groups.
The TA instructions provided comprehensive detail, including guid-
ance on using the walk light detector app and capturing clear,
well-framed photos. We employed a between-subjects design to
prevent the training effect between conditions. The participants
went through the training session indoors and completed a walk-
light detection task at the nearby intersections as shown in Figure 1.

5.1 Participants
We recruited 13 participants from our email lists and local orga-
nizations. Their ages ranged from 39 to 76 (𝑀 = 53.1, 𝑆𝐷 = 12.8)
except VR4 who is in her 30s and did not want to reveal her exact
age. We randomly assigned the participants to the two groups (i.e.,
VR and TA). The participants’ demographics and backgrounds are
specified in Table 1. Nine participants reported that they had never
had full vision before. All but one participant (VR5) owned and used
iPhone devices. When it comes to participants’ experience with
camera-based assistive apps, participants used such apps to read
texts (𝑁 = 11), recognize objects (𝑁 = 6), identify colors (𝑁 = 3),
identify bills (𝑁 = 2), navigation (𝑁 = 1), and read barcodes (𝑁 = 1).

5.2 Procedure
The user study comprised four sections: a background question-
naire, a training session, a walk-light detection task, and a posthoc
questionnaire. The participants completed the four sections in 75.1
minutes on average (𝑆𝐷 = 16.2).

5.2.1 Background Questionnaire. At the beginning of the study,
we asked questions about age, gender, and level of vision. To under-
stand the participants’ experience in using a camera and camera-
based assistive apps, we asked 7-point Likert scale questions (i.e.,
never, once a month, several times a month, once a week, several
times a week, once a day, several times a day) and follow-up open
questions regarding their responses; the participants’ responses
are shown in Table 1. Last, we asked participants to provide their
familiarity with the area near our institute, which can be a factor
in participants’ performance in the walk-light detection task. Four
participants in each group reported not being familiar at all. The
remaining participants reported being somewhat familiar due to
their previous participation in other user studies.

https://mutcd.fhwa.dot.gov/htm/2009/part4/part4e.htm
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Table 1: Participants’ demographics and experience with photo taking and camera-based assistive apps.

Group ID Age Gender Level of vision Onset Photo taking Assistive apps

Virtual
Reality
(VR)

VR1 44 Woman Legally blind Birth Several times a day Once a day
VR2 41 Woman Totally blind 18 Several times a day Several times a day
VR3 73 Woman Totally blind 26 Several times a month Several times a month
VR4 3x* Woman Legally blind Since 2016* Several times a day Several times a week
VR5 51 Woman Totally blind Birth Once a week Once a month
VR6 61 Woman Totally blind 1 Never Never
VR7 76 Man Totally blind 13 Once a day Once a day

Text/Audio
(TA)

TA1 49 Man Legally blind Birth Several times a week Once a week
TA2 42 Man Totally blind 3 Several times a week Several times a week
TA3 39 Man Light perception 5 Several times a week Several times a week
TA4 66 Man Light perception 54 Several times a week Several times a week
TA5 50 Man Totally blind 42 Once a week Once a week
TA6 45 Woman Totally blind 1 Several times a day Several times a week

*VR4 did not want to reveal the exact age.

5.2.2 Training Session. The participants learned the procedure of
the walk-light detection task and how to use a camera for walk-
light detection during the training session in a conference room.
The VR and TA groups obtained the information from VR training
and TA instructions, respectively.

Virtual reality training. At the beginning of this session, the
experimenter briefly explained that they needed to focus on holding
the phone upright and moving the camera slowly as follows:

“Since the walk light detector works with the smartphone camera
to recognize a walk light, it’s important to hold and aim the camera
properly so that it can see the walk light. First, hold the phone upright—
this means it’s held in portrait mode with the rear camera facing
straight ahead. In other words, imagine that you are trying to balance
the phone so it’s standing up on a tabletop. This will make the walk
light visible to the camera. Second, while keeping the phone upright,
rotate the camera slowly from left to right when you need to scan the
environment to find the walk light. If you move your camera too fast,
your camera will be unable to recognize the images it captures.”

During the training session, participants completed 15 trials
of detecting virtual walk lights using the VR training app. Prior
to the first trial, the experimenter provided detailed instructions
regarding the virtual environment, including information on the
size, height, and distance of the virtual walk light. The experimenter
also explained the audio feedback related to the states of the virtual
walk lights. During the second trial, the experimenter explained
additional feedback related to camera orientation and movement
speed. Following these initial trials, participants completed the
remaining trials without instructions. Each trial, except for the first
two, had a time limit of 2 minutes. Between each trial, participants
simulated the scenario of navigating on the street by walking three
steps and randomly turning left or right, as directed by the app.

Text/audio instructions. We designed the detailed text and
audio instructions to deliver training information equivalent to the
VR training. However, participants did not practice detecting virtual
walk lights. The instructions were divided into two components:
verbal and video. The verbal instructions provided the following
information:

• Steps to start and finish a trial of detecting a walk light using
the outdoor app

• Guidance on interpreting the verbal feedback from the out-
door app that indicates the states of a walk light

• The factors that may lead to incorrect predictions by the
outdoor app, such as weather conditions or the presence of
obstructions

• Step-by-step instructions on how to properly capture distant
objects with a camera: holding the smartphone upright and
scanning the environment slowly for optimal results

To allow participants to go through a complete trial step-by-step
and to listen to the feedback from the outdoor app during the trial,
we played a 3-minute video that demonstrated a trial step by step
with corresponding feedback from the outdoor app.

5.2.3 Walk-Light Detection Task. For the task, participants used
the outdoor app in Section 3.2. Following the training session, we
provided the participants with an opportunity to practice detecting
a walk light in images using the outdoor app indoors. The experi-
menter sequentially presented three printed images of the “Count
down”, “Don’t Walk”, and “Walk” states one at a time (as shown in
Figure 3) in front of each participant to trigger the app to recognize
and announce these states.

Following the practice session, the participant went outside with
the experimenter and a sighted safety monitor to try the outdoor
app. They followed a predetermined route near our lab, as shown
in Figure 6, and completed six trials. The route was specifically
designed to include two trials without a walk light, two trials with a
walk light equipped with an accessible pedestrian signal (APS), and
two trials with a walk light lacking an APS. In terms of the walking
directions, the route consists of three trials where participants
turn left or right and three trials where they continue straight
ahead. Throughout the task, the experimenter and safety monitor
accompanied the participants to ensure the participants’ safety.

At the start of each trial, participants were instructed to approach
the intersection corner without crossing the road for themselves.
Of the 13 participants, 12 used a white cane during the task, while
one was accompanied by a guide dog. The participants aimed their
smartphones at the walk light when they believed they were close
to the intersection corner. They then pressed either the volume
up or down button to activate the detector. Once activated, the
device indicated the trial number through synthesized speech and
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provided verbal feedback indicating the state of the walk light (i.e.,
“Nothing”, “Count down”, “Don’t walk”, or “Walk”). Participants
were instructed to end the trial when they believed the walk light
was in the “Walk” state or when the detector repeatedly announced
“Nothing”, indicating that there was no walk light present. After
each trial, the participants crossed the road with the experimenter
and safety monitor to proceed to the next trial location.

5.2.4 Post-task Questionnaire. Once the task was completed, the
participants were asked to return to our lab where we conducted
a post-task interview to gather feedback on their experience. The
interview focused on two themes: the effectiveness of the training
session in teaching them how to use the outdoor app, and their over-
all experience with the training session. To assess their responses,
we used a 5-point Likert scale, with response options ranging from
“strongly agree” to “strongly disagree”.

6 RESULTS
To assess the impact of VR training versus traditional TA instruc-
tions, we conducted a comparative analysis of trial completion
time and the accuracy of walk light detection. We conducted the
Mann-Whitney U test to compare the two groups statistically. To
discern the behavioral disparities among participants in camera
manipulation, we conducted a detailed analysis of group differ-
ences, including camera orientation, speed of camera movement,
and the number of well-framed images. Additionally, we gleaned
insights from participant feedback, shedding light on their learning
experiences with VR training and TA instructions, thus providing
valuable context for the observed disparities between the groups.

Prior to conducting the analysis, we manually filtered out image
frames that were captured inadvertently by participants (e.g., due
to accidental button presses). Our analysis focused on two phases
of each trial, scanning and waiting. Scanning refers to the initial
phase of a trial, during which participants scan their environment
until the walk-light detector detects the walk light for the first time.
Specifically, scanning encompasses the period from the beginning
of the trial until the first detection of the walk light. Waiting, on
the other hand, encompasses the later phase of the trial, from the
first detection of the walk light until the end of the trial. When
participants fail to detect a walk light during a trial, the entire trial
is considered a scanning phase.

Figure 6: The route where participants completed trials of
detecting walk lights. They used the outdoor app at locations
marked by circles, with each circle’s color indicating the type
of walk light. The numbers in the circles are trial indices.

6.1 Accuracy of Walk-Light Detection
To evaluate the accuracy (i.e., f1-score) of the walk-light detec-
tors in our task, we compared manually annotated labels with
detected labels from 24,286 images obtained from 13 participants
(𝑀 = 1868.15, 𝑆𝐷 = 969.43). We assessed the correspondence of
the labels without considering the bounding boxes, as both the VR
training app and walk-light detector provide labels only and ignore
bounding box locations. In this analysis, we removed the extreme
outliers, defined as the f1-score less than𝑄1− 3 · 𝐼𝑄 or greater than
𝑄3 + 3 · 𝐼𝑄 , where 𝑄1 and 𝑄3 are the lower and upper quartiles of
data distribution, respectively, and 𝐼𝑄 is the interquartile range.

Figure 7 presents the f1-score of the VR and TA groups across
three phases. Overall, the VR and TA groups exhibited similar f1-
scores at 0.99 (𝑆𝐷 = 0.02) and 0.98 (𝑆𝐷 = 0.02), respectively. We
did not observe a statistically significant difference (𝑈 = 518.0, 𝑍 =

0.71, 𝑝 = .465, 𝑟 = 0.55). Specifically, in the scanning phase, the
VR group achieved a f-score of 0.98 (𝑆𝐷 = 0.04) and the TA group
achieved 0.98 (𝑆𝐷 = 0.02). In the waiting phase, the VR group
had an accuracy of 0.98 (𝑆𝐷 = 0.02) while the TA group had
an accuracy of 0.96 (𝑆𝐷 = 0.03). The f-scores in the scanning
(𝑈 = 96.0, 𝑍 = 1.05, 𝑝 = .255, 𝑟 = 0.63) and waiting phases
(𝑈 = 191.5, 𝑍 = 1.80, 𝑝 = .074, 𝑟 = 0.68) revealed no significant
difference. This suggests that the effect of the VR training and the
TA instructions were similar in terms of improving the accuracy of
walk light detection.

Figure 7: F1-score of the outdoor apps.

Figure 8: Trial completion time of Trial 2-5.
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6.2 Trial Completion Time
In Figure 8, we can observe the completion time of Trials 2-5, dur-
ing which intersections had walk lights. The VR and TA group
completed the trial in 27.3 seconds (𝑆𝐷 = 29.5) and 41.2 sec-
onds (𝑆𝐷 = 37.9), respectively. The statistical analysis revealed
no significant difference between the groups (𝑈 = 238.0, 𝑍 =

−1.80, 𝑝 = .073, 𝑟 = 0.35). The average scanning time in the VR
group is higher (𝑀 = 7.6𝑠, 𝑆𝐷 = 14.4) than the TA group (𝑀 =

2.2𝑠, 𝑆𝐷 = 3.8) although this difference did not reach statistical
significance (𝑈 = 425.5, 𝑍 = 1.64, 𝑝 = .097, 𝑟 = 0.63). A plausible
explanation for this difference is that the participants in the VR
group moved the camera more slowly when scanning their sur-
roundings as shown in Section 6.3. The VR group had a shorter
waiting time (𝑀 = 19.8𝑠, 𝑆𝐷 = 22.0) compared to the TA group
(𝑀 = 38.9𝑠, 𝑆𝐷 = 38.1) with statistically significant difference
(𝑈 = 211.0, 𝑍 = −2.29, 𝑝 = .022, 𝑟 = 0.31). This implies that par-
ticipants in the VR group exhibited better maintenance of camera
orientation and retention of the walk signal compared to the TA
group, following the initial capture of the walk light state.

6.3 Speed of Camera Movement
We used the threshold for the speed of camera movement from our
VR training app to assess the percentage of image frames with a suit-
able camera speed, specifically below the established threshold. The
VR group had a higher overall percentage of suitable camera speed
at 49.1% (𝑆𝐷 = 32.5) compared to the TA group at 46.0% (𝑆𝐷 = 30.6).
The difference was more pronounced during the scanning phase,

Figure 9: Images with camera speed below the threshold.

Figure 10: Images with appropriate camera orientation.

where the VR group had 31.3% suitable camera speed images and
the TA group only had 18.6%. In contrast, during the waiting phase,
camera movement was limited, resulting in a higher percentage of
slow camera speed. The VR group had 70.1% (𝑆𝐷 = 30.4) and the
TA group had 60.1% (𝑆𝐷 = 28.1) in the waiting phase.

To assess the impact of camera movement on image quality, we
measured image blurriness by analyzing the variance of pixels in
the edge images generated through Laplacian edge detection [13].
Higher variance values indicate less blurriness. Pixel values in the
edge images ranged from 0 to 255. We compared two groups, the VR
group and the TA group, and found that the VR group had a higher
variance of 183.5 (𝑆𝐷 = 25.9) than the TA group with a variance of
163.5 (𝑆𝐷 = 20.0). Additionally, when we analyzed images captured
above and below a pre-defined threshold camera speed, we found
that the variance was 183.5 (𝑆𝐷 = 74.8) when the speed was above
the threshold, and 173.9 (𝑆𝐷 = 87.3) when the speed was below the
threshold. Our results support our expectation that slower camera
movement results in clearer images.

6.4 Camera Orientation
We investigated participants’ ability to maintain proper camera
orientation while capturing a walk light with a smartphone. We
used the pitch and yaw thresholds in a VR training app to assess
the percentage of image frames with correct camera orientation.
The TA group had a higher percentage of properly oriented images
(93.6%, 𝑆𝐷 = 8.8) than the VR group (86.5%, 𝑆𝐷 = 22.0). The dif-
ference in camera orientation performance between the VR and
TA groups may have been due to the offset of the virtual walk
light position in the VR training app, which could have led par-
ticipants in the VR group to experiment with different camera
orientations. Additionally, the TA group likely had better cam-
era manipulation skills than the VR group. These issues will be
further discussed in the Discussion section. During the scanning
phase, both groups had lower percentages of proper orientation
(𝑉𝑅 : 82.0%, 𝑆𝐷 = 26.2;𝑇𝐴 : 85.9%, 𝑆𝐷 = 20.1). However, partici-
pants in both groups performed better during the waiting phase
(𝑉𝑅 : 95.0%, 𝑆𝐷 = 13.2;𝑇𝐴 : 96.4%, 𝑆𝐷 = 4.7).

We measured the proportion of images with or without a walk
light in the frame by manually annotating the images to indicate
whether they included a walk light. In the VR and TA groups, 69.5%
(𝑆𝐷 = 31.5) and 69.8% (𝑆𝐷 = 28.2) of images contained walk lights,
respectively. When the walk light was not visible, it was typically
located outside the frame (𝑉𝑅 : 29.9%, 𝑆𝐷 = 31.3;𝑇𝐴 : 28.9%, 𝑆𝐷 =

28.3). Only a small percentage of images had no walk light due to
occlusion: 0.5% (𝑆𝐷 = 1.3) and 1.3% (𝑆𝐷 = 2.0) in the VR and TA
groups, respectively.

6.5 Subjective Feedback
The subjective responses shed light on both the advantages and
disadvantages of VR training and traditional TA instructions. The
results of the post-task questionnaire are visualized in Figure 11.

Five participants in the VR group (71.4%) and three participants
(50%) in the TA group agreed or strongly agreed that they learned
new things about how to use a camera for an outdoor app from
the training. Participants in the TA group mentioned that the train-
ing reminded them of some concepts for taking good photos. For
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Figure 11: Participants’ responses in the post-task questionnaire.

example, TA1 said “...I don’t think about that perfectly when I’m
taking a picture or whatever. ...this helps me remember that I need to
make sure that it’s in focus, and stuff like that.” The participants in
the VR group highlighted that the VR training app was useful for
learning how to manipulate a camera. VR3 said “I learned how to
manipulate the camera so that it points in the correct direction.” VR6
also highlighted the opportunity to practice manipulating a camera
independently, saying “Because I have never done it. And so it was
interesting to experience it. ...My teacher who was also blind, he was
trying to get me to use it. And we had such a hard time, both of us.”

Five participants (71.4%) in the VR group and two in the TA
group (33.3%) disagreed that they could use the outdoor app well
without the training. VR3 thought that the practice in the training
helped her to hold the smartphone in the right way. She stated, “I
wouldn’t know how to hold it. ...Without training, I didn’t know what
that meant.” Meanwhile, VR5 thought that understanding the pos-
sibility of mistakes by the outdoor app was useful. She explained,
“I saw that the [training] app makes mistakes. And I saw the real app
make mistakes, too. That worries me.” Some participants in the TA
group emphasized the importance of hands-on experience, such as
that provided by the VR training, as a part of the training process.
TA3, who agreed, found the instructions helpful but believed that
he would need to practice personally. He commented, “I think in-
structions are absolutely necessary for some people. ...I think for me
personally, I would have been able to figure it out by just experiment-
ing, just standing there patiently....” TA6 mentioned “I know what to
do with it. I think it’ll be more helpful if there’s more instruction on
how you should aim it. Like what kind of angle? Like how far do you
have to move? Which direction? ...”

Most participants in both groups found the outdoor app easy to
understand after completing the training. However, one participant
(VR4) neither agreed nor disagreed and was somewhat confused
about how to start and finish a trial using a volume button. Another
participant (VR5) disagreed, stating that the task in the VR training
was harder than the real walk light detection task. She said “The
training app made one thinks that this job was going to be a lot harder
than it is actually.” She pointed out a lack of context in the VR
training, elaborating “When you’re in the training, it’s in virtual, but
it’s like you’re in black space.... there’s no context.” Nevertheless, all
participants except VR4 agreed or strongly agreed that the training
provided enough information to learn how to use the outdoor app.
VR4, who was neutral, found it difficult to learn due to the limited

space and obstacles in the training room, noting that “I think it’s a
bit confusing because the area is small. ...Most of the times when the
app would tell me turn right or left, there were chairs.”

Five in the VR group (71.4%) and six in the TA group (100%)
agreed or strongly agreed that the training helped them use the
outdoor app at real intersections. However, VR4 and VR5 were
neutral due to the limited space of the training room and the lack
of context. Meanwhile, VR6, who agreed, pointed out that the VR
training app was picky, making the training harder than the actual
walk light detection task. She noted that “it made a lot more vibration
when inside and it said a lot more nothing. It was easier [at the real
intersections], a bit more difficult to find the light [indoors].”

7 DISCUSSION
In this section, we will reflect on the key findings of our study
and discuss the implications of designing an accessible virtual en-
vironment for learning photography. We will also examine the
limitations of this work and provide suggestions for future research
that can address these limitations and further enhance the impact
of the VR training approach.

7.1 Implications
We have identified the advantages of using VR compared to text
and audio instructions as well as the implications of designing VR
environments for learning. Firstly, it is crucial to provide hands-on
experience to resolve the limitations of verbal camera guidance
instructions. Secondly, to make the virtual environment effective, it
is essential to make it as close to reality as possible. Thirdly, when
designing a virtual environment, it is important to consider both
the user’s background and the properties of the task.

Provide hands-on experience to resolve the limitations
of verbal instructions. The quantitative and qualitative results
of this study demonstrate the positive impact of VR training on
the use of a walk light detector in real intersections. One of the
primary benefits of VR training is that it allows participants to
experience and practice abstract concepts mentioned in verbal in-
structions within a virtual environment. For instance, we instructed
both the VR and TA groups to move their camera slowly to capture
clear photos, and those in the VR group were able to follow the
instructions better as they received haptic feedback on their camera
movements during the training. Similarly, photography involves
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several ambiguous concepts that are challenging to describe ver-
bally or require users to practice, such as “scan the area to your
left” or “keep the camera still until you hear a sound” (which may
lead to unintentional camera movement, even if the user tries to
hold it steady). For other applications beyond walk light detection,
instructions may include more complex and tricky descriptions like
“turn left at 45 degrees” or “move the camera slightly to the right.”
We anticipate that users can better understand these instructions
by experimenting with feedback in virtual environments, as the
participants in our study did.

Provide clear contextual information within the virtual
environment. Some participants in our user study pointed out
that the virtual environment should be more realistic for learning
photography and the task more easily. Although we tried to make
the virtual environment as close to reality as possible, we did not
replicate some real-world cues such as the textures or bumps on
the ground and sounds from traffic and pedestrians. In the real
world, these cues are important for PVI because they can indicate
the distance to the cars as well as the moving directions of cars
and people around the user. Due to the absence of these factors, it
took time for some participants to understand the exact setup of
the virtual environment during the training. Therefore, developers
of the VR training app should describe the context clearly including
what is missing in the virtual environment.

After the user study, we observed that certain parameters in the
virtual environment, such as the probability of errors and offset of
the position of walk lights, differed from those in the real-world task.
As a result, some participants in the VR group found the training
session more challenging than the actual task. Therefore, when
building a virtual environment, it is crucial to determine the design
parameters by accurately measuring the corresponding parameters
in the real world. This ensures that the virtual environment reflects
the actual task as closely as possible, enabling users to transfer the
acquired skills to the real-world task effectively.

Take into account both the user’s experience and the char-
acteristics of the task. In this study, the participants in both
groups achieved a high percentage of images with the proper cam-
era orientation overall at around 90%. This can be because adjusting
the orientation of the device is easy or because the participants
are familiar with using a smartphone and taking photos with it, as
many of them reported using a camera or camera-based assistive
apps on a weekly basis (as shown in Table 1). When designing the
VR training environment, considering the user’s background would
enable us to pinpoint which specific skills should be the focus of
the training. The subjective feedback from the participants also
suggested that the effect of VR training may vary depending on
the user’s background. For instance, VR4, who was taking photos
several times a day, disagreed that she learned new things about
how to use a camera. In contrast, VR6, who had never taken a
photo before, strongly agreed that she learned new things, stating,
“because I have never done it. And so it was interesting to see it and
experience it.” Furthermore, the level of difficulty may vary among
different systems/tasks. If a walk light detector can leverage the
full image from a camera with a wide field of view angle, aiming
the camera would be easier with it compared to the outdoor app
used in our study, which only utilized the central part of the image
for better performance. However, aiming a camera could be more

challenging with other form factors of a camera, such as head- or
chest-mounted cameras, since users cannot control the orientation
of the camera with their hands. Therefore, the effectiveness of VR
training may vary depending on factors such as the user’s skill level
and the characteristics of the task.

7.2 Limitations
In this research, using a between-subject design for the user study
served as a strategic choice. One of its notable advantages was
its ability to mitigate the training effect, a phenomenon where
participants who experience both VR training and traditional TA
instruction methods may exhibit biased or confounded responses
due to their exposure to multiple training approaches. By allocating
distinct groups of participants to either VR training or TA instruc-
tion, we ensured that the assessment of each method’s effectiveness
remained independent and unaffected by carryover effects.

However, it is essential to acknowledge that this design choice
also presents a limitation, primarily stemming from the small sam-
ple size within each group. With limited participants in each train-
ing modality, the findings may have limited applicability to a wider
population and limited statistical power of data analysis. Also, the
limited sample size may have influenced the balance of skill levels
in camera manipulation between the two groups although we ran-
domly assigned the participants to the groups. Future studies could
explore larger sample sizes or employ other experimental designs
to enhance the generalizability and robustness of our conclusions.
Despite this limitation, our study highlights the promising potential
of VR training as a valuable tool for enhancing skills in camera-
based assistive technology for PVI based on the discernible trends
of positive or equivalent effects observed in VR training compared
to comprehensive TA instruction methods.

8 CONCLUSION
This study explored the efficacy of VR training compared to tradi-
tional text/audio instructions concerning the acquisition of skills
in using a walk-light detector at traffic intersections. Through in-
sights from interviews with PVI, we tailored a VR training tool
to facilitate effective training. Subsequently, a user study involv-
ing 13 PVI participants was conducted, stratified into VR training
and TA instruction groups. Analysis encompassing quantitative
and qualitative measures revealed nuanced distinctions between
the two instructional approaches. While there was no statistically
significant difference in the photo quality between the groups, par-
ticipants’ subjective feedback illuminated divergent perceptions.
Notably, participants tended to perceive VR training as instrumental
in honing camera manipulation skills. Conversely, a larger propor-
tion of TA participants found the training easier to comprehend
compared to their VR counterparts. These findings underscore the
multifaceted nature of instructional methodologies in facilitating
skill acquisition among PVI.
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