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Introduction 

Computer vision (also known as machine vision) is a form of artificial intelligence that strives to 

make computers able to “see” like normally sighted persons. The basic approach consists of 

analyzing visual information taken of a scene – either a static image or a video sequence, 

acquired by one or more cameras – and using software algorithms to infer important visual 

elements in the scene, including the presence, location and appearance of various objects and the 

3-D scene layout. While computer vision is far from a solved problem, and is in fact the subject 

of intensive research, the last several decades of progress have led to a variety of successful 

algorithms, including OCR (optical character recognition), object recognition (including face 



recognition), 3-D reconstruction of objects and other structures, and video analysis and event 

recognition. As we describe in more detail below, such algorithms drive a wide range of practical 

applications, many of them used in commercial products and equipment. Moreover, as 

computers become ever more powerful and compact, they make possible mobile platforms that 

deliver the power of computer vision to the fingertips of any smartphone (such as an iPhone or 

Android) owner. 

 

The potential to harness computer vision to provide access to visual information that is otherwise 

inaccessible to visually impaired persons is extremely exciting and promising. However, 

important limitations of computer vision technology make it challenging to provide this kind of 

access. First, computer vision is successful in restricted domains but is often unreliable outside 

these domains, under the very types of highly variable and uncontrolled conditions that are 

commonly encountered by users “in the field.” (For instance, OCR often fails unless the text to 

be read is a standard font that has been imaged clearly, which is often a problem for reading text 

printed on signs, which we discuss below.) Second, it is not yet capable of the truly high level of 

inference that would be desirable to many users – such as taking a picture of a scene and asking 

the computer “How do I get to the conference room?” or “Is there a place to sit nearby?” Finally, 

various hardware and processing constraints such as the limited field of view of the camera 

(which makes it difficult for a visually impaired user to locate an object of interest) and delays 

incurred by computer vision processing pose additional challenges to the design of an effective 

user interface for any computer vision-based assistive technology.  

 

The aim of this chapter is thus to provide an overview of what computer vision does well, to 



survey the applications that have been most successful for visually impaired users and to discuss 

the most important usability issues that must be considered in developing these applications. 

Similar material, but aimed more specifically at a computer science audience, is discussed in 

Manduchi and Coughlan (2011), and is the topic of an ongoing workshop series organized by the 

authors, Computer Vision Applications for Visual Impairment (CVAVI), which was previously 

held in 2005 in San Diego
1
, 2008 in Marseille

2
 and 2010 in San Francisco

3
. 

 

A Success Story: Optical Character Recognition 

Some History 

Without a doubt, the most successful image-based assistive technology to date is optical 

character recognition (OCR). An OCR system uses an imaging sensor to access text (typically, 

printed on paper) and some “intelligence” to translate the image content into letters and words. 

The output of OCR can then be recorded as a text file in various formats (e.g., PDF), and/or read 

aloud by a text-to-speech system. Thus, OCR allows a person with visual impairment to access 

printed information – a tremendous achievement, considering the paramount role of printed 

matter in human communication. In fact, OCR may also help persons who can see but have other 

forms of reading disabilities. 

 

It is remarkable that the first fully electronic OCR system ever demonstrated was intended for 

use by blind people. The system was built in 1946 by a research group under the direction of 
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Flory and Pike at RCA Laboratories, with sponsorship by the Veteran Administration and the 

wartime Office of Scientific Research (Mann 1949). The “reading machine” would read text, 

spelling it out letter by letter; the machine was also able to read a few whole words. Its “eye” was 

a scanner moved over the text by hand, with 8 spots of light aligned in a column flashing on and 

off 600 times a second, and a photoreceptor that would read the light reflected off the printed 

paper. When illuminating a text character, only a few of these spots of light would be reflected 

by the paper; analysis of the pattern of reflected light by a system composed by more than 160 

vacuum tubes produced the character, which would then be read aloud by activating one of 40 

magnetic tape phonographs. 

 

Although this initial prototype did not find practical use (due, among other things, to its cost and 

size), it spurred a whole new industry with important applications. The first OCR company, 

Intelligent Machines, was founded by Shepard and Cook in the early 50’s. The Reading 

Machine, developed by Rabinow while at the National Bureau of Standards, showed improved 

performance through a “best match” procedure – essentially, by optically correlating each 

character of text against all possible alphanumerical characters. Image correlation (by digital 

means) has been a mainstream procedure for OCR for many years, especially for standard fonts. 

More recently, approaches based on pattern matching, for example via neural networks (Le Cun 

et al. 1990), have been used successfully in more complex situations, such as handwritten text. 

OCR quickly found extensive application in automatic document processing for business 

transactions and postal service (Hull et al. 1984).  The development of accessible OCR systems 

with text-to-speech capabilities made this technology available to the visually impaired 

community. Two commercial products had a pivotal role in making OCR a widely used assistive 



technology device: the Kurzweil Reading Machine and Arkenston’s OpenBook. 

 

In 1974, Kurzweil Computer Products developed the first commercial OCR that could recognize 

multiple fonts. (Previous systems used standardized fonts, such as the fixed-width mono-spaced 

format called OCR-A.) In his book “The Age of Spiritual Machines” (Kurzweil 2000), Ray 

Kurzweil recalls that an encounter with a blind person on a plane flight convinced him that the 

best use of this technology would be to support the blind community. The Kurzweil Reading 

Machine, which integrated omni-font OCR with a flat-bed scanner and a text-to-speech 

synthesizer, was introduced with much fanfare in 1976, and made commercially available in 

1979. Extensive pre-production user testing supported by the National Federation of the Blind 

(NFB) were undertaken to ensure that this product would really be usable by visually impaired 

persons. Kurzweil Computer Products was later integrated in ScanSoft (a Xerox spin-off), which 

eventually merged with Nuance Communication. 

 

Arkenstone, a non-profit organization founded in 1989 by Jim Fruchterman, also developed 

reading tools for people with disabilities. Arkenstone’s reading system was originally based on 

technology by Calera Recognition System (an OCR company started by Fruchterman in 1982). It 

delivered OCR systems to more than 35,000 visually impaired individuals before it sold its 

business operations to Freedom Scientific in 2000. Arkenstone’s OpenBook Scanning and 

Reading software (which utilizes both Nuance OmniPage and ABBYY FineReader OCR 

engines) is currently marketed by Freedom Scientific. 

 



OCR by Sensory Substitution: The Optacon 

OCR systems translate printed text into a computer-accessible format that can then be accessed 

via text-to-speech. One commercial product sidestepped the middle link of this chain, seeking to 

provide a blind user with more direct access to text via sensory substitution. The Optacon, 

developed by John Linvill and marketed by Telesensory Systems from 1971 to 1996, used a 24 

by 6 pixel optical sensor that was manually moved across the text line to be read. A matching 

array of vibrating pins was used to “feel” the text, letter by letter, with one’s fingertip, from the 

images taken by the optical sensor. (For more information about sensory substitution systems, 

see Chapter 8.) 

 

The Optacon found success with a community of devoted users, who were not intimidated by the 

relatively long (two weeks) recommended training period. Typical reading speeds varied 

between 5 and 15 words per minute (Schoof 1975) – much lower than the typical Braille reading 

speed of approximately 125 words per minute. However, the Optacon provided an unprecedented 

level of access to printed text and to the nuances of typographic styles (Stein 1998).  

 

Mobile OCR  

While early OCR systems were very bulky and included a flatbed scanner to image the desired 

text and a desktop computer to perform the necessary software analysis, vast increases in 

computing power have recently enabled the development of portable OCR systems. As a result, a 

variety of OCR smartphone apps are now available for normally-sighted users, including the 



ABBYY TextGrabber + Translator
4
 and the Prizmo

5
, as well as Word Lens

6
, an “augmented 

reality” OCR app that reads all text visible in the camera’s field of view, translates it to another 

language and graphically re-renders it on the viewfinder in place of the original text in the scene.  

The first commercial mobile OCR system designed for visually impaired users, the knfb Reader 

Classic, was released in 2005 by K–NFB Reading Technology, Inc.
7
 (a joint venture between 

Kurzweil Technologies and the NFB). This handheld system consisted of a PDA (personal 

digital assistant) bundled with a separate digital camera, and was soon succeeded by smartphone 

versions, the knfbReader Mobile and kReader Mobile. Similar functionality is provided by the 

Intel Reader
8
, which is a portable tablet device intended for a variety of special needs 

populations including the visually impaired and persons with dyslexia. 

 

It is important to understand the great challenges that mobile OCR applications for visually 

impaired persons impose compared with standard desktop OCR, which was designed for use 

with high-quality images of printed documents obtained using a flatbed scanner. First and 

foremost, it may be difficult or impossible for the user to know where to point the camera so as 

to properly frame the text of interest in the camera’s field of view. Indeed, the kReader Mobile/ 

knfbReader Mobile User Manual has an entire section on “Learning to Aim Your Reader,” 

which includes instructions on practicing aiming the smartphone camera with a special training 

page. The aiming problem is especially severe if the user is unsure as to whether a sign (or other 

printed matter) is even present in the vicinity, as when searching a corridor for a particular room 
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number. 

 

  

  

Figure 10.1. OCR and motion blur. Top row: clear smartphone camera image taken of indoor 

sign on left; zoomed-in portion on right shows that text is legible, and OCR reads it correctly. 

Bottom row: motion-blurred image taken by same camera on left; zoomed-in portion on right 

shows that text is unreadable, and OCR is unable to read it. 

 

Second, even if the camera is pointed towards the desired text, if it is too close then the text may 

be partly cropped and/or out of focus; if it is too far then the text may be too small to read 

clearly, and/or the OCR may be confused by the expanse of non-text scene clutter surrounding 

the text. Third, images of text acquired by mobile devices are often poorly resolved because the 

text of interest is too far away, poorly illuminated, motion blurred (often exacerbated by a long 

camera exposure due to low light levels, see Figure 10.1) or appears on a curved surface (e.g., 



the label on a can of food). Finally, much text printed on informational signs is rendered in non-

standard fonts – often combined with special symbols and commercial logos – which is difficult 

for OCR to read. 

 

A large body of ongoing research is focused on addressing these challenges, illustrated in the 

following examples. The problem of detecting text in cluttered scenes is an increasingly popular 

topic of research in computer vision and document analysis (for samples of recent work, see 

Epshtein et al. 2010; Lee et al. 2011; Chen et al. 2011), including work on finding text that may 

be too small or poorly resolved to read (Sanketi et al. 2011). Related work (Coates et al. 2011; 

Wang et al. 2011) seeks approaches that integrate text detection with reading to improve 

performance on natural scenes. Finally, specialized techniques for detecting and reading text 

shown in LED and LCD displays – which are becoming increasingly common in household 

appliances such microwave ovens and DVD players – are being developed (Tekin et al. 2011) to 

provide visually impaired persons with access to these displays. Despite the considerable 

progress that has been accomplished in these areas, much work remains in making mobile OCR 

systems practical for use by visually impaired persons. 

 

Other Semantic Information 

The previous section on OCR focused on the recognition of printed text, which is the ubiquitous 

building block of an enormous range of documents and informational signs. However, many 

forms of semantic information are represented by visual patterns other than text, including 

standalone icons or signs primarily identified by the icons they bear (such as traffic signs and 

commercial signs), paper currency and barcodes, which cannot be read by OCR and are therefore 



inaccessible to blind and visually impaired persons. 

 

Reading Signs and Signals 

Compared with OCR and text detection, relatively little research has focused specifically on the 

detection and recognition of non-text semantic information. Many important commercial signs 

(e.g., labeling stores and restaurants) are identified by distinctive non-text icons or logos, 

sometimes with accompanying text (which is often in a highly non-standard font that is difficult 

or impossible for OCR to read). Rather than attempting to recognize such signs individually and 

out of context, most work on sign recognition (Mattar et al., 2005; Silapachote et al., 2005) 

simplifies the problem by matching an image of an unknown sign to a database of known signs. 

 

An important component of research on reading non-text signs addresses the need for robots and 

autonomous vehicles to recognize traffic signs and signals in order to safely navigate, negotiate 

roads and avoid contacting pedestrians. Of greater relevance to blind and visually impaired 

persons is the closely related problem of designing computer vision algorithms to find and 

recognize pedestrian signs and signals, including painted crosswalk patterns (Se 2000), Walk 

lights (Aranda et al. 2004) or other traffic lights (Park and Jeong 2009), which are of paramount 

importance for pedestrian safety at traffic intersections. As discussed in Chapter 3, crossing a 

street is a challenging (and dangerous) undertaking without sight. In particular, one needs to be 

well aware of the crosswalk layout and of the flow of traffic; figure out exactly where the 

crosswalk begins, and align himself or herself towards the correct crossing direction; estimate the 

precise time for crossing; and, once starting to walk, maintain the correct direction without 

drifting out of the crosswalk. Walk light timing information from Accessible Pedestrian Signals 



is helpful in those intersections where they are installed (and some people can also use these 

signals to help align themselves correctly to the crosswalk), but unfortunately these signals are 

lacking at most intersections. 

 

  

Figure 10.2. Crosswatch, computer vision-based smartphone system for providing guidance to 

visually impaired pedestrians at traffic intersections. Left: system in use by blind tester. Right: 

schematic shows how system provides audio cues to signal proper alignment of user to 

crosswalk. 

 

Image-based technologies may be used to both estimate the precise geometry of the crosswalk 

(allowing one to align correctly with it), as well as to access information about the timing of the 

Walk lights, by extracting information from the signs, painted patterns and signals that are 

already present in traffic intersections. Prototypes of this kind of software have been ported to 

smartphones, including the “Crosswatch” system for recognizing crosswalks and Walk lights in 

real time (Ivanchenko et al., 2009; Ivanchenko et al., 2010), and tests with blind users have 

demonstrated the feasibility of this system. However, the challenge of performing the necessary 

pattern recognition reliably and swiftly, under a wide range of operating conditions (and 



accommodating many variations in the appearance of pedestrian signs, signals and crosswalks), 

makes the solutions proposed so far unsuitable for wide adoption. 

 

Barcodes 

The last category of non-text semantic information we consider is the barcode. The most 

common barcodes are one-dimensional (1-D) patterns (such as the UPC, or “Universal Product 

Code,” in widespread use in North America) labeling the vast majority of commercial products, 

which were designed to permit rapid product identification by a laser scanner. Several dedicated 

barcode readers have been designed for visually impaired users, such as the i.d. mate OMNI and 

Summit talking barcode readers (from Envision America)
9
, but the growing power of 

smartphone technology has led to the development of barcode reader smartphone apps, such as 

the Red Laser iPhone app
10

 intended for normally sighted users and the Digit-Eyes iPhone app
11

 

designed expressly for visually impaired users. As mentioned earlier, a major challenge imposed 

by any barcode reader is the difficulty of a blind or visually impaired user having to find the 

barcode on a package before it can be read; this difficulty motivated the development of 

smartphone barcode readers that interactively guide the user to the barcode (Tekin & Coughlan 

2010; Kutiyanawala et al. 2011). An additional difficulty of the smartphone platform is the fact 

that the barcode is analyzed from an image taken by the smartphone camera, which is noisier and 

thus harder to decode than intensity data acquired using laser scanners (for which the 1-D 

barcode was originally designed); as a result, research (Gallo and Manduchi, 2011) has focused 

specifically on improving the accuracy of barcode recognition in challenging images. 
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Two-dimensional (2-D) barcodes (such as the QR code and Data Matrix) were designed to be 

read by camera-based systems rather than laser scanners, and are superior to 1-D barcodes in that 

they are more easily read by camera-based systems and encode more data in a smaller area. Most 

modern smartphones come equipped with one or more apps capable of reading QR codes, which 

are increasingly used in magazines, tickets, signs, billboard advertisements and other printed 

matter to encode internet links to provide additional information about the printed content. While 

most QR codes are targeted at normally sighted smartphone users – who find it much less 

difficult to locate the codes and point their cameras accurately at them than do visually impaired 

users – there is ongoing work on using QR codes in applications intended for visually impaired 

persons, such as annotating objects in a museum and identifying product packages labeled with 

QR codes (Al-Khalifa 2008). 

 

Signs for Wayfinding 

Another intriguing application of non-textual signs is to support blind wayfinding. Sighted 

persons, when in unfamiliar places, routinely use available signage for understanding their 

location in the environment, and for determining how to reach a destination. Signs are 

particularly important in environments with complex layouts such as airports, where one needs to 

quickly find their way in stressful and potentially confusing situations. Unfortunately, signage is 

an inherently visual feature, and cannot be accessed without sight. (Braille or raised print signs 

are indeed accessible, but one first needs to physically reach them, which makes them useless for 

wayfinding in many situations.)  

 



It is conceivable, though, that a camera may work as the “eye” of a blind person to detect 

existing signs. In fact, special signage that can be read efficiently by a machine may also be used 

for this purpose. For example, as mentioned earlier, two-dimensional bar codes (e.g. QR codes) 

are increasingly being used for smartphone-accessible information embedding.  These signs are 

designed to pack as many bits of information as possible in a small amount of space. Similar 

types of signs have been used for wayfinding applications (Tjan et al. 2005). Another type of 

non-textual marker, with information embedded through colors, was developed by the authors 

(Coughlan and Manduchi 2009) and used for experiments in guided mobility (Manduchi et al. 

2010; Figure 10.3). Color markers have the advantage that they require minimal computation for 

detection, and can be seen from a long distance even under relatively difficult light conditions 

(Bagherinia and Manduchi 2011). 

 

  

Figure 10.3. Wayfinding experiments using a color marker that is easily detectable by a camera-

equipped cell phone. 

 

In some cases, camera-based sign detection can also be used to estimate one’s location and 



orientation (“pose”) with respect to the sign. ARToolkit (Poupyrev et al. 2000), a 2-D barcode 

design standard with accompanying software developed at the University of Washington, has 

been employed extensively in “augmented reality” applications that use the estimated camera 

location to create special graphics effects visible through the viewfinder. The ability to compute 

and track one’s relative position is an intriguing feature of image-based sign detection. This 

information could potentially be used to provide some local guidance to a blind person to reach a 

specific destination. 

 

Other approaches currently being investigated for assisted wayfinding include embedding RFID 

tags in the environment (for example, under carpet tiles). RFID tags, which can be accessed by a 

suitable device at an appropriate distance, are thus equivalent to “signs” that can be placed 

throughout the environment (Kulyukin et al. 2004; Ross et al. 2010). 

 

Camera-accessible signage is a promising approach to provide location-based information to 

persons without sight. It represents a sensible and cost-effective way to render information 

perceptible to all – regardless of whether one can see or not. As such, it fits well within the 

framework of “Universal Design”, a concept that has gained increasing popularity over the past 

decade. Universal Design (Preiser and Ostroff 2001) aims to produce buildings, products and 

environments that can be used by all (with or without disabilities), rather than having to be 

adapted to one’s particular needs. One of the principles of Universal Design is “Perceptible 

Information,” which states that the design should communicate “necessary information 

effectively to the user, regardless of ambient conditions or the user's sensory abilities.” Signage 

that can be accessed via mobile imaging represents one sensible way to achieve this goal. 



 

Computer Vision for Mobility 

As discussed at length in Chapter 3, mobility (the ability to move around safely and efficiently) 

and orientation (the ability to find a path to destination) are critical skills for a visually impaired 

traveler. The long cane and the dog guide are the standard mobility tools. Several ultrasonic or 

light-based mobility devices (Electronic Travel Aids or ETAs) have been proposed in the past; 

their features and limitations are described in Chapter 3. It is only natural that researchers would 

consider applying image-based techniques to orientation and mobility. 

 

Much of this effort derived from experience acquired research in autonomous robotics. After all, 

an autonomous robot is a “blind” agent: it needs sensors for obstacle detection, along with some 

level of intelligence for path planning and navigation. Reliable autonomous navigation with both 

wheeled and legged platforms has been demonstrated in recent years, owing much to the use of 

imaging and depth sensors. It would be a mistake, though, to think that by simply augmenting a 

sensory system with some sort of acoustic or tactile interface, a usable mobility tool for a blind 

traveler would be created. Humans are not robots; what works well on an autonomous navigation 

platform may be totally inadequate for a blind traveler. The reader is referred to the 

“Recommendations for the design process” section in Chapter 8 for a thorough discussion of the 

“engineering trap” – developing technical solutions without proper consideration of the end user, 

which all too often results in lack of adoption. 

 



Vision-Based Electronic Travel Aids 

A number of vision-based ETA prototypes have been developed in recent years. It should be 

noted that very few of these systems have undergone thorough testing with visually impaired 

users in realistic situations. Hence, the following exposition should be considered more as an 

indication of recent research trends, rather than a list of tools ready for adoption. 

 

Sensory systems for mobility support are normally designed to detect and possibly characterize 

environmental features that are important for safe ambulation: different types of obstacles, steps 

or curbs, or points of access (doors or passages). In most cases, detection is based on depth 

perception, achieved either by stereo vision or by active triangulation. Stereo vision is based on 

the triangulation principle: if a surface point is seen by two cameras at a certain distance from 

each other, it projects onto two different locations in the two cameras’ focal planes. The distance 

between the locations of the projections (“disparity”) is inversely proportional to the distance of 

the point from the cameras. Thus, by matching each point in the image produced by one camera 

to the corresponding point in the image produced by the other camera, one may obtain a “depth 

image” – effectively, a three-dimensional representation of the whole scene (see Figure 10.4). 

 

 

 

 



  

  

Figure 10.4. Stereo camera system estimates 3-D structure of scenes. Top row: scene shown on 

left, 3-D reconstruction on right clearly shows wall and column protruding from ground plane 

(xyz-axes drawn with green line indicating the camera’s line of sight). Bottom row: scene of curb 

shown on left, 3-D reconstruction shows step structure, which is clearly present despite 

distortion of reconstruction. 

 

Active triangulation systems operate on a similar principle, but do not need two cameras. 

Instead, light is produced by a source (typically, a laser or LED source) that is geometrically 

calibrated with the camera. By locating the return of the light reflected by a surface point on the 

image, the depth of this point is estimated. Active triangulation systems may use a single point 

source (producing only one depth measurement), a “striper” light source (producing readings 

over a plane in space), or a pattern of points that sample the space (as with the Microsoft 



Kinect
12

 system). Although stereo and active triangulation systems produce the same type of 

data, there are important technical differences between the two. Stereo requires the visible 

surfaces to reflect light from a light source (and thus cannot work in the dark), and doesn’t work 

well with untextured surfaces (e.g., a white wall), because it is difficult to match points in the 

two images in these situations. Active triangulation, conversely, does not work well under full 

sunlight, because the light from the environment overwhelms the light irradiated by the source, 

thus making detection of the return from the light source difficult. Both systems fail in front of a 

transparent surface such as a glass door.  

 

Other types of depth sensors are based on computing the “time of flight” (TOF), i.e., the time 

that it takes for a pulse of light (or a modulated light signal) emitted by a source to reach a 

surface in the scene, reflect back from the surface, and return to the sensor. The distance to the 

surface is thus proportional to the time of flight. Systems that use the time of flight principle 

(LIDARS) require that the light source be mechanically rotated to span the desired section of the 

scene. Imaging TOF systems have recently been marketed; these “3-D cameras” have great 

potential for mobility applications. 

 

An example of an ETA based on active triangulation is the “Teletact” system (Farcy et al, 2006). 

This device, normally clipped on a long cane, measures the distance to a surface using a single 

point light source (a laser pointer), and communicates it to the user using a simple tactile or 

acoustic interface. The device can reliably measure distances up to 6 meters with a very narrow 

“field of view” angle. According to Farcy at al. (2006), Teletact has been tested with more than 
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200 users. Note that the narrow field of view angle achieved by the laser beam represents an 

important difference with respect to the ultrasonic ETAs mentioned in Chapter 3, which typically 

have a much broader receptive field. 

 

In general, safe ambulation requires awareness of multiple environment features, such as steps or 

drop-offs that, if undetected, could lead to a fall. Recognizing these features by means of point 

distance measurements may be difficult or impossible, and thus other techniques that use 

multiple measurements or depth imaging may be needed. For example, Yuan and Manduchi 

(2004) developed a prototype active triangulation system that not only measures distance, but 

also analyzes the time profile of distance as the user moves the device (pivoting it around a 

horizontal axis) to detect depth discontinuities that could signify steps or drop-offs. This system 

was later extended to use a laser striper, which allows for detection of surface features from a 

single image (Ilstrup and Manduchi 2011). 

 

Stereo-based detection of curbs and steps for blind navigation was first proposed by Molton et al. 

(1998). If three-dimensional information about the environment is available (from a stereo 

camera or other depth imaging device such as the Kinect), this data can be integrated through 

time using a technique called “simultaneous localization and mapping” (SLAM). This allows for 

the geometric reconstruction of the environment, and at the same time enables self-localization. 

This technique was recently proposed as a means to support blind mobility (Pradeep et al. 2010). 

Image-based techniques can produce a very rich representation of the environment geometry, 

which makes it possible to identify features of interest for safe mobility. This approach may also 

support orientation, by computing paths to destination. One should be very careful, however, 



when considering how this technology can be used to effectively help a visually impaired 

traveler. As discussed at length in Chapter 8, communicating geometric descriptions to a person 

without sight can be very challenging, and there is no clear agreement as yet about what level of 

information should be communicated (whether only high-level, semantic information, or some 

sort of general description), and what type of interface should be used (speech, sound, spatialized 

sound, or tactile). 

 

But the main challenge for a developer of assistive technology for mobility is to prove that a 

proposed new device is superior to the baseline tool – the long cane. The cane is economical; it 

always works and never runs out of power; when not in use, it can be folded and put in one’s 

pocket; and it signals the presence of a blind person to other people. Expert users of the long 

cane are naturally reluctant to the idea of giving it up for something that is less tried and tested 

(or even augmenting it with any kind of new technology). Thus, a developer may have to work 

hard (and provide strong experimental results with adequate user studies – see Chapters 6 and 7) 

to convince more than a few enthusiastic “early adopters” to convert to a new technology. 

 

It should be noted, however, that the long cane cannot detect all types of obstacles. In particular, 

the user is not protected against obstacles at head height. In a survey with 300 blind and legally 

blind individuals (Manduchi and Kurniawan 2011), 13% of the respondents reported 

experiencing collision with head-level obstacles at least once a month, often with traumatic 

consequences. Hence, technology that could reliably detect obstacles at head height (Jameson 

and Manduchi 2010) may have good potential for acceptance at least by a portion of blind and 

low vision travelers. 



 

Recognizing Stuff 

It is often difficult or impossible for a blind or visually impaired person to determine the identity 

of an object even when it is within reach; in some circumstances, it may be inconvenient to seek 

this kind of information by simply asking someone for help, as when a blind person wishes to 

learn who is standing nearby at a party or other gathering. For such problems, computer vision 

object recognition algorithms, which recognize an object in an image as an instance of an object 

category, are a promising tool. 

 

Object recognition is a fundamental problem in computer vision (see Szeliski 2010 for a recent 

overview), and has become powerful enough for widespread use in visual online search engines. 

Many smartphone apps enabled by object recognition have recently emerged. Perhaps the best 

known example is Google Goggles
13

, a smartphone app which automatically recognizes many 

types of objects, including landmarks, book covers and artwork as well as text and logos. Other 

similar apps include oMoby, A9’s SnapTell and Microsoft’s Bing Mobile, most of which are 

optimized for commercial product visual searches. These apps are intended for normally sighted 

users, who can easily center the object of interest in the camera viewfinder, snap a photo and 

wait for a response. Unfortunately, such a user interface is impractical for many blind and 

visually impaired persons, who may have great difficulty knowing which objects are visible to 

the camera –  and in some cases may not even know whether an object of interest is even present. 

For this reason, few object recognition systems are used by this population (unless one 

categorizes OCR as a type of object recognition). 
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Some important exceptions to this general rule are object recognition systems that employ user 

interfaces tailored to the needs of blind and visually impaired users, typically focusing on a 

specific problem domain rather than attempting completely general object recognition. One such 

domain is the problem of grocery product identification, which Winlock et al. (2010) approach 

by matching the packaging of an unknown product – which can include any combination of text, 

logos and other graphics – against a database of known products. This approach circumvents the 

problem of attempting to identify a product solely through OCR, which is unreliable for the types 

of non-standard fonts (and inhomogeneous backgrounds) that are typically printed on grocery 

products; moreover, unlike product identification based on barcodes, it doesn’t force the user to 

locate the barcode on a package, which can be a difficult task in itself. The user interface in 

Winlock et al.’s system also alleviates the problem of knowing where to aim the camera through 

the use of a “mosaicing” technique that combines multiple views of the shelves taken in video 

over time to assemble a single coherent image of the entire scene. 

 



 

Figure 10.5. LookTel Money Reader, a currency reader app for the iPhone. System detects and 

reads aloud the denomination of the bill (in this case, $5) in real time. 

 

Another object recognition-based system tailored to the needs of blind and visually impaired 

users is the currency reader, which determines the denomination of American paper currency 

(unlike paper bills in other countries, whose denominations may be distinguished simply by the 

size of the bill) – information that is vitally important to a visually impaired person anytime 

he/she conducts a cash transaction. Standalone currency readers have been available for many 

years (such as the Note Teller
14

), but smartphone-based currency readers (Liu, 2008) have 

become commercially available, including the knfb Reader Mobile and the LookTel Money 

Reader
15

 smartphone app (see Figure 10.5). The LookTel system is distinguished by its ability to 
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recognize currency in real time, as the user is aiming the camera towards the bill, rather than 

having the user take a photo, wait for the results to be read aloud, and possibly repeat the process 

until a suitable photo has been taken. 

 

The ability to recognize faces is another specific object recognition task that would be very 

valuable for blind and visually impaired persons in some social contexts. Not only is it awkward 

to have to ask people around you who is near, but a partially sighted person whose visual 

impairment is not immediately obvious to others may risk offending people by failing to 

recognize them. In addition, people with otherwise normal vision who suffer from prosopagnosia 

(face blindness) could also benefit from a face recognition system. Face recognition is an active 

topic of research in computer vision (see Li and Jain 2005 for an overview) that is especially 

challenging because of the enormous variability that a person’s facial appearance undergoes due 

to varying facial expressions, lighting conditions, viewing angles and the placement of hair, 

glasses, clothing, etc. Because of these challenges, relatively little research has been done on 

practical face recognition systems for blind and visually impaired persons. However, Kramer et 

al. (2010) implemented a successful prototype smartphone-based face recognition system that 

announces with text-to-speech the names of people identified by the system. Going beyond basic 

face recognition, other research (Krishna et al. 2005; Gade et al. 2009) explores a wearable 

interaction assistant system to identify and interpret facial expressions, emotions and gestures, 

which are another important form of information (in addition to identity) that may be 

inaccessible to people with vision loss. 

 

Finally, in some circumstances a blind or visually impaired person (possibly someone with color 



blindness) may know the identity of an object but not its color, as when choosing an article of 

clothing to wear or selecting a color-coded file folder. In such cases a system that automatically 

recognizes color can be helpful. Color identifiers (also known as color recognizers) such as the 

ColorTest (from Caretec), Brytech’s Color Teller or Cobolt Systems’ Speechmaster speak aloud 

the color of a surface that the device is pointed to; not surprisingly, a 'Color Identifier' app
16

 is 

now available for the iPhone with similar functionality. Research on the related but more 

difficult problem of matching patterns according to both color and texture may be useful for 

helping visually impaired people match multiple items of clothes (Yang et al 2011). 

 

Image Enhancement for Low Vision 

In previous sections we have emphasized assistive technology systems that harness computer 

vision to provide audio or tactile feedback about a visually impaired person’s environment. Some 

people with sufficient partial vision, however, may prefer user interfaces that make the most of 

their residual vision by using computer vision or image processing to enhance images of the 

scene, which are presented on a computer/smartphone screen or via a head-mounted display. As 

discussed in Chapters 2 and 4, there are many different types of functional vision loss, and we 

will outline approaches to image enhancement according to some of the more common types. 

 

A relatively minor form of vision impairment is color blindness, which is a reduced ability to 

perceive color or color differences (and which often occurs in people with otherwise normal 

vision). As an alternative to the types of color identifier systems discussed at the end of the 
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previous section, which announce (using text-to-speech) the color pointed to by a camera or 

similar light probe, the colors in an entire image (or electronic document) can be re-mapped to a 

new color palette and re-rendered, so as to make the colors appear as perceptually distinct as 

possible to the viewer while preserving the approximate contrast between different colors that 

would be perceived by a normally sighted viewer. (The most appropriate mapping depends not 

only on the range of colors present in the image but also the particular type of color blindness.) 

“Post-publication” techniques (Jefferson and Harvey 2006) address the problem of how to re-

render a static image, webpage or entire document on a computer screen or printed page. The 

same approach can also be applied to video, and when it is implemented in real time it 

constitutes an augmented reality system, such as the DanKam
17

, an experimental app iPhone app 

(designed for the most common form of color blindness, anomalous trichromancy) which 

continuously re-renders the scene acquired by the camera on the smartphone’s viewfinder. 

 

Much more serious functional vision impairments include poor acuity, poor contrast sensitivity 

and tunnel vision, which arise from multiple causes. Poor acuity is a particularly debilitating 

problem because it can impair a person’s ability to read and to find and recognize objects, even 

under good lighting conditions and at high contrast. Magnification is a standard technique for 

addressing this problem (Wiener et al. 2010), either using an optical telescope (for distant 

targets) or a screen magnifier (for print). Unfortunately, as discussed in Chapter 4, a fundamental 

limitation of magnification is that it reduces the field of view – in effect, causing a type of 

functional tunnel vision, which makes it harder to find a target of interest, or to interpret an 

extended pattern larger than the field of view. (The problem is exacerbated with poorer acuity, 
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which requires the use of higher magnification.) One computer vision-based attempt to mitigate 

this problem in the context of reading signs is the “Smart Telescope” SBIR project from 

Blindsight Corporation
18

, which automatically detects text regions in a scene acquired by a 

wearable camera and presents the regions one at a time to a partially sighted user, using a head-

mounted display that zooms into the text to enable him/her to read it. 

 

Many systems that magnify scenes for people with poor acuity also enhance contrast (Harper et 

al. 1999), such as the head-mounted system created by Li et al (2011), since poor acuity due to 

central field loss is often associated with low contrast sensitivity. While simple contrast 

enhancement techniques are often adequate for improving the readability of text (typically 

characterized by a single foreground color against a single background color) – techniques that 

are available in many video magnifiers (Sardegna and Paul 1991) – enhancing the visibility of an 

entire natural scene with a multitude of objects and textures is a complex problem. Eli Peli and 

his collaborators have investigated this problem using a variety of contrast enhancement 

techniques, including narrowband contrast enhancement (Peli and Peli 1984), contrast 

enhancement in the JPEG and MPEG domains (Tang et al. 2004; Kim et al. 2004) in which 

images and video are compressed and wideband enhancement (Peli et al. 2004), which adds 

highly visible edge and bar feature contours to the image.  

 

Finally, the restricted field of view associated with tunnel vision has inspired the development of 

novel techniques for processing and displaying images, most involving some form of 

minification (the opposite of magnification, used to compact a large field of view into the much 
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narrower field of view of the person’s eyes). A promising approach due to Peli (2001) uses a 

head-mounted display to superimpose minified edge images of the entire scene over the user’s 

natural vision. The key to the approach is the fact that the edge pixels comprise a small fraction 

of pixels in the original images, so that the superimposed edge image interferes minimally with 

what the user already sees unaided. Experiments with tunnel vision patients showed that the 

system increased the speed with which they are able to conduct search tasks (for targets outside 

their natural field of view). 

 

Many experiments have demonstrated statistically significant benefits to users of these types of 

image enhancement systems to perform real-world tasks (Luo and Peili 2011). However, for 

many applications such as image enhancement for viewing TV and video (Peli and Woods 

2009), the determination of quantitative measures to objectively evaluate the benefits of image 

enhancement is a major challenge in itself. Indeed, given the extremely variable and multi-

dimensional nature of functional vision deficits among persons with visual impairments, coupled 

with the highly individual needs of this population, this challenge is likely to be a research 

enterprise as great as the development and improvement of the image enhancement techniques 

themselves.  

 

Usability 

There are several aspects of a camera-based system that need to be addressed before it can be 

considered usable by visually impaired persons. In the following we discuss a few issues related 

to the physical placement of the system, the quality of the task being performed, the 

communication of relevant data to the user, and the distribution of processing tasks between the 



local platform and remote (or even human) resources. 

 

Wearable or Portable? 

One important issue is how exactly the visually impaired user will carry the camera or cameras. 

The camera needs to have an adequate clear field of view, and thus cannot be placed anywhere 

the view could be occluded. At the same time, cosmetic considerations may discourage the 

placement of cameras in highly conspicuous locations. The availability of miniaturized cameras, 

which could be embedded, for example, in someone’s eyeglasses, may help reduce some of these 

concerns. An alternative solution to “wearable” cameras is the use of a hand-held device such as 

a camera-equipped smartphone. Using a widely available commodity such as a smartphone has 

many advantages with respect to customized solutions, in terms of cost, availability of support, 

and convenience. In addition, a smartphone carries none of the stigma normally attached to 

assistive technology devices. Assistive technology “apps” are currently being created for both 

the Android and iPhone platforms. Of course, all aspects of accessibility need to be considered: 

if a blind user cannot start or control the application on the smartphone because this requires 

visual feedback, then even the most powerful application would be useless! Thankfully, 

accessibility interfaces (e.g. VoiceOver for Apple devices) are available to enable non-visual 

interaction even with touchscreen-based smartphones (see also Chapter 11).  

 

In spite of their attractive features mentioned above, hand-held smartphones may not be the most 

desirable choice for all applications. A smartphone is ideal for things like checking the value of a 

banknote or for reading a bill or a menu via OCR and text-to-speech. However, holding a 

smartphone by hand and pointing it around for an extended period of time while walking in 



search of a sign (indicating, for example, the location of a restroom or of the elevator) may be 

unwieldy, especially considering that the user would normally have one hand already occupied 

with handling the long cane or holding the dog guide. For this type of application, a wearable 

camera system that does not need to be constantly held may prove a more convenient solution. 

 

Performance 

Simply stated, if an assistive technology solution doesn’t work well enough, it won’t be used. 

How to quantify “acceptable performance,” however, is not always clear.  

 

A camera-based system can be characterized by a number of parameters, including: the field of 

view of the camera; the image resolution (the number of pixels in the image); the effective frame 

rate (the number of images that can be processed per second). In addition, there are application-

specific performance measures. Consider for example a device used to find a particular sign in 

the environment. This system may be evaluated in terms of its detection rate (the percentage of 

times the sought sign is correctly detected in an image) and of its false positive rate (the 

percentage of times that the system declares a detection when in fact there was no sign visible).  

 

Detection and false positive rates are normally related to each other via specific parameters in the 

algorithms (e.g., a threshold in the classification algorithm). By tweaking such parameters, one 

may be able to increase (or decrease) the detection rate, but this will necessarily come at the cost 

of an increased (or decreased) false positive rate. Fixing the “operating point” of the system (that 

is, tuning the parameters to obtain a certain detection / false positive rate pair) is a difficult art. 

One may, for example, decide on a maximum acceptable value for the false positive rate, under 



the assumption that if the system produces too many false alarms, the user will decide to turn it 

off.  

 

The resulting detection rate depends on a number of factors, including the size of the sign, the 

distance at which it is seen, the field of view of the camera, and the image resolution. A sign of a 

certain size, seen at a certain distance, will be easier to detect if the image resolution is high or if 

the field of view angle is small (e.g. using a telephoto lens). Increasing the image resolution, 

however, typically leads to longer processing time, which may reduce the effective frame rate. 

By contrast, a narrow field of view implies that a smaller portion of the environment is 

visualized at each frame. Low frame rate and narrow field of view may both hamper the visual 

exploration task if one is using the system to “scan” the environment in search of the sign, 

perhaps by rotating the camera around a vertical axis (see Figure 10.3). If the camera is moved 

too fast, there may be portions of the visible space that will not be processed because they 

happen to appear between two consecutive frames. Thus, the user may have to apply extra 

attention while exploring the space with the camera, possibly repeating the scanning operation 

several times to make sure that the entire scene is correctly analyzed.  

 

It should also be noted that fast camera motion may produce blurred pictures and thus complicate 

processing by the computer vision algorithm. This effect is particularly noticeable with low 

ambient light, as in this case the system needs to increase the exposure time of each image, 

which is liable to increase the risk of motion-induced blur. 

 

As this simple example suggests, the performance of a camera-based system is a function of 



multiple interconnected components. Ultimately, the system should accomplish the task it was 

designed for in a reasonable amount of time and without requiring too much effort of the user. 

Optimizing the system for best performance, and quantifying the overall quality of the user-

mediated application, is a difficult but critical component of the design process. 

 

User Interface 

A camera-based system implicitly performs some sort of sensory substitution. The visual data is 

“digested” by the computer vision algorithm, and the output of this processing (be it the 

detection of a step two meters away, the OCR decoding of a piece of text, the brand of a can of 

food, or the presence of a sign on a wall) is communicated to the user via one or more of his or 

her remaining senses. Clearly, the modality for this communication should be application-

dependent. In some cases, a few bits of information is all that is needed (for example, to 

communicate the presence of a head-level hazard in time for the user to stop and avoid it). In 

other cases (e.g., OCR access to text), more data needs to be communicated, in this example via 

text-to-speech.  

 

Specific to the case of camera-based systems are situations in which a stream of geometry-

related information needs to be communicated to the user as he or she is maneuvering the 

camera. Consider for example the case of a smartphone used for mobile access to text, for 

example to read a bill received in the mail. As mentioned earlier, one of the challenges of using 

such a system is that the smartphone needs to be positioned so that the camera has a clear view 

of the entirety of the text (an operation that may be challenging without sight). The system may 

provide continuous information to the user as to how to move the camera to improve framing of 



the desired text (e.g. up/down, left/right, closer/farther). As another example, a wayfinding 

application may inform the user of the distance and bearing angle of a detected sign.  

 

There is no general rule about what combination of speech, sound, spatialized sound (if the user 

is wearing headphones) or tactile signal (vibration) is preferable for communicating geometry-

related information, in part because each application has its own specific requirements. Precious 

little published research has performed comparative evaluation of multiple interfaces in this 

context (Ross and Blasch 2000; Marston et al. 2006; Walker and Lindsay 2005). Indeed, user 

interface design often winds up being “the afterthought at the end of the project” (Miele 2005), 

receiving less attention than other technical components of the device. Yet, the interface, from 

the user’s standpoint, is one of the most important aspects of the sensory substitution system: a 

poorly designed interface may make an otherwise impeccable algorithm practically unusable. 

 

From Local to the Cloud to the Crowd 

As pointed out earlier, the processing speed (measured, for example, by the effective frame rate) 

is a critical component of a camera-based system. There is no universal rule for what the 

minimum acceptable response time of a system should be. For example, if a smartphone is used 

to determine the brand of a can of food, it may be acceptable to wait for a few seconds from the 

time a snapshot is taken to the time the response is uttered by the text-to-speech system. The 

situation is different if the computer vision system is supposed to provide a stream of signals, for 

example to help the user point the camera correctly in order to take a well-framed picture that 

will then be OCR-processed. In this case, a system that takes more than one or two seconds to 

process an image at each individual camera pose may be cumbersome to operate. Other 



applications (e.g., detection of a particular sign or of a hazard as one is walking) may have even 

more stringent frame rate requirements. 

 

Image processing is notoriously time-consuming. An image is composed of hundreds of 

thousands or millions of pixels, and the computer vision algorithm may require multiple 

iterations of complex routines involving possibly large neighborhoods of each pixel. 

Miniaturized platforms (e.g., smartphones), in spite of technological innovations such as multiple 

core processors and graphics processing units (GPU), are not as powerful as desktop computers. 

Thus, in order to increase processing speed, it may be sensible to use remote servers (“the 

cloud”) to perform operations that would require too much time on the local processor. Of 

course, this requires that a good wireless Internet connection be available between the local 

platform (e.g., the smartphone) and the remote server. Indeed, transmitting streams of high-

resolution images to the server may wind up taking more time than performing some simple 

local processing! Thus, a more effective strategy may consist of distributing the processing load 

between the local processor and the remote server. For example, input images may be analyzed 

locally to extract relevant features, which are then transmitted (using much less data than the 

original image) to the remote server for further analysis (Chandrasekhar et al. 2009).  

 

Another intriguing possibility offered by the increasing availability of ubiquitous wireless 

connection is to do away with computer vision altogether, and rely instead on input from remote 

human assistants looking at images taken by the blind user and sent to them via Internet. One 

example of this approach is Sight On Call, a product being developed at Blindsight with funding 

from the NIH. Sight On Call is an on-demand assistance service for blind and moderate low-



vision persons. The user of this service contacts specially trained operators who, based on sensor 

data (e.g., GPS location) and images taken by the user’s cell phone, can provide specific 

assistance as regards wayfinding and object recognition. A different approach is taken by 

VizWiz, developed by Bigham’s group at the University of Rochester (Jayant and Bighan 2010). 

VizWiz uses “crowdsourcing” mechanisms (specifically, Amazon’s Mechanical Turk
19

) to 

enable the user to ask and get answers to queries about an image taken with his or her cell phone.  

 

Using “human intelligence” rather than computer vision is attractive for multiple reasons. 

Humans are much more reliable than computers for most tasks that require image analysis. More 

important is the fact that humans can answer complex and generic questions such as “Where am 

I?” or “What is close to me?” At the same time, this approach has some intrinsic limitations in 

terms of latency. The image taken by the user’s cell phone needs to be transmitted to a server and 

analyzed by one (or more) human operators, before the answer to the user’s query is sent back 

and uttered via text-to-speech. This chain of operations may take up to a few seconds. As 

mentioned earlier, this delay may be irrelevant for some applications, yet unacceptable for other 

tasks that require close to real-time feedback.  
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