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Abstract

We formulate edgedetection as statistical inference. This statistical edge detection
is data driven, unlike standard methods for edgedetection which are model based. For
any set of edgedetection Iters (implementing local edgecues)we use pre-segmeted
imagesto learn the probability distributions of Iter responsesconditioned on whether
they are evaluated on or 0 an edge. Edge detection is formulated as a discrimina-
tion task specied by a likelihood ratio test on the lter responses. This approad
emphasizesthe necessiy of modeling the image badkground (the o -edges). We rep-
resen the conditional probability distributions non-parametrically and learn them on
two di erent datasetsof 100 (Sowerby) and 50 (South Florida) images. Multiple edges
cues,including chrominance and multiple-scale, are conmbined by using their joint dis-
tributions. Hencethis cue combination is optimal in the statistical sense.We evaluate
the e ectiv enessof di erent visual cuesusing the Cherno information and Receiwer
Operator Characteristic (ROC) curves. This shows that our approac gives quantita-

tively better results than the Canny edgedetector when the imagebadkground contains



signi cant clutter. In addition, it enablesus to determine the e ectiv enessof di erent
edgecuesand givesquartitativ e measuresfor the advantagesof multi-lev el processing,
for the useof chrominance, and for the relative e ectivenessof di erent detectors. Fur-
thermore, we show that we canlearn theseconditional distributions on onedatasetand
adapt them to the other with only slight degradation of performancewithout knowing
the ground truth on the seconddataset. This shows that our results are not purely
domain speci c. We apply the sameapproad to the spatial grouping of edgecuesand

obtain analogiesto non-maximal suppressionand hysteresis.

Index Terms: Edge Detection, Statistical Learning, Performance Analysis,

Bayesian Inference.

1 Intro duction

Edgedetectors,see[9], are intendedto detect and localizethe boundariesof objects (in this
paper we will use\edge" as a shorthand for object boundary or signi cant albedo change,
see gure (1), and later examplesin gures (7,8)). In practice, it is clearthat edgedetection
is an ill-p osedproblem. It is impossibleto designan edgedetector that will nd all the
true (i.e. object boundary and signi cant albedochange)edgesn an imageand not respond
to other image features. Examining real images, it is clear that edgedetectorsonly give
ambiguouslocal information about the presenceof object boundaries.

Most corvertional edgedetectorsare designedoy assumingmodelsof edges.For example,
Canny [9] assumeghat edgesare step functions corrupted by additive Gaussiannoise. But,
as has beenwidely reported [12, 1, 30, 39, 24, 35], natural imageshave highly structured
statistical properties which typically do not agreewith the assumptionsmade by current
edgedetectors. It makessensetherefore,to formulate edgedetection as statistical inference
where the detectability of edgesdependsboth on the statistics of Iters on the edgesbut
also the statistics of lters o the edges(ie. on the badkground image clutter). These
edgeand badground statistics may be domain speci ¢, and edgedetection should take this
into accourt. (An alternative approad would be to learn a classi er [34] without learning
probability distributions, but we show there is su cient data to learn the distributions).

To implemert statistical edgedetection we make useof ground truth segmenations, see



Figure 1. A typical Saverby image (top left panel) with its ground truth segmetation (top
right panel) and its segmenation usingthe Canny edgedetector (bottom left panel) and by
statistical edgedetection (bottom certre panel). Statistical edgedetection has fewer false
negatives in the textured regionsand is also better at detecting edgeswith are partially
de ned by texture. By cortrast, the Canny detector is slightly better at precisionof certain

edges.The log-likelihood ratios are alsoshovn (bottom right panel).

gures (1,7,8). We rst usetwo pre-segmeted datasets, Soverby and South Florida, in a
learning stageto determineprobability distributions for the responseof edgedetection lters
onand o edges.Edgedetectioncanthen be performedusing a log-likelihood ratio test, see
[11]. (In addition, theselog-likelihood ratios, see gure (1) can be useasa local measureof
edgestrength [14] in formulations sud as snakes[18] and region competition [38]). We use
standard lters sud asthe intensity gradiert, the Laplacian of a Gaussian,and Iterbanks
of oriented Iter pairs (eg. Gabor Iters). To combine di erent edgecues,we specify the
edge Iter to be vector-valued, with componerts correspnding to the di erent cues(e.g.
grey-scale,chrominance,and multi-scale). In other words, we usethe joint distributions of
the di erent edgecues(which is the optimal way to combine them).

The probability distributions are represeted non-parametrically by multi-dimensional
histograms. The bin boundaries are determined adaptively in order to reduce the total
number of bins required. This is necessaryto ensurethat we have su cient data to learn
the probability distributions and to prevert overlearning [34]. We use cross-alidation [29]
to ched for overlearning. In addition, we sometimesusedecisiontrees[29]to further reduce
the number of bins required.

In our evaluationstage we determinethe e ectivenesf the edgedetection lters by two



criteria: (i) by ewvaluating the Cherno information [11]and, (ii) by determiningthe Receier
Operating Characteristic (ROC) curves[15. The Cherno information arisesnaturally in
theoretical studiesby Yuille and Coughlan[36]for determining the detectability of roadsin
aerial images[14]. ROC curves have beenusedby Bowyer et al to empirically evaluate the
performanceof standard edgedetectorson the South Florida dataset[7],[31],[8]. Hencewe
can useROC curvesto comparethe performanceof statistical edgedetection against more
standard edgedetectors. In addition, we usethe areaunder the ROC curve, and the Bayes
risk.

Most practical edgedetectors(eg. Canny [9]) usepost-processingechniquessud asnon-
maximal suppressiorand hysteresis. We therefore extend statistical edgedetectionto incor-
porate spatial grouping cues. Thesegrouping cuesare alsolearnt from our image datasets
and, not surprisingly, they shov analogsof non-maximum suppressiomand hysteresis.

Our resultsshow that statistical edgedetection signi cantly outperformsthe Canny edge
detector [9] when evaluated on the Sawverby dataset, see gure (16). On the South Florida
dataset, statistical edgedetection performsequivalertly to the Canny edgedetector and the
best of the other edgedetectorsevaluated by Bowyer et al [7, 8]. Our results alsoshow that
it is signi cantly harder to detect edgesin the Saverby datasetthan in the South Florida
dataset. This is becausethere is far more \clutter* in the Sonverby imageswhich can cause
edgedetectorsto report falsepositives,see gure (1). We assumethat edgedetectorsshould
not report edgesin cluttered and textured regions. Overall, the Sowverby datasetis more
challenging and (arguably) more represetativ e of real world images.

We are also able to adapt our probability distributions betweenthe Sowerby and South
Florida datasetswith only a small changein performance. In other words, we can per-
form high quality segmetation on South Florida without needingthe ground truth (and
similarly on Sowerhy). Moreover, the succesof our adaptation also shavs that the image
statistics are robust with respect to the ground truth. Inspection of the Saverby and South
Florida datasetsshows that the ground truths were determined rather di erently, seesub-
section(3.1). If the statistics werevery sensitive to groundtruth then it would be impossible
to adapt them betweenthe two datasets.

Our approat complemetts recert work on empirical performanceanalysis of visual al-

gorithms [6]. Our work was originally inspired by Geman and Jedynak [14], who learnt



statistics responsesfor Iters onand o highways in aerial images. We were alsoin uenced
by the work of Balboa and Grzywacz [2], [3],[4], who measuredcortrast edgestatistics on
and o occluding boundariesin two image domains which, they argued, correspnded to
di erencesin the receptive eld properties of the retinas of animalsin the two di erent en-
vironmerts and proposean alternative adaptation procedure[16]. A recert learning method
[27]is rather di erent from our approad and make useof reinforcemem learning with high-
level feedba&. More recerly Sullivan et al [33] have learnt statistics for image badkgrounds
in their work on \Bayesiancorrelation”.

The structure of this paper is as follows. In section (2) we descrike the edge lters,
the two ewaluation criteria, and how we represen and learn the conditional probability
distributions. Section(3) givesthe results of our edgedetection Iters on the two datasets
using the two ewaluation criteria. In Section(4) we descrite how we learn spatial grouping
as an analogy to non-maximal suppressionand hysteresis. Section (5) shows that we can
adapt our probability distributions from onedatasetto the other illustrating that our results

are not purely datasetspeci ¢ nor overly dependernt on the ground truth of the datasets.

2 Representing, Learning, and Evaluating Edge Filters

Statistical edgedetectioninvolveslearningthe conditional probability distributions P ( jon-edgé
and P( jo edgg for the Iter response conditioned on whether the lter is evaluated
H . . P( (1(x))j on-edge)
on or o an edge. We can then usethe log-likelihood ratio test, log B (00 edge] T,
to determineif a pixel x in imagel (x) is an edge,where T is a suitable threshold (visually

more pleasingedgemaps, howewer, can be obtained using a further spatial grouping stage,
seesection(4)). Following the analysisof Gemanand Jedynak[14], the log-likelihood ratio
can also be usedas a measureof edgestrength asinput to curvesdetectorssud as snalkes
[18] or region competition [38].

This requiresus to specify a set of edge detection lters , seesubsection(2.1). We
ewvaluate the e ectivenessof di erent edge lters using performance criteria, seesubsec-
tion (2.2). This requiresrepreseting the conditional probability distributions by adaptive
non-parametric representations(e.g. histograms),seesubsection(2.3). The performancecri-

teria are alsousedto determine the adaptive non-parametric represetations by ewaluating



the e ectivenessof the probability distributions induced by the di erent possiblerepresen-
tations.

Oncethe non-parametricrepresetations have beenchosenthen learning the probability
distributions reducesto ewaluating the Iters on the datasets (using the ground truth to
determine which pixels are on and o edges)and courting the number of responsesin eat

bin.

2.1 The Two Filter Sets

We considertwo setsof edgedetection Iters. The rst set consistsof standard edge lters
(supplemetted by the Nitzberg Iter, which turns out to be very e ective). The secondset

consistsof oriented Iter bankspartially inspired by the biology of the human visual system.

2.1.1 The First Filter Set

In this paper, we specify a Iter by a dierential (or di erence) operator, the scalesat
which we apply it, and the colour bandswe apply it to. The Iters in the rst setare shown
in table (1). The dimension of the Iter is the product of the dimensionsof the operator,
the number of scales,and the number of image bands. For example, Iter no. 2 in the
table is the Laplacian r 2 operator at three scalesapplied to image band Y, and sois a

three-dimensional lter.

Filter No. || Operator Scale | Image Band ||| Filter No. || Operator Scale | Image Band
#1 r? = Y || #7 if = Y;1;Q
#2 r? =124 Y || #8 if =124 I;Q
#3 i =1 [;Q ||| #9 i =124 Y
#4 iff =1 Y || #10 N =124 Y
#5 N1 =1 Y ||| #11 N1; N> =124 Y
#6 N1; N> =1 Y ||| #12 iff =12 Y;1;Q

Table 1: There are twelve lters in the rst set. For ead Iter we estimate the joint
probability distributions of the di erential operators, the scales,and the image bands. See

text for de nition of N'; N1; No.

For the rst lter set,the di erential operatorsare the magnitude of the imagegradiert



jff , the Nitzberg operator N [26], and the Laplacianr 2 [25. Theseare applied at di erent
scales by smoothing the image by a Gaussian Iter with variance 2. There are three
colour bandsY; | ; Q for Saverby and one (ie. grey-scale)for South Florida.

More precisely the modulus of the gradiert and the Laplacian operators are speci ed
by the equations 7 | (x) FG(x; ) I(x) andr 21(x) r2G(x; ) 1(x), where

denotescorvolution and G(x; ) is a Gaussianat a spatial scale parameterizedby the
standard deviation . The Nitzberg operator involves computing the matrix N (x) =
G(x; ) fri(x; )gfrl(x; )g" where™ denotestranspose. In other words, we take the
imagegradiert at scale and then averageits outer product by a Gaussianwith the same
scale(wefound it moste ectiveto usethe samevalueof for both scales).The output is the
two-dimensionalvector consistingof both eigervalues(N.(x; );Na(x; )). This operator is
sensitive to imagecorners(seechps 4,16 by Harris in [5]), which helpsit discriminate texture
from edges,aswe will seein section(3).

Our colour represetation is a variant of the NTSC colour space,with Y = 0:29R +
0:587G+ 0:114B, 1 = (0:596R 0:274G 0:32B)=Y, Q= (0:211R 0:523G+ 0:31B)=Y.
HereY isinterpretedto bethe grey-scaldmageand| ; Q arethe chrominancevectors. Unlike
NTSC, we have normalizedthe chrominanceby the greyscale.This normalization enablesus
to examinethe e ectivenessof chrominancecuesindependen of grey-scale.lt is important
to realizethat the choice of colour space representationis relatively unimportant becausewe
usejoint distributions to combinecolour cues The only reasonit matters at all is becausewve
determinethe bin boundariesbasedon the one-dimensionalistributions (which do depend
on our choice of colour space).

The biology of human vision, combined with more pragmatic motives, strongly suggests
that imagesshouldbe processedt di erent scalesse€[25]. In sud \scale-space"approates
it is not always clear how to best combine the information given by the edge detectors
at dierent scales. In statistical edge detection, as descrited in this paper, the optimal
combination arises naturally by using the joint distributions of the Iters at di erent scales
(subject to the quartization procedurewe use).

In the rest of this paper, we represem Iters by the operator, the scalesit is applied
at, and the colour bands it is applied to. For example,r %_; ,,(Y;I;Q) meansthat the

Iter is the Laplacian of a Gaussianapplied at scales = 1;2;4 to the three colour bands



Y;1;Q. This Iter isvector-valuedwith nine dimensions.The e ectivenesof thesedi erent

combinations is shavn in section(3.2.1).

2.1.2 The Second Filter Set

The second lter setis a Iterbank of orientation-tuned pairs of symmetric (even) and arti-
symmetric (odd) lters. It is claimedthat the visual cortex uses Iterbanks of this type and
that edgescan be detectedby so-calledenergy Iters which sumthe squaresof even and odd
Iter pairs. In the computer vision literature, Peronaand Malik [28 have advocated lters
pairs of this type becauseof their sensitivity both to step edges(due to the odd Iters) and
to ridge edges(due to the even lters). Seealso[17].

In this section, we considertwo typesof Iter pairs. Firstly, we considereven and odd
Gabor lter pairs wherethe ewven lter is a cosineGabor (shifted to eliminate the DC term)
and the odd Iter is a sine Gabor with the sameorientation and frequency We quartize
the orientation anglesto take 4 values. For ead angle the Iters are separablewith a
componert in the direction of the angleand in the orthogonal direction. The cross-sections

of the Gabor Iters in the orthogonal direction is given by the real and imaginary parts

of G(x; )(&*= e )=%) whereG(x; ) = »i-e X%, Motivated by biological
considerationswe set = =2. The Gabors have crosssectionsof G(x; ) in the direction

of the anglewhere is the aspect ratio. In summary eat Gabor lter is described by an
angle , a wavelength , and the aspect ratio

A well known limitation of Gabor Iters is their tendencyto \ring" near edgesbecause

of their high frequencyresponse. This motivates our secondchoice, where the lter pairs

also occur at a quartized set of angles. The cross sectionsorthogonal to the anglesis
P

the the secondderivative of a Gaussian 3>;G(x; ) and its Hilbert transform de ned by

Hf (x) = -2 Ri %dz. The crosssectionin the direction of the angleis alsoG(x; ). For
comparisonto the Gabor Iters, we de ne an e ective wavelength = P 2 . Wereferto
them asHilbert transform lters. (Peronaand Malik suggestedhe useof Hilb ert transform
pairs [28]). TheseHilbert transform pairs are run at 6 orientations (equally spaced).

To represen di erent ways of conmbining the Iter pairs we usethe following notation:
S and A denote symmetric and antisymmetric Iters at orientation respectively, where

is quartized to take betweenfour and six values (chosento span the oriertation space).



We can represen the Iterbank output by a single (high-dimensional) Iter == fS;A g
(with dimensioneight or twelve depending on the number of angles). Alternativ ely, there
are four or six \energy" Iters S? + A? tuned to the orientations . In addition, we test
lters which averageover angular direction, S? = P S? and A? = P A?, aswell asthe
two-dimensional lter fS?;A%g. Finally, there is the one-dimensionallter S? + A2, Our

results, seesection(3.2.2), show that a surprisingamourt of information is givenby S2+ A2.

2.2 Performance Criteria

We usetwo performancecriteria. The rst criterion, Cherno Information [11]is descrikedin
section(2.2.1). It is a measureof the easen determining which of two distributions generates
a set of samples(all members of the set must be sampledfrom the samedistribution). It
arisesin theoretical studies[36] of the di cult y of detecting roadsin aerialimages[14]. The
secondcriterion, is the Receiver Operating Characteristic (ROC) curve [15] of section(2.2.2).

Two additional measurescan be obtained from the ROC curve. The rst is the area
under the ROC curve, which can be shavn to be equalto one minus the error rate for the
2-alternative forced choice task [15]. The secondmeasureis the Bayesrisk [29] which can
alsobe obtained directly from the ROC curve (with equal prior probability for on-edgeand
0 -edge). Surprisingly, for the edgedetectors Iters in this paper there is a simple empirical
one-to-onemapping betweenthe areaunderthe ROC curve andthe Cherno information, see
section(3.3.2). Moreover, the nature of the empirical ROC curvessuggestghat they canbe
approximately characterizeduniquely by the areaunder the ROC curves,seesection(3.3.2).
Hencethe ROC curvesare alsodirectly related to the Cherno information.

Both performancecriteria are measuref statistical discriminability wherethe discrimi-
nation is doneusingthe log-likelihood ratio test [11]. Thereforeboth performancemeasures

depend only on the induced distributions P(rjon-edgé; P(rjo -edge) on the log-likelihood

P ( jon-edge)

5(joedge)" Theseinduced distributions are one-dimensionaland empirically

ratio r = log
are approximately Gaussianswith idertical variances. This will be important when under-
standing the empirical relationship betweenthe Cherno and ROC curves.

Note that both criteria were derived for discrimination formulated as probabilistic in-

ference[11],[19. It is not straightforward to apply them to edgedetectors which are not



formulated in probabilistic terms. For example, the ROC curve assumesthat there is a
one-dimensionaparameterthat canbe varied. For statistical edgedetection, this parameter
correspndsto the threshold usedfor edgedetection. But cornventional edgedetectorscan
cortain se\eral adjustable parameters. For example,the Canny detector [9] cortains three
adjustable parameters(one scaleand two thresholds). Bowyer et al [7, 8] obtain ROC curves

by choosingthe optimal selectionof these parameters.

2.2.1 Cherno Information

Our rst performancemeasurethe Cherno information [11], is motivated by the following
guestion: supposewe wish to determine whether a set of samplesis more likely to be on-
edgeor o-edge. This task is important when determining whether to \group" a set of
image pixels to form a cortinuous edgepath. The Cherno information and the closely
related Bhattacharyya coe cient are directly related to the order parametersdeterminedby
Yuille and Coughlan[36] when analyzingthe Gemanand Jedynaktheory of curve detection
[14]. In this theory, the largerthe Cherno information betweenthe probability distributions
of Iter responseson and o edges,then the larger the order parameter and the easierit
becomedo detect the curve.

Let ¥ = fy(X1);y(X2); i y(Xn)g be a sequenceof independent samplesof the responses
of the edgedetector at positions Xy;:::;;Xy. Using the Neyman-Rearsonlemma [11], the

optimal test (e.g., the maximum likelihood test) for determining whether the samplescome

P (yjon-edge)

from P (:jon-edgé or P (:jo -edge) dependsonly on the log-likelihood ratio, r  log Blvio -edge) "

P (y(xi)jon-edge)

P
By the assumptionof independencethis reducesto r = iN:1 logf 5o edge) 9

The larger the log-likelihood ratio, then the more probable that the measuremen sam-
ple ¥ came from the on-edgerather than o -edge distribution (if the log-likelihood ratio
is zero then both on-edgeand o -edge are equally probable). It can be shavn [1]] that,
for suciently large N, the expected error rate of this test decreasesexponertially by
g NC(PCjon-edge)iP (jo-edge)) \where C(p;q) is the Cherno Information [11] betweentwo prob-

ability distributions p and g, de ned by:
X
C(p:@ = min logf  p (y)d" ()9 (1)
j=1

wherefy; :j = 1;:::;Jgarethe variablesthat the distributions arede ned over (in this paper,



ead y; correspndsto a histogram bin). A closelyrelated quartity is the Bhattacharyya
coe cien t:
XJ

B(p;a) = logf  p™(y)a2(y;)g: (2)

j=1

Empirically, howewer, we nd that the Cherno information for our edgedetection lters
almost always correspnds to a value of 1=2, seesection (3). Thereforethe Cherno
information and the Bhattacharyya coe cient give very similar valuesin our application
domain. The only situation wherethis doesnot happen is whenthere is too little data and
the model starts to overlearn. In the generalcase,howewer, C(p;q) B(p;q) for any p;q
(becauseCherno information selects to minimize logf P J.le p (yj)a' (y;)g with respect
to while the Bhattacharyya coe cient just sets = 1=2).

To illustrate the Cherno information, we rst calculateit for two univariate Gaussians
with variances 2 and means ; ». It becomes ;  2)?=(8 2) nats (1 nat equalslog, e

bits), and for the specialcasewhen , ;= ,the Cherno information equals0:125nats.

2.2.2 Receiver Operating Characteristic Curv es

We also ewvaluate the edgedetection Iters using ROC curves[15] for classifyingindividual
pixels.

Pixelsareclassi edas\on-edge " or\o -edge " dependingonwhetherthe log-likelihood

P ( =yjon-edge)

ratio log P( =yjo-edge)

is above or belowv a threshold T, respectively. Each threshold T yields
a point on the ROC curve correspnding to the proportion of correct responses(P (on
edee jon-edg®) and falsepositives(P(on edge jo -edge)), see gure (5).

We usetwo additional measureswvhich can be derived from the ROC curve: (i) the area
under the ROC curve (which is one minus the error rate for the 2-alternative forced choice
task(2AFC)), and (ii) the Bayesrisk givenby (1=2)f P (on-edgejo edgg+ P (o -edge jon-edgég,
where pixel x is classi ed as\on-edge if P( (I (x))jon-edge > P( (I (x))jo -edge) and as

\o -edge otherwise.

2.3 Two Non-P arametric Probabilit y Representations

We will considertwo non-parametric ways to represen probability distributions. The rst

usesmulti-dimensional histogramswith bin boundarieschosenadaptively for eat dimension



(onedimensionfor ead visual cue). The number of bins usedby this represemation increases
exponenially with the number of visual cues. Learning sud a distribution requiresa large

amourt of training data to avoid overlearning [34], which occurs when we do not have

enough data to learn the probability distributions accurately (ie. we can memorize the

distributions but we cannot genealize from them to new data). This motivates our second
represemation which usesdecisiontrees[29]to selectthosebin boundary cuts which besthelp

discrimination. This represetation enablesus to learn distributions for high-dimensional
lters.

We use cross-@lidation [29] to determine if overlearning has occurred. This procedure
learnsdistributions on onepart of the datasetand cheds for consistencyby ewvaluating them
on the rest. For example,supposewe try to learn the distributions for a nine-dimensional
lter with six bins for ead dimension (ie. 6° bins in total). Then cross-alidation shovs
that we cannotaccuratelylearnthe distributions, see gure (6). In practice, simple cluesare
often su cient to tell us whether overlearningis occurring. Firstly, overlearningonly occurs
when the number of bins is of the sameorder of magnitude, or larger, than the number of
datapoints. Secondly the our performancecriteria will give suspiciouslylarge valueswhen
overlearningis occurring.

The adaptive binning and the decisiontree procedure usesperformance measuresto
determine good choicesof bin boundariesand decisioncuts. These performancemeasures,
Cherno information and Receiver Operation Characteristic (ROC) curves, were descriked

in the previoussubsection(2.2).

2.3.1 Multi-dimensional  Histograms with Adaptiv e Binning

Recallthat any edgecue (or conbination of cues)is represetted by an operator (:) which
can be a linear, or non-linear, Iter with scalaror vector valued output. For example,one
possibility is the scalar lter (i) , seesubsection(2.1) for other lters.

Having chosenan edgeoperator (:), we have to quartize its response values. This
involvesselectinga nite setof possibleresponsesfy; :j = 1;:::;Jg. The e ectivenessof the
operator will depend on this quartization sdheme,so care must be taken to determine that
the quartization is robust and closeto optimal.

We illustrate the quartization on the Iter jif -;(Y). For one-dimensionallters there



probability density

is always su cient data to learn histogramswith 256 bins for P( = yjon-edgé and P( =

yjo -edge). Figure (2) shaws that the probability distribution for P( = yjo -edge) is
strongly peaked neary = O (i.e. the image gradiert tends to be small away from edges)
while the peak of P( = yjon-edge occurs at larger valuesof y (i.e., the image gradiert
is likely to be non-zeroat edges). We compute the Cherno information between these
two distributions to give an upper bound for how well we can discriminate between the
distributions. Then we selectbin boundarieswhich maximize the Cherno information in
a greedy manner and compute how the Cherno information increasestowards the upper
bound as the number of bins increases. This is plotted in gure (2) and shows that the
Cherno information quickly readesits asymptotic value with only a small number of bins.
It becameclearthat most of the reliable information canbe extracted usingonly six adaptive
bins for ead dimensionof the Iter (this adaptation is performed over the entire dataset

and not for ead individual image).
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Figure 2: Left Panel: the marginal distributions of the magnitude of the gradiert Iter onY
at = 1 (evaluated onthe Sowerby dataset). The vertical axis labelsthe probability density
and the horizortal axis labelsthe Iter response. The dark line indicatesP( = yjo -edge)
and the dotted line shavs P( = yjon-edgé. The vertical dashedlinesindicate the positions
of the bin boundarieswhich are adaptively chosen. Right Panel: the Cherno information

rapidly readhesan asymptotic value as a function of the number of bins.

For higher-dimensional Iters we simply userectangular bins with the boundariesgiven

by the one-dimensionamarginals.



2.3.2 The Decision Tree Representation

The main disadwantage of the multi-dimensional histogram represetation is that the num-
ber of bins used increasesexponertially with the dimensionality of the edge lters, and
sothe amourt of training data required also grows exponenially. This puts limits on the
dimensionality of the edge lters that we can use.

The decisiontree approad givesa more compactrepresetation. Moreover, it alsoallows
us to learn probabilities in situations where overlearning occurs by adjusting the sizeof the
represemation, seesubsubsection(2.3.3).

The decision tree procedure consists of adaptively selecting cuts on any of the one-
dimensional lter axesso as to maximize the Cherno information, see gure (3). We
use a greedy algorithm to selectthe best choice of bins. That is, we nd the k" cut by
adding the bin boundary that maximizesthe Cherno information given the bestk 1
cuts. More precisely suppose we have an M-dimensional Iter with one-dimensionalbin
boundariesat fy. : i = 1;::;n;m = 1;::;Mg (where n is the number of bins usedin
the one-dimensionalhistograms{ typically n = 6 in this paper). The distributions of the
Iters are P( = yjon-edgé and P( = yjo-edge). With no cuts, the two distributions
P( = yjon-edgé and P( = yjo -edge) are, of course,indistinguishable. We then nd the
bestcut y'. which maximizesthe Cherno information betweenthe two distributions. Then
we choosethe secondbest cut (given the rst best cut), and soon. This is an alternative
way of represeting the probability distributions with the number of bins boundedabove by

2% wherek is the number of cuts.

filter 2
filter 2
filter 2

filter 1 filter 1 filter 1

Figure 3. Example of Decision Cuts. No cuts (Left Panel), one cut (Centre Panel), and

multiple cuts (Right Panel).

The decisiontree procedure,see gure (4), shovsthat the bulk of the information cortent
canoften be obtained usingremarkably few decisioncuts. For example,with six cuts (ie. n =

6) we typically obtain betweeneighty and ninety percen of the total Cherno information.



This givesa good approximation to the full histogramsusing at most 2° = 64 bins instead
of 6° = 10,077 696bins. Indeed, a singlecut (i.e. usingthe marginal distribution of a single
Iter) typically yields betweenforty and ft y percen of the total Cherno information. This
showsthat there is diminishing returns for adding extra Iters of the type we have considered

sofar and for the binary on-edgeversuso -edge decisiontask.
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Figure 4. The decisiontreesfor the Sowverby (Left panel) and South Florida (Right panel)
datasets. The Cherno informations approad an asymptote at about 6 cuts and a single

cut givesover half the total Cherno information. The Iter isjff =1.24Y.

2.3.3 Overlearning, Cross-V alidation, and Decision Trees

The decisiontree procedurealsoallowsusto learn probability distributions for high-dimensional
Iters for which overlearningoccurs. For ead number of decisioncuts, we usecross-@lidation

to test whether we are overgeneralizingor not (using either Cherno or ROC as the per-
formance criterion). This enablesus to determine the maximum number of decisioncuts
we can make while preverting overlearning. The number of on-edgeand o -edge pixels are
(2:35 10°;343 1CP) on Sawerby and (4:31 1C°;121 10°) on South Florida.

To do cross-alidation, we randomly divide the dataset (Sowverby or South Florida) into
two sets, setO and setl. We learn the distributions on both datasetsas a function of the
number of decisioncuts. Then we calculate the Cherno information and/or ROC curves
within the two datasets(by ewaluating setO on setO and setl on setl) and acrossthe two
datasetsby evaluating setOon setl, and setl on setO.

For example,we can calculatethe ROC curvesfor the lter jrj -;.2.4(Y;1;Q). The lter
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Figure 5. Crossvalidation for the Saverby datasetusingthe Iter jfj =1.24(Y;1;Q). The
inset boxesshow blown-up sectionsof the ROC curves. Left panelshows that the within-set
ROC curves(dark bold and dark dashedat top) and across-seROC curves (light bold and
light dashedat bottom) are not consistem (ie. do not overlap) and so overlearning occurs.
Right panel, sameasabove exceptthat we now usedecisiontreeswith 20 cuts. The resulting

ROC curvesare now far more consister.
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Figure 6: Overlearning for the Saverby datasetusing Iter jiT =1.24(Y;1;Q). Left Panel:
The Cherno information asa function of the number of decisioncuts suggestsoverlearning.
The Cherno readesa plateau at 10- 20 cuts but then starts slowvly rising again, which
is a good (empirical) warning of overlearning. Right Panel: Overlearningis con rmed by
Cross-\alidation wherewe plot the two within-set Cherno s (solid and dotted) and the two
between-setCherno s (dashedlines). The lack of consistency(overlap) betweenthesecurves
shows that overlearning occursif we usemore than 20 cuts. The most reliable Cherno is
0.322.



is nine-dimensionaland hencehas 6° = 10.077696 10° bins which is too large to learn
reliably becauseit is the sameorder of magnitude as the number of on-edgeand o -edge
pixels in the Soverby dataset. If we attempt to learn the distributions using the multi-
scalehistogramsthen the within-set ROC curves are not consistetr with the between-set
ROC's and so we get overlearning, seeleft panel of gure (5). But if we use a decision
tree represetation with 20 cuts then all the ROC curvesare consistem, see gure (5) (right
panel), and there is no overlearning. The decisiontree procedurereducesthe number of bins
to 138 10° which is far smallerthan the amourt of on-edgeand o -edge Sawerby pixels.

Alternativ ely, we can ched for overlearning by using the Cherno information. In g-
ure (6), left panel, we plot how the Cherno information increaseswith the number of cuts.
Obsene that the Cherno rapidly increasesto a plateau at about 10 cuts but then starts
to rise again at 20 cuts. In our experience,this rise from the plateau is always a sign of
overlearning. To verify this, obsene the results of cross-alidation in the right panel of g-
ure (6). This rise from the plateau can be usedas a heuristic to chedk whether overlearning
is occurring.

By this technique we can usehigher-dimensionallters than is possiblewith our adaptive
histogram approad. This is particularly useful when using the oriented Ilterbank, see
subsubsection(2.1.2). The Iterbanks require a lot of data becausethey involve running
Iter pairs at 4 or 6 orientations. For example,if we use4 orientations then the lterbank
is eight dimensional and requires 1:679616 1C° bins which is too large to learn on the
South Florida dataset. But the decisiontree approad reducesthe number of bins to 10*

and prevers overlearning, see gure (13).

3 Edge Discrimination Results

We now descrile our experimertal results wherethe goal is to determine whether a given
pixel ison or o an edge.

We ewaluate our approad on both the Saverby and South Florida datasets. These
datasetsdi er in important respectswhich we descrike in subsection(3.1). Then we evaluate
cuesusingthe Cherno information in subsection(3.2), and ROC curvesin subsection(3.3).

It is shavn in section(3.3.2) that both criteria give similar results.



3.1 The Two Datasets

The Sowerby datasetcortains onehundred pre-segmeted colourimages. The South Florida
dataset cortains ft y greyscaleimages. These datasetsdi er both by the nature of the

imagesand by the methods usedto construct the segmetations (the ground truth).

Figure 7: Top row: four typical imagesfrom the Saverby datasetwhich cortains a variety of
urban and rural scenegqthe original imagesare in colour). Bottom Row: the ground truth
segmeimations supplied with the Saverby image dataset. The ground truth is not perfect;

someedgesare missingand someare se\eral pixels wide.

The Sawverby images,see gure (7), areoutdoor imagestakenin Englandwhich all cortain
a road or a track. The image badground cortains a lot of vegetation (eg. grass,brambles,
trees) which correspndsto texture in the image. The ground truth include edgeswhich are
not very distinct or poorly delineated. They include, for example, the boundary between
a footpath and the grasswhich surround it. Overall, the dataset is a challengefor edge
detectorsand, in particular, for those which only use greyscaleinformation. By cortrast,
the South Florida dataset, see gure (8), largely consistsof indoor images. There is very
little badkground texture. Moreover, the ground truth edgesare often visually saliert and
spatially localized (eg. only one pixel wide).

We assumethat it is far easierto detect edgescorrectly in the South Florida dataset
than in Saverby. The edgesare sharper and the badkground statistics are lesscomplicated
(due to the lack of texture). Theseassumptionsare born out by our experimertal resultsin
the rest of this section.

The ground truths in the two datasetswere clearly createddi erently, see gures (7,8).



Figure 8: Left panel: four typical imagesfrom the South Florida dataset, which consists
primarily of indoor imagesand man-madeobjects. Right panel: the ground truth segmen-

tations suppliedwith the South Florida image dataset.

For example,the South Florida edgesare thin and well localized. By cortrast, the Sowerby
edgesare thick (eg. often two pixels wide). Moreover, the South Florida imageshave a 3-
valuedgroundtruth while the Saverby imageshave 2-values. For South Florida, the 3-values
correspnd to three sets: (a) edge,(b) badkground, and (c) pixels closeto edgesand some
texture regionsin the badkground. By cortrast, Soverby image pixels are labelled either
as edgeor non-edge.In our experimerts we always reclassifySouth Florida pixels as either
edgeor non-edge(ie. the non-edgeset is the union of sets\b" and\c").

Five imagesfrom the Sowerby set (out of a hundred and four) have very poor quality
edgemapsand sowe rejectedthem. Theseimagesare 06-36,10-19,13-10,13-13,14-22.

It is very useful for us to have two datasetswhich dier both in their statistics and
their criteria for ground truth. Firstly, aswe will show in section(5), we are able to learn
the statistics on one dataset and then adapt them to the other with only a small lossin
performance.This shavsthat statistical edgedetectionis robustto errorsin the groundtruth
(becausdt would be impossibleto adhieve this level of adaptation if the edgestatistics were
very sensiti\e to the rather di erent groundtruth criteria usedin the two datasets). Secondly
statistical edgedetection givesonly slightly better results than standard edgedetectorson
the (easier) South Florida dataset (as evaluated by the Bayesrisk -seesection(3.3.2)). But

statistical edgedetection doesbetter on the (harder) Soverby dataset. See gures (1, 17)



for visual comparisonand then comparethe ROC results for Canny detector and statistical

edgedetectionin gure (16).

3.2 Results using Cherno Information

We show resultsfor the rst setof Iters in subsection(3.2.1) and for the secondsetof Iters
in subsection(3.2.2).

To calibrate the Cherno information for individual cues,we estimatedit to be 0:22 nats
for the Gemanand Jedynak road tracking application [14]. Recall that it equals0:125 nats
for two univariate Gaussianswhen the di erence betweenthe two meansis equal to the
variance. Theseset a baselineand, as we will shov, we can obtain Cherno information
signi cantly higher by combining cues.

To calibrate the Cherno information for multi-dimensional lters, we needto know
how it can changeas a function of the dimension. It is guararteed to newer decreasebut
in principle it could increaseby an arbitrarily large amourt [11]. For example, consider
two distributions p(i;j) = 1=n? fori = 1;:;n andj = 1;:5n, and q(i;j) = (1=n) ;.
Then the marginal distributions, over i or j, are idertical for both distributions, and so
the Cherno information and Bhattacharyya coe cient are zerofor the marginals. But the
Cherno information and Bhattacharyya coe cien t betweenp and garelogn and (1=2) logn,
respectively.

If we combine two cueswhich are independen then the Cherno information will be less
than, or equalto, the sum of the Cherno informations for eat cue. But empirically we
always found that the Cherno information is appraximately equal to the Bhattacharyya
coe cient (ie. 0:5, seesection(2.2.1)). If two independernt edgecuesare conmbined, then
their Bhattacharyya coe cien ts will simply add [11]. Hencewe expect that the Cherno s
will appraximately add if the cuesare independert.

In practice, we found that the Cherno information and Bhattacharyya coe cien ts of
two coupledcuesis usually a lot lessthan the sum for the individual cues,seesection(3),

sowe concludethat cuesare rarely independer.
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Figure 9: Cherno s for Saverby and South Florida. The edgedetector operatorsare labelled
by stars for (N1;N,), crossesfor N;, triangles for jif , and diamondsfor r 2. The three
Leftmost Panels plot the Cherno Information for Sowerby for full colour, greyscale,and
chrominancerespectively. The Far Right Panelplots Cherno for South Florida for greyscale.

The horizontal axis shavsthe lter scale( = 1;2;4). Decisiontreesare not needed.

3.2.1 Results for First Set of Filters

We now shaw the results on a range of Iters, seetable (1). Recall from section(2.1) that
the basicingredierts are: (I) three di erential operators (seebelow), (I1) the three di erent
colours(image bandsY;I;Q), and (I11) three scalesobtained by convolving the image with
a Gaussianat scale = 1;2;4 pixels.

Our rst result, see gure (9), compares Ilter performanceof (N1;Ny);Ny;jff ;r 2 us-
ing Iters at dierent scales,di erent choicesof colour bands, and for Saverby and South
Florida. The rst two panelsillustrate the advantagesof colour over greyscale.(The advan-
tage of using colour for edgedetection has sometimesbeendoubted in the computer vision
comnunity). It is interesting that the chrominancecues(for which the grey-scalehas been
factored out) are most e ective at large scales,seecertre right panel. This correspnds
nicely with biological vision (for which the chrominance Iters tend to have larger spatial
scaleghan the grey-scalelters). The certer left and far right panelsshaw that it is easierto
detectedgesn South Florida than it isin Soverby. Moreover, the gure showsthat Saverby

edgesare easiestto detect at large scaleswhile South Florida edgesare easiestat low scales



(ie. South Florida edgesare sharply localized).

The Nitzberg lter (Ni;N,) is good presumably becauseit can discriminate between
edgesand textures. Texture is treated as\corners" with two eigervaluesbeing large. By
cortrast, at regular edgesonly one eigervalue is large. But this meansthat the Nitzberg

Iter often treats true edgecornersastexture, and so classi esthem as o -edge.
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Figure 10: The advantagesof using multi-scale Iters. The Cherno information is shovn

for. 1the Iter at scale = 1, f1;2g the coupled Iter for scales = f1;2g, and f1;2;4g

the coupled lter for scales = f1;2;4g. The Cherno always increasesas we add larger-

scale Iters. Convertions asin gure (9). Decisiontrees are required when applying lters

r 2,jif to (Y;1;Q) at scales = 1;2;4,andwhenapplying (N1; N,) to chrominanceat scales
= 1;2.

Figure (10) shows that multi-scale processings very e ective. The conbination of using
operators at scales = 1;2;4 always improvesthe Cherno signi cantly. This increaseis
particularly strongfor the Soverby dataset. Multiscale is better ableto discriminate between
texture edges(which should be discourted) and the edgeswhich correspnd to boundaries.
It is alsoableto detectedgesof di erent widths (which occurin Sownverby but rarely in South
Florida).

We analyze the consistencyof these results for eat image by learning distributions
fPi(;jo -edge)g and f P'(:jon-edggg for ead image and calculating the Cherno s. We plot

this as a relief map, see gure (11). This shows that although the Cherno information
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Figure 11: The relative e ectivenessof lIters is fairly consisten over the ertire datasets.
We plot the Cherno information as a function of the Iter used and the image num-
ber in the dataset (with imagessorted by magnitude of Cherno ). For Sowerby (Left

Panel) the Iters are those from Table 1. For South Florida (Right Panel) the Iters are

F2or 2oomit =it =245 (N1) =15 (Ng;N2) =1

variesfrom imageto imagethe relative e ectivenessof the lters is approximately the same
(we order the imagessothat the Cherno increasesmonotonically).

Figure (12) investigatesthe consistencyof the distributions betweenimages. More pre-
cisely weplot the variations of f P'(:jo -edge)g andf P'(:;jon-edgeg relative to the P (:jon-edgé
and P (:jo -edge) obtained for the ertire dataset. The variations are measuredby the Cher-
no information. This shawvs that the fP'(:jo -edge)g and f P! (:jon-edg@g separatenicely
into two non-overlapping sets. Hencethe distributions are fairly consistem betweenimages.

Despite the di erence between courtry road scenesn England (Sowerby dataset) and
primarily indoor imagesin Florida (South Florida dataset), perhapsthe most striking ob-
senation is that the relative e ectivenessof di erent lters is appraximately unchanged,see

gure (11).

3.2.2 Oriented Filterbank Results

Overlearningwas a signi cant problem whenlearning the statistics of the Iterbank and so
we often usedthe decisiontree represetation.

The results we obtained for the Iterbanks were slightly surprising, see gure (13). We
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section (2.1.2) for the label de nitions. Gabor lters (top panels) and Hilbert transform

Iters (bottom panels). Seetext for interpretation.



shavedthat: (I) The energy lters S2+ A2 werevery e ectiv e and there waslittle advantage,
as measuredby the Cherno information, in using the joint distributions on all the Iters

(which is the optimal approad). (1) The Hilbert transform Iters yield clearly better
performancethan Gabor Iters, probably due to their lack of \ringing”. (I11) Summing
the energyfrom all di erent orientations gave a one-dimensional lter whoseperformance
was closeto optimal (a major surpriseto someof the authors). (IV) Finally, the Hilbert
transform lters including the one dimensional Iter (seelll) were comparableto the best
of the lters previously tested (the Nitzbergs), seegreyscalepanelsin gure (6).

These gures are for aspect ratio = 2 (that is, the Iters are twice as long as their

ervelope in the frequency-tuneddirection). For aspect = 1 the Cherno informations go
down by up to ten per cert. Coupling aspects = 1and = 2 improves performanceby

about v e percen (over = 2).

3.3 ROC results

We can also evaluate the Iters using ROC curves,see gure (5). There are two main ROC
results. Firstly, seesection(3.3.1), there is a simple empirical relationship betweenthe area
under the ROC curve and the Cherno information. Moreover, empirically most of the
form of the ROC curve is determinedby the areaunderit. HenceROC curvesand Cherno

information give very similar results. Secondly seesection(3.3.2), we canuseROC curvesto

comparestatistical edgedetectionto standard edgedetectorsfor South Florida and Saverhy.

3.3.1 Relating Cherno Information and the ROC areas

In this sectionwe give a formula that, empirically, relatesthe Cherno information and the
ROC curvesfor our lters (for both ltersets).

Firstly, when computing the ROC curves for edge discrimination, seeright panel of
gure (5), we noticed that they looked surprisingly similar to the ROC curvesfor univariate
Gaussiandistributions with idertical variances. This implies [15] that the form of the ROC
curve dependsonly on the quartity d®= j , 1Jj= , where ; , are the meansof the
Gaussiansand 2 is their variance. The area under the ROC curve depends only on the

samequartity d®and is given by A(d) = (1=2)f 1+ erf (d=2)g. Soknowing the areaunder



the ROC curve is equivalert to knowing the ROC curve.
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Figure 14: The induceddistributions are often appraximately Gaussianin the overlap region

with identical variances.Probability density asa function of the log-likelihood ratio, for (left

panel) jif  =1:2.4(Y;1;Q), (right panel) jij ;Y.

It is paradaxical that the ROC curveslook roughly like thoseof univariate Gaussianswith
identical variances. The empirical probabilities distributions P (:jon-edge and P (:jo -edge)

are not remotely Gaussians.Howewer, the ROC curvesdepend only on the induceddistribu-

P ( jon-edge)

tions Iﬁ(rjon-edge and Iﬁ(rjo -edge) on the log-likelihood ratio r = logf 5o edge

R o
P(rjon-edgd = dy (r logElz¥oredep o = yion-edgd, P(rjo-edge) = dy (r

P( =yjo-edge)

log %)P( = yjo -edge)). Empirically, theseinduced distributions are often ap-

proximately univariate Gaussianswith identical variances,at leastin the region of overlap

g (where

of the two distributions, see gure (14). We therefore predict that the areaunder the ROC
curve andthe Cherno information arerelated asif the edgeand non-edgedistributions were
univariate Gaussianswith idertical variances.lt is straightforward to calculatethe Cherno
information to be C(d% = (1=8)(d%? which, again, only dependson d°.

Figure (15) plots the Cherno information asa function of the areaunderthe ROC curve.
The bold line is the predicted relationship with the assumption of Gaussiandistributions
with equal variance. The dots correspnd to the empirical results of 420 lters on our
datasets. All the dots lie very closeto the prediction. The right panel of gure (15) plots
the ROC curves for the Univariate Gaussians(solid curve), 2-bin symmetric distributions

p=(a;l1 a);g= (1 a;a) (dashedline) and 2-bin asymmetricalp= (1;0);9= (a;1 a)



exp(-Chernoff)

(line with short dashesand dotted line). The latter hastwo curves depending on whether
we relate the ROC areato the Cherno information or to the Bhattacharyya coe cient (for

the rst two distributions thesequartities are equal).
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Figure 15: Left Panel: the predicted relationship (solid line) betweenCherno information
and the areaunderthe ROC curve ts our experimertal data, represeied by dots, very well
for all of our 420 lters combinations on the Sowverby dataset. Right Panel: the relationship
betweenCherno information and the areaunder ROC curve for three pairs of distributions,

seetext.

3.3.2 ROC comparison of Statistical and Standard Edge Detectors

We now comparethe performanceof statistical edgedetection with that of the Canny edge
detector. In addition, by using the results of Bowyer et al [7, 8], we get comparisonsof
statistical edgedetectionto other corventional edgedetectorson the South Florida dataset.

There are two di culties in comparing statistical edge detection to corvertional edge
detectors. Firstly, cornvertional edgedetectorsusually have a non-maximal suppressiorstage
(Bowyer et al added non-maximal suppressionto all of the edge detectors they tested).
Secondly most cornvertional edge detectors cortain seeral tunable parameters (three for
the caseof Canrny). Both di culties can causebiasesin the ROC curves, seeexamplesin
[23], and require non-standard methods for evaluating true positives and false positives of
the edgedetector responses. We will determinethe ROC curves using both the evaluation

method proposedby Bowyer et al and a new method deweloped here. It can be argued



that an advantage of statistical edgedetection is that it requiresa single parameter (the
threshold) and is straightforward to evaluate using standard ROC and Cherno criteria.

Non-maximal suppressioncausestwo types of problem for ROC curves which, unless
addressed,can make the curves extremely sensitive to errors in the ground truth. Firstly,
non-maximal suppressioncan create a bias on the true positives by preverting an edge
detector from detecting all the ground truth edges. Small errors in ground truth edge
location may meanthat an edgedetector responds correctly at the real position of the edge
which suppessesdts responseat the ground truth location. In addition, the ground truth
edgesmay sometimesbe two pixels wide and so non-maximal suppressionwill prevert an
edgedetector from labelling both pixel points as edges.Secondly non-maximal suppression
can dramatically reducethe number of false positives. This will happen in sectionsof the
ROC curve wherethe proportion of falsepositivesis high (ie. whenmany pixelsin the image
are incorrectly estimatedto be edges). This correspndsto very impractical choicesof the
edgedetector parametersand sois not represetativ e of the behaviour of the edgedetectors
with more realistic parameter settings.

On the South Florida dataset, we adjusted our approad sothat it can be directly com-
pared with the results of Bowyer et al. Firstly, we applied non-maximal suppressionto
statistical edgedetection. Secondly we used Bowyer et al's ewvaluation criteria, seenext
paragraph,to determinethe true positive and falsepositive rates. Thirdly, we comparedthe
edgedetectorsusing the Bayesrisk (assumingpixels are equally likely to be on or o edges
a priori) becausehe Bayesrisk is computedfrom part of the ROC curve which correspnds
to reasonablechoicesof the edgedetector parametervalues.

Bowyer et al's criteria for determining true positivesand falsepositivesis algorithmic. To
evaluate the true positives,a list is constructedof the ground truth pixels. Thereis a second
list consistingof the pixels which the detector labels as edges. The algorithm proceedsby
scanningthe rst list in order. If a pixel in the rst list is within three pixels of an elemen of
the secondlist, then a true positive is courted and the elementin the second list is deletel.
This meansthat ead elemen in the secondlist can\v alidate" at most one elemen of the
rst list and hencepreverts the algorithm from overcourting the number of true positives.
To evaluate the falsepositives,Bowyer et al court the number of pixelsthat the edgedetector

labelsasedgesn region(b) of their three-valued ground truth, seesection(3.1). This means



that edgedetector responseswithin a three-pixel distanceof a ground truth edgeare ignored
when courting the falsepositives(as are edgedetector responsesn textured regions). These
criteria can be criticized, see[23] for an examplewhere they give a misleadingmeasureof
the performanceof an edgedetector, but usually they give intuitiv ely plausible results.

Howeer these criteria only addressthe rst problem of non-maximal suppression(eg.
biaseson the true positives). There will therefore still be distortions in the ROC curves.
Hencewe will evaluate the edgedetectors by their Bayesrisk (with equal prior for pixels
beingon and o edge). The Bayesrisk can be measuredfrom the ROC curve by nding the
point on the curve wherethe slopeis forty v e degreeq15] (this is usually closeto the point
wherethe number of falsenegativesequalsthe number of falsepositives{ and is exactly this
point if the distributions are univariate Gaussianswith idertical variances).

For the edgedetectorsewaluated by Bowyer et al., we obtain appraximate valuesof the
Bayesrisks in the range 0:035{0:045[8]. Our statistical edgedetection givesa Bayesrisk of
0:0350usinga magnitude of the gradiert lter at four scales = 0;1;2; 4 (with non-maximal
suppressionand Bowyer et al's evaluation criteria). Our implemenation of the Canny edge
detector gave a similar Bayesrisk of 0:0352(which is consistem with Bowyer et al's results
and which validates our implemertation). Overall, statistical edge detection performed as
well as any edgedetector reported in [8] using the identical evaluation criteria .

We obtained a signi cant di erence between statistical edgedetection and the Canny
edgedetector on the more challenging Saverby dataset. In this case,we did not apply non-
maximal suppressionto statistical edgedetection but instead used an additional grouping
stage,descriked in the following section. We alsomodi ed the evaluation criteria to address
both problemsof the ROC curve causedby non-maximal suppression.The criteria involved
using morphological operators to enlarge the number of pixels labelled as edgesby the
edgedetector being evaluated and to producea bu er zonearound the ground truth edges
(Bowyer et al useda similar bu er zone). They minimize the bias causedby non-maxmimal
suppressiorwhile allowing for imprecisionsin the groundtruth segmetation. More precisely
we de ned two binary elds g(x); g (x) onthe imagesud that g(x) = 1if pixel x is aground
truth edge,andg (x) = 1if anedgedetectorlabelspixel x asanedge(g(x) = 0Oandg (x) = 0
otherwise). We de ned : to be the complemen (eg. g(x) = 0if g(x) = 1). We de ned ,

to mean a morphological opening on a binary eld (eg. g;(x) = 1 for any pixel x within
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Figure 16: ROC curvesfor Soverby show that statistical edgedetection outperforms Canny.
Left: Canny edgedetectorwith non-maximal suppressiorand hysteresis.Certer: Statistical
edgedetection without grouping. Right: Statistical edgedetection with grouping. (edge-

tolerance=3).

a three-pixel distance of a point labelled an edgeby our detector). The proportion of true
positivesis de ned to be P « g(x)gS(x):P « 9(X). The proportion of falsepositivesis de ned
to be P « g6(x)g3(x):P « 9s(X). Thesecriteria also have their limitations, seediscussionin
[23], but also give plausible results. We tested thesecriteria by applying them to statistical
edgedetection and the Canny edgedetector on the South Florida dataset and showved, see
[23], that they gave similar results to those obtained using Boyer et al's criteria (ie. both
edgedetectorsperform almost identically on the South Florida dataset).

Using these criteria, our results showv that the statistical edgedetector is signi cantly
better than Canny on the Saverby dataset, see gures (16,17). This applieswhether or not
we usegrouping for statistical edgedetection, seesection(4). This is not surprising because
the Canry detector usesonescaleonly and statistical edgedetection usesmarny scaleswhich
are combined optimally (in the statistical sense).The Saverby datasetis harderto segmen
than South Florida becauseof all the badkground clutter, and hencemultiscale processing
givesa big advantage, see gure (10).

For completenesswe also shav the log-likelihood ratios, see gure (17), which can be

usedas measuref edgestrength [14].



Figure 17: Top panels shavs edgesdetected using the Canny edgedetector. The certre
panels showvs the output of statistical edge detection on the sameimages. The bottom
panelsshawv the log likelihood ratios which give a measureof edgestrength. See gure (7)

for the imagesand the ground truth.
4 Spatial Grouping of Edge Cues

Most standard edgedetectorsusea form of local spatial grouping. For example,the Canry
edgedetector [9] usesnon-maximal suppressiorand hysteresis. This grouping exploits prior
knowledgeof edgesin images. Edgesare typically spatially cortiguous (hysteresis)and one
pixel wide (non-maximal suppression).Hysteresisenableslow cortrast edgesto be detected
provided they are closeto high cortrast edges.Alternativ ely, probabilistic modelslike Geman
and Geman|[13 imposeprior probabilities sothat if there is an edgeat one pixel location
then this increaseghe probability of there being edgesat neighbouring pixels.

We now apply statistical edgedetectionto include a form of spatial grouping. Properties
similar to hysteresisand non-maximal suppressiorwill arisenaturally aspart of the learning
process.This grouping signi cantly improvesthe visual quality of our edgedetectionresults.
But paradaically it only givesa small improvemer in our performancecriteria.

Our grouping procedureis similar to our method for learning P (:;jon-edg¢; P (:jo -edge).

The di erence is that we apply a lter bank 1(:) to the posterior distributions Fq(%) =



P(edg oY)jx), where P(edgg:) is the posterior probability that there is an edgeat lo-
cation x conditioned on the lter response o(Y) evaluated at . The intuition is that the
posterior, like the log-likelihood ratio in gure (17), is a measureof edgestrength. (The prior
probability for a pixel being an edgeis measuredas 0:06 from the datasets). Our grouping
procedure convolves the old posterior with lterbank and learns a new \p osterior” F1(x)
(using the ground truth) and then repeatsthe process.

In theory the full procedureis: (i) start with the true posterior Fo(%) = P(edgg o(Y)jx),
(ii) learn F1(x%) = P(edgg 1(Fo)jx), (i) iterate to learn Fi(¥) = P(edgy 1(Fi 1)jx) for
i = 2;3;:::.. But in practice, we useda simpli ed procedurewhich replacesthe third stage
by setting F;i (%) = F1( 1(Fi 1(%))) fori = 2;3;:.

In our experimerts weusedthe lters  o(:) = jff =0.1.24816(:) @nd 1(:) = (1;JF ] =2:8: 1 *20.1.248)(2),
wherel is the identity Iter. The most useful Iters for grouping (ie. for ;) arethosethat
enhanceridges in the posterior (these ridges correspnd to edgesin the images). These
are the Laplacian of a Gaussian,supplemered with gradiert Iters. The idertity Iter, of
course,is useful (becauset givesthe posterior).

We give examplesof groupingin gure (18). Overall our method is good at hysteresisand
enhancingedgesbetweendi erent textures (ie. raising edgesabove threshold becausethey
lie along ridges and support ead other). Edgesin texture are suppressedecausestrong,
and weak, edgestend to suppressnearby weak parallel edges. Our method also does well
at triple points and corners,wherethe Canrny Iter often doespoorly. On the other hand,
we do not seemto thin edgesas well as non-maximal suppressionapplied to the Canry
edgedetector. This may be due to the quartization usedin our approad which can cause
neighbouring pixels to have idertical edge strength (non-maximal suppressionwould not
solve this problem).

To quartify the gains by grouping we calculate the Cherno information. This gives
valuesof 0:263 (without grouping), 0:290 (one level of grouping), 0:282 (two levels of group-
ing), and 0:274 (three levels of grouping). The improvemen with one level of grouping is
small (about ten percert), but visually there are de nite improvemerts, see gure (18). The
decreasein Cherno for two and three levels of grouping are presumably causedby our

simpli ed procedure.



Figure 18: Grouping examples. Top Row: the posterior without grouping: Fo(Xx). Bottom

Row: the posterior after grouping F;(x). Seetext.
5 Adaptation Between Datasets

In this sectionwe showv that we can learn the conditional distributions on one datasetand
adapt them to another with only slight degradation of performancewithout knowing the
ground truth on the second. This shows that our results can be adapted from domain to
domain. It also illustrates that our results are not overly sensitive to the ground truth,
becauseotherwisesud adaptation would causelarger degradation (particularly considering
the di erence betweenthe ground truths in Saverby and South Florida).

We note that Canny discussesadaptation [9] and described methods for estimating the
amourt of noisein imagesin orderto changethe parametersof his edgedetectordynamically.
But this adaptation is not commonly used. More recerly, Grzywacz and Balboa [16] have
descriked a method, using Bayesian probability theory, for how biological vision systems
may adapt their receptive elds from domain to domain basedon edgestatistics.

Formally, we de ne rulesto estimatedistributions PSIF (= yjon-edge; PSIF( = yjo -edge)
for the Saverby dataset using only knowledge of the edgestatistics in the South Florida
dataset. Similarly, we usetheserulesto estimatedistributions PF1S( = yjon-edgg; PFiS( =
yjo -edge) for Florida using edgestatistics from Sowerby. (We usethe superscripts SIF to
indicate the distributions estimated on the Saverby dataset using the segmemations from
South Florida { and vice versafor FiS))

Our adaptation approad is basedon using di erent strategies for estimating the o
statistics PSIF( = yjo -edge); PFIS( = yjo -edge) and the on edgestatistics PSIF( =

yjon-edgg,PFiS( = yjon-edgé.




The strategy for the o statistics is to exploit the fact that most pixels in an imageare
not edges. Thus, for eadr domain, we calculate the probability distributions P( = yjall)
of the Iter responsesfor all the pixels (which doesn't require us to know the segmeration)
to yield our estimate of P( = yjo -edge). (More formally, we can expressP( = yjall) =
(A )P( = yjo-edge) + P( = yjon-edge¢ where 0:06 is the proportion of edgesin
the image. Our strategy sets = 0:0 and, by calculating the Cherno information we verify

that little information is lost.)

Sowerby 0 S.Florida Sowerby/S.Florida

Figure 19: These gures show that for both Saverby (left panel) and South Florida (certre
panel) the asymptotic slope of logP ( jon-edgé (solid line) and logP ( jall) (dotted line) are
practically identical independen of scale. The horizortal axis labelsthe scaleof the lIters
and the vertical axis is the asymptotic slope of the log probability. The right panel showns
that the ratios of the asymptotic slopes of logP( jon-edgée for Sowerby divided by South
Florida (solid line) and the ratios of logP ( jall) (dotted line) all have (approximately) the

samevalue k = 1:5.

To adapt for P( (%)jon-edge betweendatasets,we note that for most of our marginal |-
ters (%), the distribution P( (3¢)jall) approximatesthe on-edgedistribution P( (%¢)jon-edgé
at large (%), seethe left and certre panelsof gure (19). We therefore have accessto
P( (x%)jon-edge (up to a scaling factor) for large (%), without knowledge of the ground
truth. Empirically, we nd that, for large (%), P( (%)jall) drops approximately exponen-
tially, so if we take logP( (%¢)jall), and calculate its asymptotic slope for large (%), it
approximates the asymptotic slope of logP ( (x)jon-edge. Furthermore, if the statistics of
both datasetsdropsexponertially, the ratio of the asymptotic slopesof logP ( (x)jall) yields

a constant scaling factor k which relatesthe (%) of the two datasets. For adapting from



South Florida to Sowerby, we measurek = 1.5 for the magnitude of the gradiert lter, see
right panelof gure (19). We thereforetake the distributions PS( = yjon-edgé¢ measured
on the Sowerby datasetand adapt them by a linear scalingy 7! ky (wherek is the scaling
factor) sothat the fall-o rate for largey is similar to that of PF( = yjall) in the South
Florida dataset. This yields an estimate PFIS( = yjon-edg® of the on edgestatistics in
South Florida, see gure (20). Similarly, we can estimate the edgedistributions in Sowverby
from those measuredin South Florida. It can be shovn [23] that similar results hold for

other lters and, moreover, the performanceis fairly insensitive to the value of k.
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Figure 20: Adaption of P(:jon-edge from South Florida to Sowerby for jrj -, Y. The left
panel shows (un-adapted) P (:;jon-edg@ on Sawverby (dotted line) and South Florida (thin
line). The certre panel shavs P (:jon-edgé for Sowerby (thin line) and the estimate of
P (:jon-edgé for Sowerby (bold line) by adapting from South Florida. The right panelshavs
P (:jon-edgé for Soth Florida (thin dashedline) and the estimate of P (:;jon-edgé for South
Florida (bold dashedline) by adapting from Saverby. The adaptation is doneby scalingthe

Iter responsesy 7! Ky, using the method descriked in the previous gure.

We have tested this processby adapting the multiscale Iter jfj =;.,.4(Y) from Sawverby
to South Florida and vice versa. The gures show that the adaptation is very closedespite
the very di erent nature of datasets (and the di erent ground truths). On the Sowerby
dataset, we get ROC area and Cherno information of (0:827 0:223) for the true dis-
tributions (i.e. using distributions PS( jon-edgé; PS( jo -edge)) and (0:825 0:219) for
the adapted distributions (i.e. using PSIF( jon-edgg; PSIF( jo -edge)). Similarly, we get
ROC area and Cherno information of (0:877 0:336) for the true South Florida distri-
butions (PF( jon-edgé;PF( jo-edge)) and (0:867 0:322) for the adapted distributions



PFiS( jon-edgg; PFiS( jo -edge).
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Figure 21: The e ectivenessof adaptation shovn by ROC curveson Saverby (Left Panel)
and South Florida (Right Panel). The bold and dashedlines shov the ROC curvestrained
on the appropriate datasetand adapted (respectively). The similarity betweenthe bold and

dashedcurvesshaws the succes®f the adaptation. The lter isjrj =;.2.4(Y).

6 Discussion and Conclusion

It hasrecenly beenargued[19], that perceptionshouldbe formulated asBayesianinference.
This paper hastaken this argumert literally and appliedit to the most basicvision task of
edgedetection. Welearnthe probability distributions of edge Iter resppnsesonando edges
from pre-segmeted datasets, detect edgesusing the log-likelihood ratio test, and evaluate
di erent edgecuesusing statistical measureqCherno information and ROC curves).

This approad enablesus to study the e ectivenessof di erent edgecuesand how to
combine cuesoptimally (from a statistical viewpoint). This allows usto quartify the advan-
tagesof multi-scale processing,and the use of chrominanceinformation. We usetwo very
di erent datasets, Soverby and South Florida, and demonstratea way to adapt the edge
statistics from one datasetto the other.

We comparethe results of statistical edgedetection to those of standard edgedetectors.
On the South Florida dataset our results are comparableto those reported by Bowyer et

al [7],[31],[8]for standard edgedetectors. On the Saverby dataset statistical edgedetection



outperforms the Canny edgedetector [9] signi cantly. We note that the Saverby dataset
is signi cantly harder to segmen than the South Florida dataset (we assumethat edge
detectorsshould not respond to texture edges).

Our work was rst publishedasa conferencepaper [20]. Subsequenwork by Siderblath
applied this approad to motion tracking [32]. We have extendedour studies of statistical
cuesfor regionalsegmetation [21]. In addition, we have applied the approad to the task of
edgelocalizationand to quartify the amourt of information lost whenthe imageis decimated
[22]
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