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Abstract

We formulate edgedetection as statistical inference. This statistical edgedetection

is data driven, unlike standard methods for edgedetection which are model based. For

any set of edgedetection �lters (implementing local edgecues)we usepre-segmented

imagesto learn the probabilit y distributions of �lter responsesconditioned on whether

they are evaluated on or o� an edge. Edge detection is formulated as a discrimina-

tion task speci�ed by a likelihood ratio test on the �lter responses. This approach

emphasizesthe necessity of modeling the image background (the o�-edges). We rep-

resent the conditional probabilit y distributions non-parametrically and learn them on

two di�eren t datasetsof 100(Sowerby) and 50 (South Florida) images. Multiple edges

cues,including chrominance and multiple-scale, are combined by using their joint dis-

tributions. Hencethis cuecombination is optimal in the statistical sense.We evaluate

the e�ectiv enessof di�eren t visual cuesusing the Cherno� information and Receiver

Operator Characteristic (ROC) curves. This shows that our approach givesquantita-

tiv ely better results than the Canny edgedetector when the imagebackground contains
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signi�cant clutter. In addition, it enablesus to determine the e�ectiv enessof di�eren t

edgecuesand givesquantitativ e measuresfor the advantagesof multi-lev el processing,

for the useof chrominance,and for the relative e�ectiv enessof di�eren t detectors. Fur-

thermore, we show that we can learn theseconditional distributions on onedataset and

adapt them to the other with only slight degradation of performancewithout knowing

the ground truth on the seconddataset. This shows that our results are not purely

domain speci�c. We apply the sameapproach to the spatial grouping of edgecuesand

obtain analogiesto non-maximal suppressionand hysteresis.

Index Terms: Edge Detection, Statistical Learning, Performance Analysis,

Bayesian Inference.

1 In tro duction

Edgedetectors,see[9], are intended to detect and localizethe boundariesof objects (in this

paper we will use\edge" as a shorthand for object boundary or signi�cant albedo change,

see�gure (1), and later examplesin �gures (7,8)). In practice, it is clear that edgedetection

is an ill-p osedproblem. It is impossibleto design an edgedetector that will �nd all the

true (i.e. object boundary and signi�cant albedochange)edgesin an imageand not respond

to other image features. Examining real images, it is clear that edgedetectors only give

ambiguouslocal information about the presenceof object boundaries.

Most conventional edgedetectorsaredesignedby assumingmodelsof edges.For example,

Canny [9] assumesthat edgesare step functions corrupted by additive Gaussiannoise. But,

as has beenwidely reported [12, 1, 30, 39, 24, 35], natural imageshave highly structured

statistical properties which typically do not agreewith the assumptionsmade by current

edgedetectors. It makessense,therefore,to formulate edgedetection asstatistical inference

where the detectability of edgesdepends both on the statistics of �lters on the edgesbut

also the statistics of �lters o� the edges(ie. on the background image clutter). These

edgeand background statistics may be domain speci�c, and edgedetection should take this

into account. (An alternative approach would be to learn a classi�er [34] without learning

probability distributions, but we show there is su�cien t data to learn the distributions).

To implement statistical edgedetection we make useof ground truth segmentations, see
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Figure 1: A typical Sowerby image(top left panel) with its ground truth segmentation (top

right panel) and its segmentation using the Canny edgedetector (bottom left panel) and by

statistical edgedetection (bottom centre panel). Statistical edgedetection has fewer false

negatives in the textured regions and is also better at detecting edgeswith are partially

de�ned by texture. By contrast, the Canny detector is slightly better at precisionof certain

edges.The log-likelihood ratios are alsoshown (bottom right panel).

�gures (1,7,8). We �rst use two pre-segmented datasets,Sowerby and South Florida, in a

learning stageto determineprobability distributions for the responseof edgedetection �lters

on and o� edges.Edgedetection can then be performedusinga log-likelihood ratio test, see

[11]. (In addition, theselog-likelihood ratios, see�gure (1) can be useas a local measureof

edgestrength [14] in formulations such as snakes[18] and region competition [38]). We use

standard �lters such as the intensity gradient, the Laplacian of a Gaussian,and �lterbanks

of oriented �lter pairs (eg. Gabor �lters). To combine di�erent edgecues,we specify the

edge�lter to be vector-valued, with components corresponding to the di�erent cues(e.g.

grey-scale,chrominance,and multi-scale). In other words, we usethe joint distributions of

the di�erent edgecues(which is the optimal way to combine them).

The probability distributions are represented non-parametrically by multi-dimensional

histograms. The bin boundaries are determined adaptively in order to reduce the total

number of bins required. This is necessaryto ensurethat we have su�cien t data to learn

the probability distributions and to prevent overlearning [34]. We usecross-validation [29]

to check for overlearning. In addition, we sometimesusedecisiontrees[29] to further reduce

the number of bins required.

In our evaluationstage, we determinethe e�ectivenessof the edgedetection �lters by two
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criteria: (i) by evaluating the Cherno� information [11]and, (ii) by determining the Receiver

Operating Characteristic (ROC) curves [15]. The Cherno� information arisesnaturally in

theoretical studiesby Yuille and Coughlan[36] for determining the detectability of roadsin

aerial images[14]. ROC curveshave beenusedby Bowyer et al to empirically evaluate the

performanceof standard edgedetectorson the South Florida dataset [7],[31],[8]. Hencewe

can useROC curvesto comparethe performanceof statistical edgedetection against more

standard edgedetectors. In addition, we usethe areaunder the ROC curve, and the Bayes

risk.

Most practical edgedetectors(eg. Canny [9]) usepost-processingtechniquessuch asnon-

maximal suppressionand hysteresis.We thereforeextendstatistical edgedetection to incor-

porate spatial grouping cues. Thesegrouping cuesare also learnt from our imagedatasets

and, not surprisingly, they show analogsof non-maximum suppressionand hysteresis.

Our resultsshow that statistical edgedetectionsigni�cantly outperformsthe Canny edge

detector [9] when evaluated on the Sowerby dataset, see�gure (16). On the South Florida

dataset,statistical edgedetection performsequivalently to the Canny edgedetector and the

best of the other edgedetectorsevaluated by Bowyer et al [7, 8]. Our results alsoshow that

it is signi�cantly harder to detect edgesin the Sowerby dataset than in the South Florida

dataset. This is becausethere is far more \clutter" in the Sowerby imageswhich can cause

edgedetectorsto report falsepositives,see�gure (1). We assumethat edgedetectorsshould

not report edgesin cluttered and textured regions. Overall, the Sowerby dataset is more

challengingand (arguably) more representativ e of real world images.

We are also able to adapt our probability distributions betweenthe Sowerby and South

Florida datasets with only a small change in performance. In other words, we can per-

form high quality segmentation on South Florida without needing the ground truth (and

similarly on Sowerby). Moreover, the successof our adaptation also shows that the image

statistics are robust with respect to the ground truth. Inspection of the Sowerby and South

Florida datasetsshows that the ground truths were determined rather di�erently, seesub-

section(3.1). If the statistics werevery sensitive to ground truth then it would be impossible

to adapt them betweenthe two datasets.

Our approach complements recent work on empirical performanceanalysisof visual al-

gorithms [6]. Our work was originally inspired by Geman and Jedynak [14], who learnt
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statistics responsesfor �lters on and o� highways in aerial images.We were also inuenced

by the work of Balboa and Grzywacz [2], [3],[4], who measuredcontrast edgestatistics on

and o� occluding boundaries in two image domains which, they argued, corresponded to

di�erences in the receptive �eld properties of the retinas of animals in the two di�erent en-

vironments and proposean alternative adaptation procedure[16]. A recent learning method

[27] is rather di�erent from our approach and make useof reinforcement learning with high-

level feedback. More recently Sullivan et al [33] have learnt statistics for imagebackgrounds

in their work on \Ba yesiancorrelation".

The structure of this paper is as follows. In section (2) we describe the edge �lters,

the two evaluation criteria, and how we represent and learn the conditional probability

distributions. Section(3) gives the results of our edgedetection �lters on the two datasets

using the two evaluation criteria. In Section(4) we describe how we learn spatial grouping

as an analogy to non-maximal suppressionand hysteresis. Section (5) shows that we can

adapt our probability distributions from onedatasetto the other illustrating that our results

are not purely dataset speci�c nor overly dependent on the ground truth of the datasets.

2 Represen ting, Learning, and Evaluating Edge Filters

Statistical edgedetectioninvolveslearningthe conditional probability distributions P(� jon-edge)

and P(� jo� � edge) for the �lter response� conditioned on whether the �lter is evaluated

on or o� an edge. We can then use the log-likelihood ratio test, log P (� (I (x)) j on-edge)
P (� (I (x)) jo�-edge ) > T,

to determine if a pixel x in imageI (x) is an edge,whereT is a suitable threshold (visually

more pleasingedgemaps,however, can be obtained using a further spatial grouping stage,

seesection(4)). Following the analysisof Gemanand Jedynak [14], the log-likelihood ratio

can also be usedas a measureof edgestrength as input to curvesdetectorssuch as snakes

[18] or region competition [38].

This requires us to specify a set of edge detection �lters � , seesubsection(2.1). We

evaluate the e�ectivenessof di�erent edge �lters using performance criteria , seesubsec-

tion (2.2). This requiresrepresenting the conditional probability distributions by adaptive

non-parametric representations(e.g. histograms),seesubsection(2.3). The performancecri-

teria are also usedto determine the adaptive non-parametric representations by evaluating
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the e�ectivenessof the probability distributions induced by the di�erent possiblerepresen-

tations.

Oncethe non-parametricrepresentations have beenchosenthen learning the probability

distributions reducesto evaluating the �lters on the datasets (using the ground truth to

determinewhich pixels are on and o� edges)and counting the number of responsesin each

bin.

2.1 The Tw o Filter Sets

We considertwo setsof edgedetection �lters. The �rst set consistsof standard edge�lters

(supplemented by the Nitzberg �lter, which turns out to be very e�ective). The secondset

consistsof oriented �lter bankspartially inspired by the biology of the human visual system.

2.1.1 The First Filter Set

In this paper, we specify a �lter � by a di�erential (or di�erence) operator, the scalesat

which we apply it, and the colour bandswe apply it to. The �lters in the �rst set are shown

in table (1). The dimension of the �lter is the product of the dimensionsof the operator,

the number of scales,and the number of image bands. For example, �lter no. 2 in the

table is the Laplacian r 2 operator at three scalesapplied to image band Y, and so is a

three-dimensional�lter.

Filter No. Operator Scale Image Band Filter No. Operator Scale Image Band

#1 r 2 � = 1 Y #7 j ~rj � = 1 Y; I ; Q

#2 r 2 � = 1; 2; 4 Y #8 j ~rj � = 1; 2; 4 I ; Q

#3 j ~rj � = 1 I ; Q #9 j ~rj � = 1; 2; 4 Y

#4 j ~rj � = 1 Y #10 N1 � = 1; 2; 4 Y

#5 N1 � = 1 Y #11 N1; N2 � = 1; 2; 4 Y

#6 N1; N2 � = 1 Y #12 j ~rj � = 1; 2 Y; I ; Q

Table 1: There are twelve �lters in the �rst set. For each �lter we estimate the joint

probability distributions of the di�erential operators, the scales,and the imagebands. See

text for de�nition of ~N ; N1; N2.

For the �rst �lter set, the di�erential operatorsare the magnitude of the imagegradient
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j ~rj , the Nitzberg operator ~N [26], and the Laplacian r 2 [25]. Theseare applied at di�erent

scales� by smoothing the image by a Gaussian�lter with variance � 2. There are three

colour bandsY; I ; Q for Sowerby and one(ie. grey-scale)for South Florida.

More precisely, the modulus of the gradient and the Laplacian operators are speci�ed

by the equations
�
�
� ~r � I (x)

�
�
� �

�
�
� ~r G(x; � ) � I (x)

�
�
� and r 2

� I (x) � r 2G(x; � ) � I (x), where

� denotesconvolution and G(x; � ) is a Gaussianat a spatial scaleparameterizedby the

standard deviation � . The Nitzberg operator involves computing the matrix N � (x) =

G(x; � ) � f ~r I (x; � )gf ~r I (x; � )gT where T denotestranspose. In other words, we take the

imagegradient at scale� and then averageits outer product by a Gaussianwith the same

scale(we found it most e�ective to usethe samevalueof � for both scales).The output is the

two-dimensionalvector consistingof both eigenvalues(N1(x; � ); N2(x; � )). This operator is

sensitive to imagecorners(seechps4,16by Harris in [5]), which helpsit discriminate texture

from edges,as we will seein section(3).

Our colour representation is a variant of the NTSC colour space,with Y = 0:299R +

0:587G + 0:114B, I = (0:596R � 0:274G � 0:322B)=Y, Q = (0:211R � 0:523G + 0:312B)=Y.

HereY is interpreted to be the grey-scaleimageand I ; Q arethe chrominancevectors. Unlike

NTSC, we have normalizedthe chrominanceby the greyscale.This normalization enablesus

to examinethe e�ectivenessof chrominancecuesindependent of grey-scale.It is important

to realizethat the choice of colour space representationis relatively unimportant becausewe

usejoint distributions to combinecolour cues. The only reasonit matters at all is becausewe

determinethe bin boundariesbasedon the one-dimensionaldistributions (which do depend

on our choiceof colour space).

The biology of human vision, combined with more pragmatic motives,strongly suggests

that imagesshouldbeprocessedat di�erent scales,see[25]. In such \scale-space"approaches

it is not always clear how to best combine the information given by the edge detectors

at di�erent scales. In statistical edge detection, as described in this paper, the optimal

combination arises naturally by using the joint distributions of the �lters at di�erent scales

(subject to the quantization procedurewe use).

In the rest of this paper, we represent �lters by the operator, the scalesit is applied

at, and the colour bands it is applied to. For example, r 2
� =1 ;2;4(Y; I ; Q) meansthat the

�lter is the Laplacian of a Gaussianapplied at scales� = 1; 2; 4 to the three colour bands
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Y; I ; Q. This �lter is vector-valued with nine dimensions.The e�ectivenessof thesedi�erent

combinations is shown in section(3.2.1).

2.1.2 The Second Filter Set

The second�lter set is a �lterbank of orientation-tuned pairs of symmetric (even) and anti-

symmetric (odd) �lters. It is claimedthat the visual cortex uses�lterbanks of this type and

that edgescan be detectedby so-calledenergy�lters which sumthe squaresof even and odd

�lter pairs. In the computer vision literature, Peronaand Malik [28] have advocated �lters

pairs of this type becauseof their sensitivity both to step edges(due to the odd �lters) and

to ridge edges(due to the even �lters). Seealso [17].

In this section, we considertwo typesof �lter pairs. Firstly, we considereven and odd

Gabor �lter pairs wherethe even �lter is a cosineGabor (shifted to eliminate the DC term)

and the odd �lter is a sine Gabor with the sameorientation and frequency. We quantize

the orientation angles to take 4 values. For each angle the �lters are separablewith a

component in the direction of the angleand in the orthogonal direction. The cross-sections

of the Gabor �lters in the orthogonal direction is given by the real and imaginary parts

of G(x; � )(e2� xi=� � e� 2(� � )2 =� 2
), where G(x; � ) = 1p

2� �
e� x2=(2� 2 ) . Motivated by biological

considerationswe set � = �= 2. The Gabors have crosssectionsof G(x; �  ) in the direction

of the angle where  is the aspect ratio. In summary, each Gabor �lter is described by an

angle � , a wavelength � , and the aspect ratio  .

A well known limitation of Gabor �lters is their tendency to \ring" near edgesbecause

of their high frequencyresponse. This motivates our secondchoice, where the �lter pairs

also occur at a quantized set of angles. The cross sections orthogonal to the angles is

the the secondderivative of a Gaussian d2

dx2 G(x; � ) and its Hilbert transform de�ned by

H f (x) = � 1
�

R1
�1

f (z)
z� x dz. The crosssectionin the direction of the angleis alsoG(x; �  ). For

comparisonto the Gabor �lters, we de�ne an e�ective wavelength � =
p

2� � . We refer to

them asHilbert transform �lters. (Peronaand Malik suggestedthe useof Hilbert transform

pairs [28]). TheseHilbert transform pairs are run at 6 orientations (equally spaced).

To represent di�erent ways of combining the �lter pairs we use the following notation:

S� and A � denotesymmetric and antisymmetric �lters at orientation � respectively, where

� is quantized to take between four and six values(chosento span the orientation space).

8



We can represent the �lterbank output by a single (high-dimensional) �lter ~� = f S� ; A � g

(with dimensioneight or twelve depending on the number of angles). Alternativ ely, there

are four or six \energy" �lters S2
� + A2

� tuned to the orientations � . In addition, we test

�lters which averageover angular direction, S2 =
P

� S2
� and A2 =

P
� A2

� , as well as the

two-dimensional�lter f S2; A2g. Finally, there is the one-dimensional�lter S2 + A2. Our

results,seesection(3.2.2), show that a surprising amount of information is given by S2 + A2.

2.2 Performance Criteria

Weusetwo performancecriteria. The �rst criterion, Cherno� Information [11] is described in

section(2.2.1). It is a measureof the easein determiningwhich of two distributions generates

a set of samples(all members of the set must be sampledfrom the samedistribution). It

arisesin theoretical studies[36] of the di�cult y of detecting roadsin aerial images[14]. The

secondcriterion, is the Receiver Operating Characteristic (ROC) curve [15] of section(2.2.2).

Two additional measurescan be obtained from the ROC curve. The �rst is the area

under the ROC curve, which can be shown to be equal to one minus the error rate for the

2-alternative forced choice task [15]. The secondmeasureis the Bayes risk [29] which can

alsobe obtained directly from the ROC curve (with equalprior probability for on-edgeand

o�-edge). Surprisingly, for the edgedetectors�lters in this paper there is a simple empirical

one-to-onemappingbetweenthe areaunder the ROC curveand the Cherno� information, see

section(3.3.2). Moreover, the nature of the empirical ROC curvessuggeststhat they can be

approximately characterizeduniquely by the areaunder the ROC curves,seesection(3.3.2).

Hencethe ROC curvesare alsodirectly related to the Cherno� information.

Both performancecriteria are measuresof statistical discriminability wherethe discrimi-

nation is doneusing the log-likelihood ratio test [11]. Thereforeboth performancemeasures

depend only on the induced distributions P̂(r jon-edge); P̂(r jo�-edge) on the log-likelihood

ratio r = log P (� jon-edge)
P (� jo�-edge ) . These induced distributions are one-dimensionaland empirically

are approximately Gaussianswith identical variances. This will be important when under-

standing the empirical relationship betweenthe Cherno� and ROC curves.

Note that both criteria were derived for discrimination formulated as probabilistic in-

ference[11],[15]. It is not straightforward to apply them to edgedetectors which are not
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formulated in probabilistic terms. For example, the ROC curve assumesthat there is a

one-dimensionalparameterthat canbe varied. For statistical edgedetection, this parameter

corresponds to the threshold usedfor edgedetection. But conventional edgedetectorscan

contain several adjustable parameters. For example,the Canny detector [9] contains three

adjustableparameters(onescaleand two thresholds). Bowyer et al [7, 8] obtain ROC curves

by choosing the optimal selectionof theseparameters.

2.2.1 Cherno� Information

Our �rst performancemeasure,the Cherno� information [11], is motivated by the following

question: supposewe wish to determine whether a set of samplesis more likely to be on-

edgeor o�-edge. This task is important when determining whether to \group" a set of

image pixels to form a continuous edgepath. The Cherno� information and the closely

related Bhattacharyya coe�cien t are directly related to the order parametersdeterminedby

Yuille and Coughlan[36] whenanalyzing the Gemanand Jedynak theory of curve detection

[14]. In this theory, the larger the Cherno� information betweenthe probability distributions

of �lter responseson and o� edges,then the larger the order parameter and the easierit

becomesto detect the curve.

Let ~y = f y(x1); y(x2); :::; y(xN )g be a sequenceof independent samplesof the responses

of the edgedetector at positions x1; :::; xN . Using the Neyman-Pearson lemma [11], the

optimal test (e.g., the maximum likelihood test) for determining whether the samplescome

from P(:jon-edge) or P(:jo�-edge) dependsonly on the log-likelihood ratio, r � log P (~yjon-edge)
P (~yjo�-edge ) .

By the assumptionof independence,this reducesto r =
P N

i=1 logf P (y(x i )jon-edge)
P (y(x i )jo�-edge ) g.

The larger the log-likelihood ratio, then the more probable that the measurement sam-

ple ~y came from the on-edgerather than o�-edge distribution (if the log-likelihood ratio

is zero then both on-edgeand o�-edge are equally probable). It can be shown [11] that,

for su�cien tly large N , the expected error rate of this test decreasesexponentially by

e� N C(P (:jon-edge);P (:jo�-edge )) whereC(p;q) is the Cherno� Information [11] betweentwo prob-

abilit y distributions p and q, de�ned by:

C(p;q) = � min
0� � � 1

logf
JX

j =1

p� (yj )q1� � (yj )g; (1)

wheref yj : j = 1; :::; Jg arethe variablesthat the distributions arede�ned over (in this paper,
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each yi corresponds to a histogram bin). A closely related quantit y is the Bhattacharyya

coe�cien t:

B (p;q) = � logf
JX

j =1

p1=2(yj )q1=2(yj )g: (2)

Empirically, however, we �nd that the Cherno� information for our edgedetection �lters

almost always corresponds to a value of � � 1=2, seesection (3). Therefore the Cherno�

information and the Bhattacharyya coe�cien t give very similar values in our application

domain. The only situation wherethis doesnot happen is when there is too little data and

the model starts to overlearn. In the generalcase,however, C(p;q) � B (p;q) for any p;q

(becauseCherno� information selects� to minimize logf
P J

j =1 p� (yj )q1� � (yj )g with respect

to � while the Bhattacharyya coe�cien t just sets� = 1=2).

To illustrate the Cherno� information, we �rst calculate it for two univariate Gaussians

with variances� 2 and means� 1; � 2. It becomes(� 1 � � 2)2=(8� 2) nats (1 nat equalslog2 e

bits), and for the special casewhen � 2 � � 1 = � , the Cherno� information equals0:125nats.

2.2.2 Receiv er Op erating Characteristic Curv es

We also evaluate the edgedetection �lters using ROC curves [15] for classifying individual

pixels.

Pixelsareclassi�ed as\on-edge � " or \o�-edge � " dependingon whetherthe log-likelihood

ratio log P (� = yjon-edge)
P (� = yjo�-edge ) is above or below a threshold T, respectively. Each threshold T yields

a point on the ROC curve corresponding to the proportion of correct responses(P(on �

edge� jon-edge)) and falsepositives(P(on � edge� jo�-edge)), see�gure (5).

We usetwo additional measureswhich can be derived from the ROC curve: (i) the area

under the ROC curve (which is one minus the error rate for the 2-alternative forced choice

task(2AFC)), and(ii) the Bayesrisk givenby (1=2)f P(on-edge� jo� � edge)+ P(o�-edge� jon-edge)g,

wherepixel x is classi�ed as \on-edge � if P(� (I (x)) jon-edge) > P(� (I (x)) jo�-edge) and as

\o�-edge � otherwise.

2.3 Tw o Non-P arametric Probabilit y Represen tations

We will considertwo non-parametric ways to represent probability distributions. The �rst

usesmulti-dimensional histogramswith bin boundarieschosenadaptively for each dimension
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(onedimensionfor each visual cue). The number of bins usedby this representation increases

exponentially with the number of visual cues. Learning such a distribution requiresa large

amount of training data to avoid overlearning [34], which occurs when we do not have

enough data to learn the probability distributions accurately (ie. we can memorize the

distributions but we cannot generalize from them to new data). This motivates our second

representation which usesdecisiontrees[29]to selectthosebin boundarycuts which besthelp

discrimination. This representation enablesus to learn distributions for high-dimensional

�lters.

We usecross-validation [29] to determine if overlearning has occurred. This procedure

learnsdistributions on onepart of the datasetand checks for consistencyby evaluating them

on the rest. For example,supposewe try to learn the distributions for a nine-dimensional

�lter with six bins for each dimension (ie. 69 bins in total). Then cross-validation shows

that we cannot accuratelylearn the distributions, see�gure (6). In practice, simplecluesare

often su�cien t to tell us whether overlearningis occurring. Firstly, overlearningonly occurs

when the number of bins is of the sameorder of magnitude, or larger, than the number of

datapoints. Secondly, the our performancecriteria will give suspiciouslylarge valueswhen

overlearning is occurring.

The adaptive binning and the decision tree procedure usesperformancemeasuresto

determine good choicesof bin boundariesand decisioncuts. Theseperformancemeasures,

Cherno� information and Receiver Operation Characteristic (ROC) curves,were described

in the previoussubsection(2.2).

2.3.1 Multi-dimensional Histograms with Adaptiv e Binning

Recall that any edgecue (or combination of cues)is represented by an operator � (:) which

can be a linear, or non-linear, �lter with scalar or vector valued output. For example,one

possibility is the scalar �lter
�
�
� ~r (:)

�
�
� , seesubsection(2.1) for other �lters.

Having chosen an edge operator � (:), we have to quantize its response values. This

involvesselectinga �nite set of possibleresponsesf yj : j = 1; :::; Jg. The e�ectivenessof the

operator will depend on this quantization scheme,so caremust be taken to determine that

the quantization is robust and closeto optimal.

We illustrate the quantization on the �lter j ~rj � =1 (Y ). For one-dimensional�lters there
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is always su�cien t data to learn histogramswith 256bins for P(� = yjon-edge) and P(� =

yjo�-edge). Figure (2) shows that the probability distribution for P(� = yjo�-edge) is

strongly peaked near y = 0 (i.e. the image gradient tends to be small away from edges)

while the peak of P(� = yjon-edge) occurs at larger values of y (i.e., the image gradient

is likely to be non-zero at edges). We compute the Cherno� information between these

two distributions to give an upper bound for how well we can discriminate between the

distributions. Then we selectbin boundarieswhich maximize the Cherno� information in

a greedy manner and compute how the Cherno� information increasestowards the upper

bound as the number of bins increases. This is plotted in �gure (2) and shows that the

Cherno� information quickly reachesits asymptotic value with only a small number of bins.

It becameclearthat most of the reliable information canbeextractedusingonly six adaptive

bins for each dimension of the �lter (this adaptation is performed over the entire dataset

and not for each individual image).
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Figure 2: Left Panel: the marginal distributions of the magnitudeof the gradient �lter on Y

at � = 1 (evaluated on the Sowerby dataset). The vertical axis labelsthe probability density

and the horizontal axis labels the �lter response. The dark line indicates P(� = yjo�-edge)

and the dotted line shows P(� = yjon-edge). The vertical dashedlines indicate the positions

of the bin boundarieswhich are adaptively chosen. Right Panel: the Cherno� information

rapidly reachesan asymptotic value as a function of the number of bins.

For higher-dimensional�lters we simply userectangular bins with the boundariesgiven

by the one-dimensionalmarginals.
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2.3.2 The Decision Tree Represen tation

The main disadvantage of the multi-dimensional histogram representation is that the num-

ber of bins used increasesexponentially with the dimensionality of the edge �lters, and

so the amount of training data required also grows exponentially . This puts limits on the

dimensionality of the edge�lters that we can use.

The decisiontree approach givesa morecompactrepresentation. Moreover, it alsoallows

us to learn probabilities in situations whereoverlearningoccursby adjusting the sizeof the

representation, seesubsubsection(2.3.3).

The decision tree procedure consists of adaptively selecting cuts on any of the one-

dimensional �lter axes so as to maximize the Cherno� information, see �gure (3). We

use a greedy algorithm to select the best choice of bins. That is, we �nd the k th cut by

adding the bin boundary that maximizes the Cherno� information given the best k � 1

cuts. More precisely, suppose we have an M-dimensional �lter with one-dimensionalbin

boundariesat f yi
m : i = 1; :::; n; m = 1; :::; M g (where n is the number of bins used in

the one-dimensionalhistograms{ typically n = 6 in this paper). The distributions of the

�lters are P(� = yjon-edge) and P(� = yjo�-edge). With no cuts, the two distributions

P(� = yjon-edge) and P(� = yjo�-edge) are, of course,indistinguishable. We then �nd the

best cut yi
m which maximizesthe Cherno� information betweenthe two distributions. Then

we choosethe secondbest cut (given the �rst best cut), and so on. This is an alternative

way of representing the probability distributions with the number of bins boundedabove by

2k wherek is the number of cuts.
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Figure 3: Example of Decision Cuts. No cuts (Left Panel), one cut (Centre Panel), and

multiple cuts (Right Panel).

The decisiontree procedure,see�gure (4), showsthat the bulk of the information content

canoften beobtainedusingremarkably fewdecisioncuts. For example,with six cuts (ie. n =

6) we typically obtain betweeneighty and ninety percent of the total Cherno� information.
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This givesa good approximation to the full histogramsusing at most 26 = 64 bins instead

of 69 = 10; 077; 696bins. Indeed,a singlecut (i.e. using the marginal distribution of a single

�lter) typically yields betweenforty and �ft y percent of the total Cherno� information. This

shows that there is diminishing returns for addingextra �lters of the type wehave considered

so far and for the binary on-edgeversuso�-edge decisiontask.
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Figure 4: The decisiontrees for the Sowerby (Left panel) and South Florida (Right panel)

datasets. The Cherno� informations approach an asymptote at about 6 cuts and a single

cut givesover half the total Cherno� information. The �lter is j ~rj � =1 ;2;4Y.

2.3.3 Overlearning, Cross-V alidation, and Decision Trees

The decisiontreeprocedurealsoallowsusto learnprobability distributions for high-dimensional

�lters for which overlearningoccurs. For each number of decisioncuts, weusecross-validation

to test whether we are overgeneralizingor not (using either Cherno� or ROC as the per-

formancecriterion). This enablesus to determine the maximum number of decisioncuts

we can make while preventing overlearning. The number of on-edgeand o�-edge pixels are

(2:35� 106; 34:3 � 106) on Sowerby and (4:31� 105; 12:1 � 106) on South Florida.

To do cross-validation, we randomly divide the dataset (Sowerby or South Florida) into

two sets, set0 and set1. We learn the distributions on both datasetsas a function of the

number of decisioncuts. Then we calculate the Cherno� information and/or ROC curves

within the two datasets(by evaluating set0 on set0 and set1 on set1) and across the two

datasetsby evaluating set0on set1,and set1on set0.

For example,we can calculatethe ROC curvesfor the �lter j ~r j � =1 ;2;4(Y; I ; Q). The �lter
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Figure 5: Crossvalidation for the Sowerby dataset using the �lter j ~r j � =1 ;2;4(Y; I ; Q). The

inset boxesshow blown-up sectionsof the ROC curves. Left panelshows that the within-set

ROC curves(dark bold and dark dashedat top) and across-setROC curves(light bold and

light dashedat bottom) are not consistent (ie. do not overlap) and so overlearning occurs.

Right panel,sameasabove exceptthat we now usedecisiontreeswith 20cuts. The resulting

ROC curvesare now far more consistent.
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Figure 6: Overlearning for the Sowerby dataset using �lter j ~rj � =1 ;2;4(Y; I ; Q). Left Panel:

The Cherno� information asa function of the number of decisioncuts suggestsoverlearning.

The Cherno� reaches a plateau at 10- 20 cuts but then starts slowly rising again, which

is a good (empirical) warning of overlearning. Right Panel: Overlearning is con�rmed by

Cross-Validation wherewe plot the two within-set Cherno�s (solid and dotted) and the two

between-setCherno�s (dashedlines). The lack of consistency(overlap) betweenthesecurves

shows that overlearning occurs if we usemore than 20 cuts. The most reliable Cherno� is

0.322.
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is nine-dimensionaland hencehas 69 = 10:077696� 106 bins which is too large to learn

reliably becauseit is the sameorder of magnitude as the number of on-edgeand o�-edge

pixels in the Sowerby dataset. If we attempt to learn the distributions using the multi-

scalehistograms then the within-set ROC curves are not consistent with the between-set

ROC's and so we get overlearning, seeleft panel of �gure (5). But if we use a decision

tree representation with 20 cuts then all the ROC curvesare consistent, see�gure (5) (right

panel), and there is no overlearning. The decisiontree procedurereducesthe number of bins

to 13:8 � 103 which is far smaller than the amount of on-edgeand o�-edge Sowerby pixels.

Alternativ ely, we can check for overlearning by using the Cherno� information. In �g-

ure (6), left panel, we plot how the Cherno� information increaseswith the number of cuts.

Observe that the Cherno� rapidly increasesto a plateau at about 10 cuts but then starts

to rise again at 20 cuts. In our experience,this rise from the plateau is always a sign of

overlearning. To verify this, observe the results of cross-validation in the right panel of �g-

ure (6). This rise from the plateau can be usedasa heuristic to check whether overlearning

is occurring.

By this techniquewe canusehigher-dimensional�lters than is possiblewith our adaptive

histogram approach. This is particularly useful when using the oriented �lterbank, see

subsubsection(2.1.2). The �lterbanks require a lot of data becausethey involve running

�lter pairs at 4 or 6 orientations. For example,if we use4 orientations then the �lterbank

is eight dimensional and requires 1:679616� 106 bins which is too large to learn on the

South Florida dataset. But the decisiontree approach reducesthe number of bins to 104

and prevents overlearning,see�gure (13).

3 Edge Discrimination Results

We now describe our experimental results where the goal is to determine whether a given

pixel is on or o� an edge.

We evaluate our approach on both the Sowerby and South Florida datasets. These

datasetsdi�er in important respectswhich we describe in subsection(3.1). Then weevaluate

cuesusing the Cherno� information in subsection(3.2), and ROC curvesin subsection(3.3).

It is shown in section(3.3.2) that both criteria give similar results.
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3.1 The Tw o Datasets

The Sowerby datasetcontains onehundred pre-segmented colour images.The South Florida

dataset contains �ft y greyscaleimages. These datasets di�er both by the nature of the

imagesand by the methods usedto construct the segmentations (the ground truth).

Figure 7: Top row: four typical imagesfrom the Sowerby datasetwhich contains a variety of

urban and rural scenes(the original imagesare in colour). Bottom Row: the ground truth

segmentations supplied with the Sowerby image dataset. The ground truth is not perfect;

someedgesare missingand someare several pixels wide.

The Sowerby images,see�gure (7), areoutdoor imagestakenin Englandwhich all contain

a road or a track. The imagebackground contains a lot of vegetation (eg. grass,brambles,

trees) which correspondsto texture in the image. The ground truth include edgeswhich are

not very distinct or poorly delineated. They include, for example, the boundary between

a footpath and the grasswhich surround it. Overall, the dataset is a challenge for edge

detectors and, in particular, for those which only use greyscaleinformation. By contrast,

the South Florida dataset, see�gure (8), largely consistsof indoor images. There is very

little background texture. Moreover, the ground truth edgesare often visually salient and

spatially localized(eg. only onepixel wide).

We assumethat it is far easierto detect edgescorrectly in the South Florida dataset

than in Sowerby. The edgesare sharper and the background statistics are lesscomplicated

(due to the lack of texture). Theseassumptionsare born out by our experimental results in

the rest of this section.

The ground truths in the two datasetswere clearly createddi�erently, see�gures (7,8).
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Figure 8: Left panel: four typical imagesfrom the South Florida dataset, which consists

primarily of indoor imagesand man-madeobjects. Right panel: the ground truth segmen-

tations supplied with the South Florida imagedataset.

For example,the South Florida edgesare thin and well localized. By contrast, the Sowerby

edgesare thick (eg. often two pixels wide). Moreover, the South Florida imageshave a 3-

valuedground truth while the Sowerby imageshave 2-values. For South Florida, the 3-values

correspond to three sets: (a) edge,(b) background, and (c) pixels closeto edgesand some

texture regions in the background. By contrast, Sowerby image pixels are labelled either

as edgeor non-edge.In our experiments we always reclassifySouth Florida pixels as either

edgeor non-edge(ie. the non-edgeset is the union of sets\b" and \c").

Five imagesfrom the Sowerby set (out of a hundred and four) have very poor quality

edgemapsand so we rejectedthem. Theseimagesare 06-36,10-19,13-10,13-13,14-22.

It is very useful for us to have two datasets which di�er both in their statistics and

their criteria for ground truth. Firstly, as we will show in section (5), we are able to learn

the statistics on one dataset and then adapt them to the other with only a small loss in

performance.This showsthat statistical edgedetectionis robust to errorsin the groundtruth

(becauseit would be impossibleto achieve this level of adaptation if the edgestatistics were

very sensitive to the rather di�erent groundtruth criteria usedin the two datasets). Secondly,

statistical edgedetection givesonly slightly better results than standard edgedetectorson

the (easier)South Florida dataset (as evaluated by the Bayesrisk -seesection(3.3.2)). But

statistical edgedetection doesbetter on the (harder) Sowerby dataset. See�gures (1, 17)
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for visual comparisonand then comparethe ROC results for Canny detector and statistical

edgedetection in �gure (16).

3.2 Results using Cherno� Information

We show results for the �rst set of �lters in subsection(3.2.1) and for the secondset of �lters

in subsection(3.2.2).

To calibrate the Cherno� information for individual cues,we estimatedit to be 0:22 nats

for the Gemanand Jedynak road tracking application [14]. Recall that it equals0:125nats

for two univariate Gaussianswhen the di�erence between the two meansis equal to the

variance. These set a baselineand, as we will show, we can obtain Cherno� information

signi�cantly higher by combining cues.

To calibrate the Cherno� information for multi-dimensional �lters, we need to know

how it can changeas a function of the dimension. It is guaranteed to never decreasebut

in principle it could increaseby an arbitrarily large amount [11]. For example, consider

two distributions p(i; j ) = 1=n2 for i = 1; ::; n and j = 1; :::; n, and q(i; j ) = (1=n)� ij .

Then the marginal distributions, over i or j , are identical for both distributions, and so

the Cherno� information and Bhattacharyya coe�cien t are zero for the marginals. But the

Cherno� information and Bhattacharyya coe�cien t betweenp andq arelogn and (1=2) logn,

respectively.

If we combine two cueswhich are independent then the Cherno� information will be less

than, or equal to, the sum of the Cherno� informations for each cue. But empirically we

always found that the Cherno� information is approximately equal to the Bhattacharyya

coe�cien t (ie. � � 0:5, seesection(2.2.1)). If two independent edgecuesarecombined, then

their Bhattacharyya coe�cien ts will simply add [11]. Hencewe expect that the Cherno�s

will approximately add if the cuesare independent.

In practice, we found that the Cherno� information and Bhattacharyya coe�cien ts of

two coupledcuesis usually a lot lessthan the sum for the individual cues,seesection (3),

so we concludethat cuesare rarely independent.
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Figure 9: Cherno�s for Sowerby and South Florida. The edgedetectoroperatorsare labelled

by stars for (N1; N2), crossesfor N1, triangles for j ~rj , and diamonds for r 2. The three

Leftmost Panels plot the Cherno� Information for Sowerby for full colour, greyscale,and

chrominancerespectively. The Far Right Panelplots Cherno� for SouthFlorida for greyscale.

The horizontal axis shows the �lter scale(� = 1; 2; 4). Decisiontreesare not needed.

3.2.1 Results for First Set of Filters

We now show the results on a range of �lters, seetable (1). Recall from section (2.1) that

the basic ingredients are: (I) three di�erential operators (seebelow), (I I) the three di�erent

colours(image bandsY; I ; Q), and (I I I) three scalesobtained by convolving the imagewith

a Gaussianat scale� = 1; 2; 4 pixels.

Our �rst result, see�gure (9), compares�lter performanceof (N1; N2); N1; j ~rj ; r 2 us-

ing �lters at di�erent scales,di�erent choicesof colour bands, and for Sowerby and South

Florida. The �rst two panelsillustrate the advantagesof colour over greyscale.(The advan-

tage of using colour for edgedetection has sometimesbeendoubted in the computer vision

community). It is interesting that the chrominancecues(for which the grey-scalehas been

factored out) are most e�ective at large scales,seecentre right panel. This corresponds

nicely with biological vision (for which the chrominance �lters tend to have larger spatial

scalesthan the grey-scale�lters). The center left and far right panelsshow that it is easierto

detect edgesin South Florida than it is in Sowerby. Moreover, the �gure shows that Sowerby

edgesare easiestto detect at large scaleswhile South Florida edgesare easiestat low scales
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(ie. South Florida edgesare sharply localized).

The Nitzberg �lter (N1; N2) is good presumably becauseit can discriminate between

edgesand textures. Texture is treated as \corners" with two eigenvaluesbeing large. By

contrast, at regular edgesonly one eigenvalue is large. But this meansthat the Nitzberg

�lter often treats true edgecornersas texture, and so classi�es them as o�-edge.
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Figure 10: The advantagesof using multi-scale �lters. The Cherno� information is shown

for: 1 the �lter at scale� = 1, f 1; 2g the coupled �lter for scales� = f 1; 2g, and f 1; 2; 4g

the coupled �lter for scales� = f 1; 2; 4g. The Cherno� always increasesas we add larger-

scale�lters. Conventions as in �gure (9). Decisiontrees are required when applying �lters

r 2; j ~rj to (Y; I ; Q) at scales� = 1; 2; 4, and whenapplying (N1; N2) to chrominanceat scales

� = 1; 2.

Figure (10) shows that multi-scale processingis very e�ective. The combination of using

operators at scales� = 1; 2; 4 always improves the Cherno� signi�cantly. This increaseis

particularly strong for the Sowerby dataset. Multiscale is better ableto discriminate between

texture edges(which should be discounted) and the edgeswhich correspond to boundaries.

It is alsoable to detect edgesof di�erent widths (which occur in Sowerby but rarely in South

Florida).

We analyze the consistencyof these results for each image by learning distributions

f P i (:jo�-edge)g and f P i (:jon-edge)g for each imageand calculating the Cherno�s. We plot

this as a relief map, see�gure (11). This shows that although the Cherno� information
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Figure 11: The relative e�ectivenessof �lters is fairly consistent over the entire datasets.

We plot the Cherno� information as a function of the �lter used and the image num-

ber in the dataset (with images sorted by magnitude of Cherno� ). For Sowerby (Left

Panel) the �lters are those from Table 1. For South Florida (Right Panel) the �lters are

r 2
� =1 ; r 2

� =1 ;2;4; jrj � =1 ; jrj � =1 ;2;4; (N1)� =1 ; (N1; N2)� =1 .

variesfrom imageto imagethe relative e�ectivenessof the �lters is approximately the same

(we order the imagesso that the Cherno� increasesmonotonically).

Figure (12) investigatesthe consistencyof the distributions betweenimages. More pre-

cisely, weplot the variations of f P i (:jo�-edge)g and f P i (:jon-edge)g relativeto the P(:jon-edge)

and P(:jo�-edge) obtained for the entire dataset. The variations are measuredby the Cher-

no� information. This shows that the f P i (:jo�-edge)g and f P i (:jon-edge)g separatenicely

into two non-overlapping sets. Hencethe distributions are fairly consistent betweenimages.

Despite the di�erence between country road scenesin England (Sowerby dataset) and

primarily indoor imagesin Florida (South Florida dataset), perhapsthe most striking ob-

servation is that the relative e�ectivenessof di�erent �lters is approximately unchanged,see

�gure (11).

3.2.2 Orien ted Filterbank Results

Overlearningwas a signi�cant problem when learning the statistics of the �lterbank and so

we often usedthe decisiontree representation.

The results we obtained for the �lterbanks were slightly surprising, see�gure (13). We
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Figure 12: We illustrate that the P(:jon-edge) and P(:jo�-edge) for all the imagescluster

nicely into two disjoint setsfor Sowerby (Left Panel) and South Florida (Right Panel). The
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Figure 13: Oriented Filters on Sowerby (left panels)and South Florida (right panels). See

section (2.1.2) for the label de�nitions. Gabor �lters (top panels) and Hilbert transform

�lters (bottom panels). Seetext for interpretation.
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showed that: (I) The energy�lters S2 + A2 werevery e�ective and there waslittle advantage,

as measuredby the Cherno� information, in using the joint distributions on all the �lters

(which is the optimal approach). (I I) The Hilbert transform �lters yield clearly better

performancethan Gabor �lters, probably due to their lack of \ringing". (I I I) Summing

the energy from all di�erent orientations gave a one-dimensional�lter whoseperformance

was closeto optimal (a major surprise to someof the authors). (IV) Finally, the Hilbert

transform �lters including the one dimensional�lter (seeI I I) were comparableto the best

of the �lters previously tested (the Nitzbergs),seegreyscalepanelsin �gure (6).

These �gures are for aspect ratio  = 2 (that is, the �lters are twice as long as their

envelope in the frequency-tuneddirection). For aspect  = 1 the Cherno� informations go

down by up to ten per cent. Coupling aspects  = 1 and  = 2 improves performanceby

about �v e percent (over  = 2).

3.3 ROC results

We can alsoevaluate the �lters using ROC curves,see�gure (5). There are two main ROC

results. Firstly, seesection(3.3.1), there is a simple empirical relationship betweenthe area

under the ROC curve and the Cherno� information. Moreover, empirically most of the

form of the ROC curve is determinedby the areaunder it. HenceROC curvesand Cherno�

information give very similar results. Secondly, seesection(3.3.2), we canuseROC curvesto

comparestatistical edgedetectionto standardedgedetectorsfor South Florida and Sowerby.

3.3.1 Relating Cherno� Information and the ROC areas

In this sectionwe give a formula that, empirically, relatesthe Cherno� information and the

ROC curvesfor our �lters (for both �ltersets).

Firstly, when computing the ROC curves for edge discrimination, seeright panel of

�gure (5), we noticed that they looked surprisingly similar to the ROC curvesfor univariate

Gaussiandistributions with identical variances.This implies [15] that the form of the ROC

curve depends only on the quantit y d0 = j� 2 � � 1j=� , where � 1; � 2 are the meansof the

Gaussiansand � 2 is their variance. The area under the ROC curve depends only on the

samequantit y d0 and is given by A(d0) = (1=2)f 1 + erf (d0=2)g. So knowing the areaunder

25



the ROC curve is equivalent to knowing the ROC curve.
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Figure 14: The induceddistributions areoften approximately Gaussianin the overlap region

with identical variances.Probability density asa function of the log-likelihood ratio, for (left

panel) j ~rj � =1 ;2;4(Y; I ; Q), (right panel) j ~rj � =1 Y.

It is paradoxical that the ROC curveslook roughly like thoseof univariate Gaussianswith

identical variances.The empirical probabilities distributions P(:jon-edge) and P(:jo�-edge)

are not remotely Gaussians.However, the ROC curvesdependonly on the induceddistribu-

tions P̂(r jon-edge) and P̂(r jo�-edge) on the log-likelihood ratio r = logf P (� jon-edge)
P (� jo�-edge ) g (where

P̂(r jon-edge) =
R

dy� (r � log P (� = yjon-edge)
P (� = yjo�-edge ) )P(� = yjon-edge), P̂ (r jo�-edge) =

R
dy� (r �

log P (� = yjon-edge)
P (� = yjo�-edge ) )P(� = yjo�-edge)). Empirically, theseinduced distributions are often ap-

proximately univariate Gaussianswith identical variances,at least in the region of overlap

of the two distributions, see�gure (14). We thereforepredict that the areaunder the ROC

curve and the Cherno� information arerelatedasif the edgeand non-edgedistributions were

univariate Gaussianswith identical variances.It is straightforward to calculatethe Cherno�

information to be C(d0) = (1=8)(d0)2 which, again, only dependson d0.

Figure (15) plots the Cherno� information asa function of the areaunder the ROC curve.

The bold line is the predicted relationship with the assumption of Gaussiandistributions

with equal variance. The dots correspond to the empirical results of 420 �lters on our

datasets. All the dots lie very closeto the prediction. The right panel of �gure (15) plots

the ROC curves for the Univariate Gaussians(solid curve), 2-bin symmetric distributions

p = (a;1 � a); q = (1 � a;a) (dashedline) and 2-bin asymmetrical p = (1; 0); q = (a;1 � a)
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(line with short dashesand dotted line). The latter has two curves depending on whether

we relate the ROC areato the Cherno� information or to the Bhattacharyya coe�cien t (for

the �rst two distributions thesequantities are equal).
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Figure 15: Left Panel: the predicted relationship (solid line) betweenCherno� information

and the areaunder the ROC curve �ts our experimental data, represented by dots, very well

for all of our 420�lters combinations on the Sowerby dataset. Right Panel: the relationship

betweenCherno� information and the areaunder ROC curve for three pairs of distributions,

seetext.

3.3.2 ROC comparison of Statistical and Standard Edge Detectors

We now comparethe performanceof statistical edgedetection with that of the Canny edge

detector. In addition, by using the results of Bowyer et al [7, 8], we get comparisonsof

statistical edgedetection to other conventional edgedetectorson the South Florida dataset.

There are two di�culties in comparing statistical edgedetection to conventional edge

detectors. Firstly, conventional edgedetectorsusually have a non-maximalsuppressionstage

(Bowyer et al added non-maximal suppressionto all of the edge detectors they tested).

Secondly, most conventional edgedetectors contain several tunable parameters(three for

the caseof Canny). Both di�culties can causebiasesin the ROC curves, seeexamplesin

[23], and require non-standard methods for evaluating true positives and false positives of

the edgedetector responses.We will determine the ROC curvesusing both the evaluation

method proposedby Bowyer et al and a new method developed here. It can be argued
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that an advantage of statistical edgedetection is that it requires a single parameter (the

threshold) and is straightforward to evaluate using standard ROC and Cherno� criteria.

Non-maximal suppressioncausestwo types of problem for ROC curves which, unless

addressed,can make the curves extremely sensitive to errors in the ground truth. Firstly,

non-maximal suppressioncan create a bias on the true positives by preventing an edge

detector from detecting all the ground truth edges. Small errors in ground truth edge

location may meanthat an edgedetector respondscorrectly at the real position of the edge

which suppressesits responseat the ground truth location. In addition, the ground truth

edgesmay sometimesbe two pixels wide and so non-maximal suppressionwill prevent an

edgedetector from labelling both pixel points asedges.Secondly, non-maximal suppression

can dramatically reducethe number of false positives. This will happen in sectionsof the

ROC curve wherethe proportion of falsepositivesis high (ie. whenmany pixels in the image

are incorrectly estimated to be edges).This corresponds to very impractical choicesof the

edgedetector parametersand so is not representativ e of the behaviour of the edgedetectors

with more realistic parametersettings.

On the South Florida dataset, we adjusted our approach so that it can be directly com-

pared with the results of Bowyer et al. Firstly, we applied non-maximal suppressionto

statistical edgedetection. Secondly, we used Bowyer et al's evaluation criteria, seenext

paragraph,to determinethe true positive and falsepositive rates. Thirdly , we comparedthe

edgedetectorsusing the Bayesrisk (assumingpixels are equally likely to be on or o� edges

a priori ) becausethe Bayesrisk is computedfrom part of the ROC curve which corresponds

to reasonablechoicesof the edgedetector parametervalues.

Bowyer et al's criteria for determining true positivesand falsepositivesis algorithmic. To

evaluate the true positives,a list is constructedof the ground truth pixels. There is a second

list consistingof the pixels which the detector labels as edges.The algorithm proceedsby

scanningthe �rst list in order. If a pixel in the �rst list is within three pixels of an element of

the secondlist, then a true positive is counted and the elementin the second list is deleted.

This meansthat each element in the secondlist can \v alidate" at most one element of the

�rst list and henceprevents the algorithm from overcounting the number of true positives.

To evaluate the falsepositives,Bowyer et al count the number of pixels that the edgedetector

labelsasedgesin region(b) of their three-valuedground truth, seesection(3.1). This means

28



that edgedetector responseswithin a three-pixel distanceof a ground truth edgeare ignored

whencounting the falsepositives(as are edgedetector responsesin textured regions). These

criteria can be criticized, see[23] for an examplewhere they give a misleadingmeasureof

the performanceof an edgedetector, but usually they give intuitiv ely plausible results.

However these criteria only addressthe �rst problem of non-maximal suppression(eg.

biaseson the true positives). There will therefore still be distortions in the ROC curves.

Hencewe will evaluate the edgedetectors by their Bayes risk (with equal prior for pixels

being on and o� edge). The Bayesrisk can be measuredfrom the ROC curve by �nding the

point on the curve wherethe slope is forty �v e degrees[15] (this is usually closeto the point

wherethe number of falsenegativesequalsthe number of falsepositives{ and is exactly this

point if the distributions are univariate Gaussianswith identical variances).

For the edgedetectorsevaluated by Bowyer et al., we obtain approximate valuesof the

Bayesrisks in the range0:035{0:045[8]. Our statistical edgedetection givesa Bayesrisk of

0:0350usinga magnitudeof the gradient �lter at four scales� = 0; 1; 2; 4 (with non-maximal

suppressionand Bowyer et al's evaluation criteria). Our implementation of the Canny edge

detector gave a similar Bayesrisk of 0:0352(which is consistent with Bowyer et al's results

and which validates our implementation). Overall, statistical edge detection performed as

well as any edgedetector reported in [8] using the identical evaluationcriteria .

We obtained a signi�cant di�erence between statistical edgedetection and the Canny

edgedetector on the more challengingSowerby dataset. In this case,we did not apply non-

maximal suppressionto statistical edgedetection but instead usedan additional grouping

stage,described in the following section. We alsomodi�ed the evaluation criteria to address

both problemsof the ROC curve causedby non-maximal suppression.The criteria involved

using morphological operators to enlarge the number of pixels labelled as edgesby the

edgedetector being evaluated and to producea bu�er zonearound the ground truth edges

(Bowyer et al useda similar bu�er zone). They minimize the bias causedby non-maxmimal

suppressionwhile allowing for imprecisionsin the groundtruth segmentation. More precisely,

we de�ned two binary �elds g(x); g� (x) on the imagesuch that g(x) = 1 if pixel x is a ground

truth edge,andg� (x) = 1 if an edgedetector labelspixel x asan edge(g(x) = 0 andg� (x) = 0

otherwise). We de�ned �: to be the complement (eg. �g(x) = 0 if g(x) = 1). We de�ned n

to mean a morphological opening on a binary �eld (eg. g�
3(x) = 1 for any pixel x within
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Figure 16: ROC curvesfor Sowerby show that statistical edgedetection outperformsCanny.

Left: Canny edgedetectorwith non-maximalsuppressionand hysteresis.Center: Statistical

edgedetection without grouping. Right: Statistical edgedetection with grouping. (edge-

tolerance=3).

a three-pixel distanceof a point labelled an edgeby our detector). The proportion of true

positivesis de�ned to be
P

x g(x)g�
3(x)=

P
x g(x). The proportion of falsepositivesis de�ned

to be
P

x �g6(x)g�
3(x)=

P
x �g6(x). Thesecriteria also have their limitations, seediscussionin

[23], but alsogive plausible results. We tested thesecriteria by applying them to statistical

edgedetection and the Canny edgedetector on the South Florida dataset and showed, see

[23], that they gave similar results to those obtained using Boyer et al's criteria (ie. both

edgedetectorsperform almost identically on the South Florida dataset).

Using these criteria, our results show that the statistical edgedetector is signi�cantly

better than Canny on the Sowerby dataset, see�gures (16,17). This applieswhether or not

we usegrouping for statistical edgedetection, seesection(4). This is not surprising because

the Canny detector usesonescaleonly and statistical edgedetectionusesmany scaleswhich

are combined optimally (in the statistical sense).The Sowerby dataset is harder to segment

than South Florida becauseof all the background clutter, and hencemultiscale processing

givesa big advantage, see�gure (10).

For completeness,we also show the log-likelihood ratios, see�gure (17), which can be

usedas measuresof edgestrength [14].
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Figure 17: Top panels shows edgesdetected using the Canny edgedetector. The centre

panels shows the output of statistical edge detection on the same images. The bottom

panelsshow the log likelihood ratios which give a measureof edgestrength. See�gure (7)

for the imagesand the ground truth.

4 Spatial Grouping of Edge Cues

Most standard edgedetectorsusea form of local spatial grouping. For example,the Canny

edgedetector [9] usesnon-maximal suppressionand hysteresis.This grouping exploits prior

knowledgeof edgesin images.Edgesare typically spatially contiguous (hysteresis)and one

pixel wide (non-maximal suppression).Hysteresisenableslow contrast edgesto be detected

provided they arecloseto high contrast edges.Alternativ ely, probabilistic modelslikeGeman

and Geman [13] imposeprior probabilities so that if there is an edgeat one pixel location

then this increasesthe probability of there being edgesat neighbouring pixels.

We now apply statistical edgedetection to include a form of spatial grouping. Properties

similar to hysteresisand non-maximalsuppressionwill arisenaturally aspart of the learning

process.This groupingsigni�cantly improvesthe visual quality of our edgedetectionresults.

But paradoxically it only givesa small improvement in our performancecriteria.

Our grouping procedureis similar to our method for learning P(:jon-edge); P(:jo�-edge).

The di�erence is that we apply a �lter bank � 1(:) to the posterior distributions F0(~x) =
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P(edgej� 0(Y)j~x), where P(edgej:) is the posterior probability that there is an edgeat lo-

cation ~x conditioned on the �lter response� 0(Y ) evaluated at ~x. The intuition is that the

posterior, like the log-likelihood ratio in �gure (17), is a measureof edgestrength. (The prior

probability for a pixel being an edgeis measuredas 0:06 from the datasets). Our grouping

procedureconvolves the old posterior with �lterbank and learns a new \p osterior" F1(~x)

(using the ground truth) and then repeats the process.

In theory the full procedureis: (i) start with the true posterior F0(~x) = P(edgej� 0(Y)j~x ),

(ii) learn F1(~x) = P(edgej� 1(F0)j~x ), (iii) iterate to learn Fi (~x) = P(edgej� 1(Fi � 1)j~x ) for

i = 2; 3; :::. But in practice, we useda simpli�ed procedurewhich replacesthe third stage

by setting Fi (~x) = F1(� 1(Fi � 1(~x))) for i = 2; 3; ::.

In our experiments weusedthe �lters � 0(:) = j ~rj � =0 ;1;2;4;8;16(:) and � 1(:) = (I ; j ~r j � =2 ;8; r 2
� =0 ;1;2;4;8)( :),

whereI is the identit y �lter. The most useful �lters for grouping (ie. for � 1) are thosethat

enhanceridges in the posterior (these ridges correspond to edgesin the images). These

are the Laplacian of a Gaussian,supplemented with gradient �lters. The identit y �lter, of

course,is useful (becauseit givesthe posterior).

Wegiveexamplesof grouping in �gure (18). Overall our method is good at hysteresisand

enhancingedgesbetweendi�erent textures (ie. raising edgesabove threshold becausethey

lie along ridges and support each other). Edgesin texture are suppressedbecausestrong,

and weak, edgestend to suppressnearby weak parallel edges. Our method also does well

at triple points and corners,where the Canny �lter often doespoorly. On the other hand,

we do not seemto thin edgesas well as non-maximal suppressionapplied to the Canny

edgedetector. This may be due to the quantization usedin our approach which can cause

neighbouring pixels to have identical edgestrength (non-maximal suppressionwould not

solve this problem).

To quantify the gains by grouping we calculate the Cherno� information. This gives

valuesof 0:263(without grouping), 0:290(one level of grouping), 0:282(two levelsof group-

ing), and 0:274 (three levels of grouping). The improvement with one level of grouping is

small (about ten percent), but visually there are de�nite improvements, see�gure (18). The

decreasein Cherno� for two and three levels of grouping are presumably causedby our

simpli�ed procedure.
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Figure 18: Grouping examples.Top Row: the posterior without grouping: F0(x). Bottom

Row: the posterior after grouping F1(x). Seetext.

5 Adaptation Bet ween Datasets

In this sectionwe show that we can learn the conditional distributions on one dataset and

adapt them to another with only slight degradation of performancewithout knowing the

ground truth on the second. This shows that our results can be adapted from domain to

domain. It also illustrates that our results are not overly sensitive to the ground truth,

becauseotherwisesuch adaptation would causelarger degradation(particularly considering

the di�erence betweenthe ground truths in Sowerby and South Florida).

We note that Canny discussesadaptation [9] and described methods for estimating the

amount of noisein imagesin order to changethe parametersof his edgedetectordynamically.

But this adaptation is not commonly used. More recently, Grzywacz and Balboa [16] have

described a method, using Bayesian probability theory, for how biological vision systems

may adapt their receptive �elds from domain to domain basedon edgestatistics.

Formally, wede�ne rulesto estimatedistributions P SjF (� = yjon-edge); PSjF (� = yjo�-edge)

for the Sowerby dataset using only knowledge of the edgestatistics in the South Florida

dataset. Similarly, weusetheserulesto estimatedistributions P F jS(� = yjon-edge); PF jS(� =

yjo�-edge) for Florida using edgestatistics from Sowerby. (We use the superscripts SjF to

indicate the distributions estimated on the Sowerby dataset using the segmentations from

South Florida { and vice versafor F jS.)

Our adaptation approach is basedon using di�erent strategies for estimating the o�

statistics PSjF (� = yjo�-edge); PF jS(� = yjo�-edge) and the on edgestatistics P SjF (� =

yjon-edge),PF jS(� = yjon-edge).
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The strategy for the o� statistics is to exploit the fact that most pixels in an imageare

not edges. Thus, for each domain, we calculate the probability distributions P(� = yjall)

of the �lter responsesfor all the pixels (which doesn't require us to know the segmentation)

to yield our estimate of P(� = yjo�-edge). (More formally, we can expressP(� = yjall) =

(1 � � )P(� = yjo�-edge) + �P (� = yjon-edge) where � � 0:06 is the proportion of edgesin

the image. Our strategy sets� = 0:0 and, by calculating the Cherno� information we verify

that little information is lost.)
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Figure 19: These�gures show that for both Sowerby (left panel) and South Florida (centre

panel) the asymptotic slope of logP(� jon-edge) (solid line) and logP(� jall) (dotted line) are

practically identical independent of scale. The horizontal axis labels the scaleof the �lters

and the vertical axis is the asymptotic slope of the log probability. The right panel shows

that the ratios of the asymptotic slopes of logP(� jon-edge) for Sowerby divided by South

Florida (solid line) and the ratios of logP(� jall) (dotted line) all have (approximately) the

samevalue k = 1:5.

To adapt for P(� (~x)jon-edge) betweendatasets,we note that for most of our marginal �l-

ters � (~x), the distribution P(� (~x)jall) approximatesthe on-edgedistribution P(� (~x)jon-edge)

at large � (~x), seethe left and centre panels of �gure (19). We therefore have accessto

P(� (~x)jon-edge) (up to a scaling factor) for large � (~x), without knowledge of the ground

truth. Empirically, we �nd that, for large � (~x), P(� (~x)jall) drops approximately exponen-

tially , so if we take logP(� (~x)jall), and calculate its asymptotic slope for large � (~x), it

approximates the asymptotic slope of logP(� (~x)jon-edge). Furthermore, if the statistics of

both datasetsdropsexponentially , the ratio of the asymptotic slopesof logP(� (~x)jall) yields

a constant scaling factor k which relates the � (~x) of the two datasets. For adapting from
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South Florida to Sowerby, we measurek = 1:5 for the magnitude of the gradient �lter, see

right panel of �gure (19). We therefore take the distributions P S(� = yjon-edge) measured

on the Sowerby dataset and adapt them by a linear scalingy 7! ky (where k is the scaling

factor) so that the fall-o� rate for large y is similar to that of P F (� = yjall) in the South

Florida dataset. This yields an estimate P F jS(� = yjon-edge) of the on edgestatistics in

South Florida, see�gure (20). Similarly, we can estimate the edgedistributions in Sowerby

from those measuredin South Florida. It can be shown [23] that similar results hold for

other �lters and, moreover, the performanceis fairly insensitive to the value of k.
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Figure 20: Adaption of P(:jon-edge) from South Florida to Sowerby for jrj � =1 Y. The left

panel shows (un-adapted) P(:jon-edge) on Sowerby (dotted line) and South Florida (thin

line). The centre panel shows P(:jon-edge) for Sowerby (thin line) and the estimate of

P(:jon-edge) for Sowerby (bold line) by adapting from South Florida. The right panelshows

P(:jon-edge) for Soth Florida (thin dashedline) and the estimate of P(:jon-edge) for South

Florida (bold dashedline) by adapting from Sowerby. The adaptation is doneby scalingthe

�lter responsesy 7! ky, using the method described in the previous�gure.

We have tested this processby adapting the multiscale �lter j ~r j � =1 ;2;4(Y) from Sowerby

to South Florida and vice versa. The �gures show that the adaptation is very closedespite

the very di�erent nature of datasets (and the di�erent ground truths). On the Sowerby

dataset, we get ROC area and Cherno� information of (0:827; 0:223) for the true dis-

tributions (i.e. using distributions PS(� jon-edge); PS(� jo�-edge)) and (0:825; 0:219) for

the adapted distributions (i.e. using PSjF (� jon-edge); PSjF (� jo�-edge)). Similarly, we get

ROC area and Cherno� information of (0:877; 0:336) for the true South Florida distri-

butions (PF (� jon-edge); PF (� jo�-edge)) and (0:867; 0:322) for the adapted distributions
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PF jS(� jon-edge); PF jS(� jo�-edge).
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Figure 21: The e�ectivenessof adaptation shown by ROC curveson Sowerby (Left Panel)

and South Florida (Right Panel). The bold and dashedlines show the ROC curvestrained

on the appropriate datasetand adapted(respectively). The similarity betweenthe bold and

dashedcurvesshows the successof the adaptation. The �lter is j ~r j � =1 ;2;4(Y).

6 Discussion and Conclusion

It hasrecently beenargued[19], that perceptionshouldbe formulated asBayesianinference.

This paper has taken this argument literally and applied it to the most basicvision task of

edgedetection. Welearn the probability distributions of edge�lter responseson ando� edges

from pre-segmented datasets,detect edgesusing the log-likelihood ratio test, and evaluate

di�erent edgecuesusing statistical measures(Cherno� information and ROC curves).

This approach enablesus to study the e�ectivenessof di�erent edgecuesand how to

combine cuesoptimally (from a statistical viewpoint). This allows us to quantify the advan-

tagesof multi-scale processing,and the useof chrominanceinformation. We use two very

di�erent datasets,Sowerby and South Florida, and demonstratea way to adapt the edge

statistics from onedataset to the other.

We comparethe results of statistical edgedetection to thoseof standard edgedetectors.

On the South Florida dataset our results are comparableto those reported by Bowyer et

al [7],[31],[8]for standard edgedetectors. On the Sowerby dataset statistical edgedetection
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outperforms the Canny edgedetector [9] signi�cantly. We note that the Sowerby dataset

is signi�cantly harder to segment than the South Florida dataset (we assumethat edge

detectorsshould not respond to texture edges).

Our work was �rst publishedasa conferencepaper [20]. Subsequent work by Sidenblath

applied this approach to motion tracking [32]. We have extendedour studies of statistical

cuesfor regionalsegmentation [21]. In addition, we have applied the approach to the task of

edgelocalization and to quantify the amount of information lost whenthe imageis decimated

[22]
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