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Abstract
When designing computer vision systemsfor the blind and visually impaired it is important

to determine the orientation of the user relative to the scene. We observethat most indoor and
outdoor (city) scenesare designed on a Manhattan three-dimensional grid. This Manhattan grid
structure puts strong constraints on the intensity gradients in the image. We demonstrate an
algorithm for detecting the orientation of the user in suchscenesbased on Bayesian inference using
statistics which we have learnt in this domain. Our algorithm requires a single input image and
doesnot involve pre-processingstagessuchas edgedetection and Houghgrouping. We demonstrate
strongexperimental resultson a rangeof indoor and outdoor images. We alsoshowthat estimating
the grid structure makesit signi�c antly easier to detect target objects which are not aligned with
the grid.

Pro ceedings In ternational Conference on Computer Vision ICCV'99. Corfu, Greece.
1999.

1 In tro duction
Recently there has beengrowing interest in building computer vision navigational systemsfor

the blind [9], [10]. These systemscan be used, for example, for navigation and for the detection
and reading of informational signs. The goal of this paper is to determine the orientation of the
viewer in the scene(indoor or outdoor) from a single image. A useful spin-o� is the abilit y to
detect target objects which are not aligned with the Manhattan grid.

Most indoor and outdoor city scenesare basedon a cartesian coordinate system [3, 6] which
we can refer to as a Manhattan grid. This grid de�nes an ~i ;~j ;~k coordinate system. This gives
a natural referenceframe for the viewer. If the viewer can determine his/her position relative
to this frame { in other words, estimate the ~i; ~j or ~k directions { then it becomessigni�can tly
easierto interpret the scene.In particular, it will be a lot easierto determine the most important
lines in the scene(corridor boundaries and doors, street boundaries and tra�c lights) because
they will typically lie in either the ~i; ~j or ~k directions. Knowledge of this referenceframe will
make it signi�can tly easier and faster to detect informational signs. We will assumethat the
cameradirection lies approximately in the horizontal plane and so lines in the ~k direction map to
approximately vertical lines in the image. There is, of course,an ambiguit y in the orientations of
~i and ~j so the compassheading can only be obtained modulo 90� .

2 Previous Work and Three- Dimensional Geometry
There has beenan enormousamount of work in projective geometry [3, 6]. Techniques from

projective geometry have been applied to �nding the vanishing points [1], [5]. For a recent ap-
plication to vision systems for the blind see[9] for the detection of pedestrian crossingsusing
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Figure 1: (Left). Geometry of an ~i line projected onto (u; v) image plane. � is the normal
orientation of the line in the image. Becauseour camera is assumedto point in a horizontal
direction, the vanishing point lies on the u axis. (Right) Histogram of edge orientation error
(displayed modulo 180� ). Observe the strong peak at 0� , indicating that the image gradient
direction at an edgeis usually very closeto the true normal orientation of the edge. We modelled
this distribution using a simple box function.

projection geometry. This work, however, has typically proceededthrough the stagesof edgede-
tection, Hough transforms, and �nally the calculation of the geometry. Alternativ ely, a sequence
of imagesover time can be used to estimate the geometry, seefor example [8]. In this paper, we
demonstrate that accurate results can be obtained from a single image directly without the need
for techniquessuch as edgedetection and Hough transforms.

For completeness,we give the basic geometry. We assumethat the camera is oriented in the
horizontal plane. This is a reasonableassumption and it turned out to be approximately correct
for the imagesin our datasets(all of which were photographed without taking this into account).
(In our current work we are relaxing this constraint to allow for any cameracon�guration.)

We de�ne 	 to be the compassangle. This de�nes the orientation of the camerawith respect to
the Manhattan grid: the camerapoints in direction cos	 ~i � sin 	 ~j . Cameracoordinates~u = (u; v)
are related to the Cartesian scenecoordinates (x; y; z) by the equations:

u =
f f� x sin 	 � y cos	 g

x cos	 � y sin 	
; v =

f z
x cos	 � y sin 	

; (1)

where f is the focal length of the camera (which we determined to be 797 pixel units for our
images).

By standard geometry, the vanishing points of lines in the~i and~j directions lie at (� f tan 	 ; 0)
and (f cot 	 ; 0) respectively in the (u; v) plane. (Lines in the ~k direction are all vertical in the
image given our compass-world assumption.)

It is a straightforward calculation to show that a point in the imageat ~u = (u; v) with intensity
gradient at (cos� ; sin � ) is consistent with an~i line in the sensethat it points to the vanishing point
if � v tan � = u + f tan 	 (observe that this equation is una�ected by adding � � to � and so it
doesnot depend on the polarit y of the edge). We get a similar expressionv tan � = � u + f cot 	
for lines in the ~j direction. (SeeFigure 1 (left) for an illustration of this geometry.)

3 Pon and Pof f : Characterizing Edges Statistically
A key element of our approach is that we do not usea binary edgemap. Such edgemapsmake

premature decisionsbasedon too little information. (The poor quality of someof the images{
underexposedand overexposed{ makesedgedetection particularly di�cult).

Instead we use the power of statistics. Following work by Konishi et al. [4], we determine
probabilities Pon (E~u ) and Pof f (E~u ) for the probabilities of the response E~u of an edge �lter
at position ~u in the image conditioned on whether we are on or o� an edge. These distri-
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Figure 2: Pof f (y) (left) and Pon (y)(righ t), the empirical histograms of edgeresponseso� and on

edges,respectively. Here the responsey =
�
�
� ~r I

�
�
� is quantized to take 20 values and is shown on

the horizontal axis. Note that the peak of Pof f (y) occurs at a lower edgeresponsethan the peak
of Pon (y). Thesedistributions were very consistent for a range of images.

butions were learnt by Konishi et al for the Sowerby image database which contain one hun-
dred presegmented images. The more di�eren t Pon is from Pof f then the easier edge detec-
tion becomes,see Figure 2. A suitable measure of di�erence is the Cherno� Information [2]
C(Pon ; Pof f ) = � min0� � � 1 log

P
y P �

on (y)P 1� �
of f (y). Konishi et al tested a variety of di�eren t

edge�lters and ranked them by their e�ectiv enessbasedon their Cherno� information. For this

project, we chosea very simple edgedetector
�
�
� ~r G� =1 � I

�
�
�{ the magnitude of the gradient of the

grayscaleimage I �ltered by a GaussianG� =1 with standard deviation � = 1 pixel units { which
has a Cherno� of 0:26 nats. More e�ectiv e edgedetectors are available { for example, the gradi-
ent at multiple scalesusing colour has a Cherno� of 0:51 nats. But we do not need these more
sophisticated detectors.

We extend the work of Konishi et al by putting probabilit y distributions on how accurately
the edge�lter gradient estimates the true perpendicular direction of the edge. Thesewere learnt
for this dataset by measuring the true orientations of the edgesand comparing them to those
estimated from the image gradients.

This givesusdistributions on the magnitude and direction of the intensity gradient Pon ( ~E~u j� ); Pof f ( ~E~u ),
where ~E~u = (E~u ; � ~u ), � is the true normal orientation of the edge,and � ~u is the gradient direction
measuredat point ~u. We make a factorization assumptionthat Pon ( ~E~u j� ) = Pon (E~u )Pang (� ~u � � )
and Pof f ( ~E~u ) = Pof f (E~u )U(� ~u ). Pang (:) (with argument evaluated modulo 2� and normalized to
1 over the range0 to 2� ) is basedon experimental data, seeFigure 1 (right), and is peaked about
0 and � . In practice, we use a simple box function model: Pang (� � ) = (1 � � )=4� if � � is within
angle � of 0 or � , and �=(2� � 4� ) otherwise(i.e. the chanceof an angular error greater than � � is
� ). In our experiments � = 0:1 and � = 4� for indoors and 6� outdoors. By contrast, U(:) = 1=2�
is the uniform distribution.

4 Bayesian Mo del
We devised a Bayesian model which combines knowledge of the three-dimensional geometry

of the Manhattan world with statistical knowledgeof edgesin images. The model assumesthat,
while the majorit y of pixels in the imageconvey no information about cameraorientation, most of
the pixels with high edgeresponsesarise from the presenceof ~i ;~j ;~k lines in the three-dimensional
scene. The edgeorientations measuredat these pixels provide constraints on the camera angle,
and although the constraining evidencefrom any singlepixel is weak, the Bayesianmodel allowsus
to pool the evidenceover all pixels (both on and o� edges),yielding a sharp posterior distribution
on the cameraangle. An important feature of the Bayesianmodel is that it does not force us to
decide prematurely which pixels are on and o� (or whether an on pixel is due to ~i ;~j ; or ~k), but
allows us to sum over all possibleinterpretations of each pixel.

3
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4.1 Evidence at one pixel
The image data ~E~u at pixel ~u is explained by one of �v e models m~u : m~u = 1; 2; 3 mean the

data is generatedby an edgedue to an ~i; ~j ;~k line, respectively, in the scene;m~u = 4 meansthe
data is generatedby a random edge(not due to an ~i; ~j ;~k line); and m~u = 5 meansthe pixel is
o�-edge. The prior probabilit y P(m~u ) of each of the edgemodels was estimated empirically to be
0:02; 0:02; 0:02; 0:04; 0:9 for m~u = 1; 2; : : : ; 5.

Using the factorization assumption mentioned before,we assumethe probabilit y of the image
data ~E~u has two factors, one for the magnitude of the edge strength and another for the edge
direction:

P( ~E~u jm~u ; 	 ; ~u) = P(E~u jm~u )P(� ~u jm~u ; 	 ; ~u) (2)

where P(E~u jm~u ) equalsPof f (E~u ) if m~u = 5 or Pon (E~u ) if m~u 6= 5. Also, P(� ~u jm~u ; 	 ; ~u) equals
Pang (� ~u � � (	 ; m~u ; ~u)) if m~u = 1; 2; 3 or U(� ~u ) if m~u = 4; 5. Here � (	 ; m~u ; ~u)) is the predicted
normal orientation of lines determined by the equation � v tan � = u + f tan 	 for ~i lines, v tan � =
� u + f cot 	 for ~j lines, and � = 0 for ~k lines.

In summary, the edgestrength probabilit y is modeled by Pon for models 1 through 4 and by
Pof f for model 5. For models 1,2 and 3 the edgeorientation is modeled by a distribution which is
peaked about the appropriate orientation of an~i; ~j ;~k line predicted by the compassangleat pixel
location ~u; for models 4 and 5 the edgeorientation is assumedto be uniformly distributed from 0
through 2� .

Rather than decide on a particular model at each pixel, we marginalize over all �v e possible
models (i.e. creating a mixture model):

P( ~E~u j	 ; ~u) =
5X

m ~u =1

P( ~E~u jm~u ; 	 ; ~u)P(m~u ) (3)

In this way we can determine evidenceabout the cameraangle 	 at each pixel without knowing
which of the �v e model categoriesthe pixel belongsto.
4.2 Evidence over all pixels

To combine evidenceover all pixels in the image, denoted by f ~E~u g, we assumethat the image
data is conditionally independent acrossall pixels, given the compassdirection 	:

P(f ~E~u gj	) =
Y

~u

P( ~E~u j	 ; ~u) (4)

Thus the posterior distribution on the compassdirection is given by
Q

~u P( ~E~u j	 ; ~u)P(	) =Z
where Z is a normalization factor and P(	) is a uniform prior on the compassangle.

To �nd the MAP (maximum a posterior) estimate, we needto maximize the log posterior term
(ignoring Z , which is independent of 	) log[P(f ~E~u gj	) P(	)] = logP(	)+

P
~u log[

P
m ~u

P( ~E~u jm~u ; 	 ; ~u)P(m~u )].
Our algorithm evaluates the log posterior numerically for the compassdirection 	 in the range
� 45� to +45 � , in increments of 1� .

5 Exp erimen tal Results
We tested our model on two datasetsof indoor and outdoor scenes.Theseimageswere taken

by an unskilled photographer unfamiliar with the goals of the study. No special attempt was
made to hold the camerahorizontal. The camerawas set on automatic so someimagesare over-
or under- exposed. Experiments performed by a blind user (W. Gerrey) at the Smith-Kettlew ell
Institute demonstrate that similar quality imagescan be attained by a camera mounted on the
chest of a blind user (personal communication { Dr. J. Brabyn, Director of the Rehabilitation,
Engineering, and Research Center, Smith-Kettlew ell Eye Research Institute, San Francisco, CA
94115. 1998).

Our results show strong successof our approach in both domains.

4
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Figure 3: Estimates of the compassangleand geometryobtained by our algorithm. The estimated
orientations of the ~i ;~j lines are indicated by the black line segments drawn on the input image.
At each point on a subgrid two such segments are drawn { one for ~i and one for ~j . Observe how
the ~i directions align with the wall on the right hand side and with features parallel to this wall.
The ~j lines align with the wall on the left (and objects parallel to it). (Indoor 17).

5.1 Indo or Scenes
A total of twenty-�v e imageswere tested. On twenty-three images, the estimated angle was

accurate to within 5� . On two images,the orientation of the camerawas far from horizontal and
the estimation was poor. Examples of successes,demonstrating the range of images used, are
shown in Figures 3,4,5, 6. The log posteriors for typical images,plotted as a function of 	, are
shown in Figure 7.
5.2 Outdo or Scenes

We next tested the accuracy of estimation on outdoor scenes. Again we used twenty-�v e
test images (taken by a naive photographer). In these scenesthe vast majorit y of the results
(twenty-two) were accurate up to 10� . On three of the imagesthe angleswere worse than 10� ,
seeFigure 8. Inspection of these imagesshowed that the log posterior had multiple peaks, see
Figure 10. There was always a peak corresponding to the true compassangle (to within 10� ),
however, there were false peaks which were higher in these cases. What causesthese errors?
Observe in Figure (8) that the vanishing point of the ~i lines occurs near a car whoseedgesare
aligned only approximately to the Manhattan grid. The car's edgesmay therefore causea small
distortion in the vanishing point estimate. The correct alignment for this image can be obtained,
seeFigure (9), by ignoring the imagedata within a circle of radius 100pixels centered around the
vanishing point for each compassangle considered(this meansthe car will no longer contribute
when evaluating the likelihood of the compassangle corresponding to the false vanishing point).
Observe the di�erence, seeFigure (10), betweenthe log posteriors for the compassanglewith and
without this procedure (i.e. ignoring, or not ignoring, the circle). This new procedure, however,
is intended only to show proof of concept and a thorough stabilit y analysis is required (this is
current work).

On twenty-two of the twenty-�v e images,however, the algorithm gave estimates accurate to
10� which is su�cien t for the task (observe that a blind userwill typically haveaccessto a sequence
of imageswhich can be usedto improve the compassestimate). SeeFigure 11 for a representativ e
set of imageson which the algorithm was successful.

6 Detecting Ob jects in Manhattan world
We now considerapplying the Manhattan assumption to the alternativ e problem of detecting

target objects in background clutter. To perform such a task e�ectiv ely requires modelling the
properties of the background clutter in addition to those of the target object. It has recently

5
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Figure 4: Another indoor scene. Standard conventions for display of ~i; ~j directions. Observe
that the ~i; ~j directions align with the appropriate walls despite the poor quality of the image (i.e.
under-exposed). (Indoor 15).

been appreciated [7] that simple models of background clutter based on Gaussian probabilit y
distributions are often inadequateand that better performancecan be obtained using alternativ e
probabilit y models [11].

The Manhattan world assumptiongivesan alternativ e way of probabilistically modelling back-
ground clutter. The background clutter will correspond to the regular structure of buildings and
roadsand its edgeswill be aligned to the Manhattan grid. The target object, however, is assumed
to be unaligned (at least, in part) to this grid. Therefore many of the edgesof the target object wil l
be assigned to model 4 by the algorithm. (Note the algorithm �rst �nds the MAP estimate 	 � of the
compassangle, seesection (4), and then estimates the model by doing MAP of P(m~u j ~E~u ; 	 � ; ~u)
to estimate m~u for each pixel ~u.) This enablesus to signi�can tly simplify the detection task by
removing all edgesin the imagesexcept those assignedto model 4.

This idea is demonstrated in Figure (12) where the target is a bike and a robot respectively.
Observe how most of the edgesin the image are eliminated as target object candidatesbecauseof
their alignment to the Manhattan grid. The bike and the robot stand out as outliers to the grid.

This simple example illustrates a method of modelling background clutter which we refer to
as scene clutter becauseit is e�ectiv ely the sameas de�ning a probabilit y model for the entire
scene. Observe that sceneclutter models require external variables { in this casethe 	 angle {
to determine the orientation of the viewer relative to the sceneaxes. These variables must be
estimated to help distinguish betweentarget and clutter. This di�ers from standard models used
for background clutter [7],[11] where no external variable is used.

7 Summary and Conclusions
Our work has demonstrated proof of concept and shows the potential of our approach. The

system, however, needsto be tested more extensively before it will be suited for blind users.
One obvious limitation is that we have assumedthat the only unknown variable is the compass

angle. This is only correct if the camera is held approximately horizontal although our results
have shown robustnessto this condition. It is straightforward to adjust our theory to extend the
theory to estimate all three orientation anglessimultaneously.

Other improvements would comefrom using better �lters. As demonstrated by Konishi et al
[4] the useof colour and multi-scale can give quanti�ably better measuresof edgeness(improving

6
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Figure 5: Another indoor sceneand its exterior. Sameconventions asabove. The vanishing points
are estimated to within 5� (perfectly adequatefor our purposes).Note poor quality of the indoor
image (i.e. over-exposed). (Indoor 23 and Outdoor 12).

Figure 6: Another indoor scene.Sameconventions as above. (Indoor 8).

the Cherno� information from 0.26 nats to 0.51 nats). We anticipate that such �lters will give
more accurate angle estimates.

Further statistical analysis of the domains is also required. We should quantify the amount
of outliers, particularly in the outdoor scenes. In particular, we should investigate the number
of structured outliers and determine techniques to detect them. In addition, we should useerror
analysis to improve our estimates of the probabilit y distributions and, in particular, to seehow
the angle errors change as a function of distance from a vanishing point. This will enable us to
do performance analysis such as estimating Cramer-Rao lower bounds for the accuracy of the
estimates.

We should mention the issuesof algorithmic speed. At present the algorithm takesa minute
which is too slow for practical use. However, this is for unoptimized code when it is run on images
of size640� 480. Optimizing the code (e.g. by using look-up tables to pre-compute trigonometric
functions) and subsamplingthe image will allow the algorithm to work signi�can tly faster. Other
techniques involve rejecting image pixels where the edgedetector responseis so low that there is
no realistic chanceof an edgebeing present. This would meanthat at least 70%of the imagepixels
could be removed from the computation. We observe that the algorithm is entirely parallelizable.
Overall, there seemslittle di�cult y in getting this algorithm to work in a few seconds{whic h is
perfectly adequatefor blind users.

7
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Figure 7: The log posteriorsasa function of compassangle(from � 45� to 45� along the horizontal
axis) for imagesIndoor 17 (left) and Indoor 15 (right). Theseresults are typical for both the indoor
and outdoor dataset. SeeFigure 10 for an exception where there are multiple peaks.

Figure 8: Incorrect estimation of compassangle for outdoor scene. The algorithm computes the
vanishing point to be more than 10� to the right of the true vanishing point. (Outdoor 35).
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Figure 9: A correct estimate of the compassangle for the previous �gure can be obtained by
ignoring data from image points within a circle of radius 100 pixels centered about the vanishing
point for each compassangle considered.

Figure 10: Log posterior asa function of compassangle for the previous two �gures. Observe that
for these imagesthe log posterior has multiple peaks. For the original algorithm, the false peak
had higher probabilit y (left). For the modi�ed algorithm which ignores the central circle of data
(right) the true peak is higher.
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Figure 11: Results on four outdoor images. Sameconventions as before. Observe the accuracyof
the ~i; ~j projections in thesevaried scenesdespite the poor quality of someof the images.

Figure 12: Detecting bikes(left column) and robots (right column) in urban scenes.The original
image(top row) and the edgemaps(centre row) computed as logPon (E~u )=Pof f (E~u ) { seeKonishi
et al 1999{ displayed as a grey-scaleimage where black is high and white is low. In the bottom
row we show the edgesassignedto model 4 (i.e. the outliers) in black. Observe that the edgesof
the bike and the robot are now highly salient (and make detection straightforward) becausemost
of them are unaligned to the Manhattan grid.
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