INTRODUCTION

When the scotoma is binocular, it often obscures objects of interest, causing individuals with macular degeneration (MD) to miss information. Furthermore, the majority of individuals with MD are unaware of their scotoma, which causes further difficulties in tasks of daily living.

We propose methods to map precisely the binocular scotoma and to investigate eye movement strategies to recover information hidden by the scotoma.

METHODS

Study 1: Binocular scotoma mapping

- 35 locations probed twice per session
- 6 sessions, on average
- Coarse-to-fine grid

Participants: 4 with a binocular scotoma (B; age: 57-87), 3 with monocular scotomas (M; age: 75-79) and 4 controls (C; age: 61-74)

Study 2: Visual search

- 0, 1 or 2 blobs superimposed on images of indoor/outdoor scenes
- No feedback
- 80 trials

RESULTS

Manual selection of probed locations yields fine details of scotoma edges

The size and shape of binocular scotoma from the eyetracker is similar to the algorithm’s estimation

Visual search performance is impacted by the size of the binocular scotoma. Saccades in the direction of the scotoma compensate only partially

CONCLUSION

- A regular eyetracker can be used to precisely assess the residual functional retina in binocular vision.
- Individuals with binocular scotoma tend to look in the direction of their scotoma, although this strategy does not completely uncover information hidden by a large scotoma.
- Training a strategy according to the scotoma size and location might be the key for a better generalization of learning (Janssen & Verghese, 2016).

Contact: cvullings@ski.org

REFERENCES


This work was supported by a Fulbright grant (CV) and a NIH grant NIH R01 EY029730 (PV).

I would like to thank Saeideh Ghahghaei for providing the script of the algorithm from Ghahghaei & Walker (2016).