
An Algorithm Enabling Blind Users to Find and Read Barcodes

Ender Tekin

The Smith-Kettlewell Eye Research Insitute

ender@ski.org

James M. Coughlan

The Smith-Kettlewell Eye Research Insitute

coughlan@ski.org

Abstract

Most camera-based systems for finding and reading bar-

codes are designed to be used by sighted users (e.g. the Red

Laser iPhone app), and assume the user carefully centers

the barcode in the image before the barcode is read. Blind

individuals could benefit greatly from such systems to iden-

tify packaged goods (such as canned goods in a supermar-

ket), but unfortunately in their current form these systems

are completely inaccessible because of their reliance on vi-

sual feedback from the user.

To remedy this problem, we propose a computer vision

algorithm that processes several frames of video per second

to detect barcodes from a distance of several inches; the al-

gorithm issues directional information with audio feedback

(e.g. “left,” “right”) and thereby guides a blind user hold-

ing a webcam or other portable camera to locate and home

in on a barcode. Once the barcode is detected at sufficiently

close range, a barcode reading algorithm previously devel-

oped by the authors scans and reads aloud the barcode and

the corresponding product information. We demonstrate en-

couraging experimental results of our proposed system im-

plemented on a desktop computer with a webcam held by a

blindfolded user; ultimately the system will be ported to a

camera phone for use by visually impaired users.

1. Introduction

The 1D barcode symbology has become a ubiqui-

tous system for labeling packaged goods with codes that

uniquely identify product information. This type of symbol-

ogy (which includes the UPC, widely used in North Amer-

ica) was designed to be read by a laser scanner, which is

a standard tool in supermarkets and shops, but there is in-

creasing interest in being able to read barcodes using a more

portable device that nearly everyone has at their disposal:

the camera phone. The cameras available on popular mobile

phones now have enough resolution (and the ability to fo-

cus close up) to resolve barcode patterns at close range, and

the CPUs available on such phones are powerful enough to

execute a computer vision algorithm to decode the barcode

images.

Products such as Red Laser (for the iPhone), Nokia’s

Point and Find and Realeyes3D have recently been released

to provide this functionality, but is important to note that all

such products force the user to locate and home in on the

barcode using visual feedback from the camera viewfinder.

Without such feedback, it is nearly impossible to guide the

camera close enough to the barcode to view it with sufficient

resolution. As a result, these products are only accessible to

people with sufficiently good vision.

Blind and visually impaired persons could greatly benefit

from the ability to read barcodes, which would be very use-

ful for identifying products in a supermarket or in a pantry

at home: while it is easy for a blind person to distinguish be-

tween a bag of potato chips and a box of crackers by feeling

the packages, he or she may have no way of distinguish-

ing between two cans with the same shape and weight (e.g.

tomato sauce or beans). If the product barcodes could be

located and read by a camera phone application, the rele-

vant product information could immediately be looked up

and read aloud to the user.

A computer vision algorithm enabling a blind person to

locate and read barcodes could be implemented on a camera

phone, perhaps in addition to other functionality providing

access to printed information (such as the KNFB reader,

which is a commercial OCR system that runs on a Nokia

camera phone). Such a system would be much more con-

venient than conventional laser scanner technology that re-

quires the user to carry a dedicated device, such as the i.d.

mate Talking Bar Code Reader (from Envision America).

While a variety of computer vision algorithms exist for

reading 1D barcodes from images, and some algorithms

have been developed for automatically segmenting barcode

patterns from images (which we review in the next section),

we are not aware of any algorithms specifically designed

to detect 1D barcodes at a distance. This ability is neces-

sary to expedite the search process – otherwise a blind user

will be forced to hold the camera close to the package and

laboriously scan every square inch of its surface.

Indeed, although the 1D barcode is easily recognizable

in close up, clean images by the presence of multiple par-

allel lines arrayed in a roughly rectangular shape, the prob-

lem of detecting it becomes very challenging in noisy (e.g.

blurred), cluttered images captured with low-to-medium

quality cameras (such as those in camera phones or web-

cams) at low resolution. The barcode may be present at any

orientation in the image, and the scale is variable, depend-

ing on how large the barcode is and the distance at which

it is viewed; patterns such as lines of text, which are com-

monly printed near barcodes on packages, may easily be

confused with barcodes at low resolution. The challenge is

even greater given the need for a fast implementation that

can process several frames per second, in order to provide

real-time feedback to guide a blind user holding the camera

towards the barcode. It is of practical interest to detect a

barcode accurately from a distance and direct a blind user

towards the barcode until it is able to be resolved with suf-

ficient accuracy to be decoded.

Our main contributions are two-fold. First, we have de-

veloped a fast, novel algorithm for detecting barcodes at a

distance based on a cascade of filters that progressively rule

out more and more regions of the image; only regions of

the image that resemble barcodes are processed intensively,

which is the key to the algorithm’s speed. Second, we have

coupled our algorithm with an algorithm that we developed

previously [9] to read barcodes, and have implemented a

real-time version of our system with some improvements

to the model using a PC and an inexpensive webcam. We

added speech feedback to guide a blind user to a detected

barcode, and we tested the system while wearing blindfolds,

demonstrating the feasibility of the system for totally blind

users. Ultimately the system will be ported to a camera

phone and tested with blind and low vision users, but our

current experimental results show that the system is emi-

nently usable and reliable. We note that the webcam we

used has the same resolution as the Nokia N95 phone run-

ning in video mode, which is our initial target platform for

the mobile version of our system.

2. Related Work

In the past, most research on reading barcodes focused

on the problem of decoding barcode signals from a laser

scanner, which are 1D waveforms (time series) representing

barcode slices. One work [4] focuses on an optimal proce-

dure for deblurring the waveforms to restore the locations

of closely spaced edges in order to improve the decoding

process. Another paper [6] uses an HMM model to decode

a barcode signal in the presence of spurious edges.

More recent work has addressed the problem of reading

barcodes from images acquired by a camera. Most of this

work has simplified the problem of locating and segmenting

the barcode in the image by assuming certain constraints

hold. In [5], the barcode is assumed to be horizontal in the

image and viewed close enough for the long width of the

barcode to subtend about two-thirds of the image width; al-

though the authors point out that the method can be easily

extended to the case of unknown orientation, it is unclear

how well the algorithm would work with barcodes viewed

from farther away. Other work [2] assumes that the barcode

can be detected from the morphological structure of bina-

rized regions of the image, but the binarization procedure

may fail on images that are noisier than the crisp example

shown in the paper; similarly, [7] assumes that a barcode

can be detected by searching for a black bar using a spiral

searching method, which scans in a spiral outward from the

center of the image, but it is unclear that an individual black

bar can be sufficiently well resolved at a distance.

In addition to the commercial products mentioned in

Sec. 1 (Red Laser, Nokia Point and Find, and Realeyes3D),

which use proprietary algorithms, there have been some

publications describing research on reading 1D barcodes us-

ing camera phones. In [10], a barcode reading algorithm

assumes that “a horizontal scanline in the middle of the im-

age will cover the barcode,” and exploits the opportunity to

capture multiple frames each second until this constraint is

satisfied. (Our proposed system is similar in that it captures

multiple frames until one of them can be read, but we detect

the barcode from a distance and guide the user towards it

before attempting to read it.) Finally, [12] specifically ad-

dresses the problem of detecting and localizing 1D barcodes

at unknown orientation in cluttered, noisy images, but there

is no mention of how far away the barcodes can be detected

(in the examples shown in the paper, the barcodes appear

close enough to be at moderately high resolution).

We build on our recent work [9, 8] focusing on reading

a barcode (assuming it has already been segmented) using

a Bayesian deformable template algorithm that combines a

prior model of the geometric shape of the barcode pattern

with a likelihood model that evaluates evidence in the im-

age for edges. Such an approach is a principled technique

of decoding noisy barcode images that contain spurious (or

missing) edges. A related approach [3], also based on de-

formable templates, can successfully decode barcodes from

extremely blurry and noisy pictures.

Finally, we note that there is growing interest [11, 1] in

the use of 2D barcodes, which are better suited to acquisi-

tion by camera than 1D barcodes, and encode information

more densely. While 2D barcodes will one day supplant

their 1D predecessors, at present almost all packaged goods

are still labeled with 1D barcodes, which is why this paper

focuses on them.

3. Overview

Before we go into the details of our algorithms, we give

a brief overview of the major steps, shown schematically

in Fig. 1. The system can be broken down into four main

sub-systems: a detection part that looks for evidence of a

OUTPUT

SMOOTHING

AND

GRADIENT CALCULATION

LINE SWEEP: CALCULATE EDGE SCORES

LINE GROUPING: GET BARCODE CANDIDATES

ENTROPY FILTERING

DIRECT USER TO MAJOR CANDIDATE

FINAL VERIFICATION

FIND VARIABLE EDGES & DIGIT ENERGIES

FIND FIXED EDGES

JOINT ML DECODING OF BARCODE DIGITS

FINDING PRODUCT INFORMATION

CAMERA FRAME

PRE-PROCESSING

DETECTION DECODING

Figure 1. Barcode system.

barcode in the image, a direction system that guides the user

to a barcode if one is found, a decoding step that decodes the

actual UPC-A code from the barcode once all the edges are

seen, and the final stage which matches the UPC-A code to

a product descriptions and outputs this information. Below

is a summary of these steps:

1. Detection:

(a) Lines in 4 different orientations swept to determine

collection of edge points with alternating polari-

ties.

(b) Line scores tallied in direction perpendicular to

sweep direction to get 2D representation of pos-

sible barcode areas.

(c) Orientation entropy used to eliminate false posi-

tives (e.g. dense text).

2. Direction:

(a) A maximal bounding box to enclose the detected

barcode is calculated.

(b) The user is directed to the barcode by voice com-

mands until enough edges are seen.

3. Decoding:

(a) Slices with maximum number of edges are found

and edges localized with sub-pixel accuracy.

(b) Maximum likelihood (ML) estimation of the fun-

damental width and fixed edges.

(c) ML estimation of the barcode digits using the

check bit.

(d) Detection attempted both right side up and upside

down.

4. Output:

(a) Product information retrieved from database and

read out.

In the next few sections, the details of these stages are

provided.

4. Algorithm for Finding Barcodes

1D barcode patterns are characterized by a rectangular

array of parallel lines. The particular symbology we focus

on in this paper is UPC-A (Fig. 2), which is widespread in

North America and encodes a total of 12 decimal digits (one

of which is a checksum digit that is a function of the preced-

ing eleven digits). The UPC-A pattern contains a sequence

of 29 white and 30 black bars, for a total of 60 edges of

alternating polarity.

0 40822 01471 7

g
L

d
1

d
2

d
3

d
4

d
5

d
6

g
M d
7

d
8

d
9

d
1
0

d
1
1

d
1
2

g
R

Figure 2. UPC-A barcode, encoding 12 digits. The code axis runs

left to right in this image and the bar axis runs vertically upwards.

Note that the the bar patterns representing any specific digit have

opposite polarity on the left and right sides of the barcode.

Any algorithm for finding a 1D barcode will conduct

some sort of search for linear edge features in an image.

While simple pre-processing steps such as intensity bina-

rization and line extraction may be useful for identifying

these features when they are clearly resolved, these steps

may fail when the barcode is viewed from a distance. In-

stead, we decided to begin our detection algorithm by draw-

ing on a simple, local image cue: the direction of the image

gradient. The important signature of a barcode region is

that, among pixels where the image gradient is significantly

above zero, nearby pixels in the region have gradient di-

rections that are either roughly aligned (corresponding to

edges of the same polarity) or anti-aligned (corresponding

to edges of opposite polarity).

Thus, in the first stage of our detection algorithm, we

calculate the image gradient everywhere in the image, and

at all locations where the gradient magnitude is above a

threshold (which we refer to as edge pixels) we calculate the

gradient direction as an angle from 0 to 2π. Next we scan

the image in four different orientations: horizontal, vertical,

and both diagonals (±45◦). Let us consider the horizontal

orientation first. The scan is conducted in raster order (top

row to bottom row, and left to right within each row), and

we search for edge pixels whose orientation is consistent

with vertical bars. For each such edge pixel, we search for

a nearby “mate” pixel with the opposite polarity. Once a

sufficient number of these pixels are found close by on a

line segment, this segment is saved for the next step which

sweeps the lines in a direction perpendicular to the first

sweep direction to see if there are any approximately con-

secutive segments that have similar beginnings and ends.

If a number of candidate line segments with similar begin-

nings and ends are found in this manner, this area is saved

as a possible barcode candidate and passed on to the next

stage which eliminates false positives that may arise, such

as dense text when seen from a distance. These algorithms

are summarized in Figures 3 and 4.

The gradient angles which were quantized into 16 bins

are histogrammed into 8 bins by combining pixels whose

directions are 180 degrees apart. We then calculate the en-

tropy of the resulting distribution, and compare it to a max-

imum threshold. Since a barcode is expected to only have

lines of a single orientation, we expect a low entropy value.

This stage eliminates false positives from the previous stage

such as text, which has more orientations. As we direct the

user to the barcode by giving directional feedback, the lo-

calization accuracy also increases.

5. Algorithm for Reading Barcodes

This part is based on a previous publication by the au-

thors, [9], that models a barcode as a deformable template.

We start with an initial estimate of the fundamental width,

X , of the barcode (i.e. the width of the narrowest black

or white bar) using the end points of the barcode bound-

ing box from the previous stage. We first model the “fixed

edges” of a UPC-A barcode, which are shown in Figure 2

as the guard-band edges and the digit boundaries shown in

red. We model these fixed edges and digits conditioned on

the barcode slice as obeying a Gaussian distribution cen-

tered around their expected geometric locations (which con-

sists of their expected absolute distance from the left bar-

code edge and their relative distance from the previous fixed

edge), and an exponential distribution in terms of their gra-

dient strengths as given below:

P (E,D|S) ∝ e−L(E,S)−G(E,D) (1)

where L(E,S) is the (log) likelihood term that rewards

edge locations lying on high-gradient parts of the scanline,

and G(E,D) is the geometric term that enforces the spa-

tial relationships among different edges given the digit se-

quence.

By assuming conditional independence of a fixed edge

from the previous fixed edges given the immediately prior

edge, we can come up with a Markovian description of the

fixed edges. This allows us to the find the maximum likeli-

hood estimate of these locations efficiently using the Viterbi

algorithm. We then iteratively refine this estimate and the

fundamental width until we are satisfied with our estimate.

Once we find the fixed edge locations, we calculate the

Figure 3. Line Scan Algoritm

INITIALIZATION:

τG = minimum gradient threshold

nE = minimum # of edges required

dE = maximum distance between consecutive edges

SWEEP:

for orientation t = 0, 45, 90, 135 do

for line l = 1, . . . , lastLineInThisOrientation do

count← 0
for pixel i = 1, . . . , lastP ixelOnThisLine do

Let j be the last pixel on this line that was counted.

if |∇Ii| > τG then

//Gradient above threshold and angle approx. perpendicular to sweep line

if ∠∇Ii ≈ ⊥ orientation then

if |∇Ii| ≥ max{|∇Ii−1|, |∇Ii+1|} then //non-maximum suppression

if ∠∇Ii is ≈ 180 degrees out of phase with ∠∇Ij , and dij < dE then

count← count + 1 //count this pixel

else

count← count− 1 //pixel with strong gradient at wrong orientation

else if dij > dE then //no edge pixel seen in a while

count← count− 1;

if dij > 2 ∗ dE then //no edges in a long while

count← 0 //end of candidate segment

if count = 0 then //see if end of segment has been reached

score← maxi∈lastSegment count(i) //score is the max count for this segment

if score > nE then //if the minimum # edges has been seen

Record this segment as a barcode candidate segment for this line

else

Discard this segment

probabilities of the “in-digit” edges for each barcode digit,

which gives us a distribution on the probabilities of each

digit 0, . . . , 9 for this location. These are then used in con-

junction with fixed edge estimates to get an overall estimate

of the barcode. Since the digits are not conditionally inde-

pendent due to the check bit, we use an auxiliary variable

that is a running parity and preserves these probabilities as

well as obeying the Markovian property. Hence, we can

once more use the Viterbi algorithm to efficiently calculate

the maximum likelihood estimate of the barcode.

We use a multi-candidate Viterbi algorithm to ensure that

the probability of our estimate is sufficiently larger than the

probability of the second best ML estimate. We also ensure

that the estimate is at most 1 digit away from the individ-

ually most likely digit estimates, since the parity digit is

only guaranteed to find single-digit errors. This algorithm

is summarized in Figure 5.

6. System Implementation

After designing and testing the algorithms primarily in

Matlab, the entire code base was ported to C++ for speed.

The system was executed on a desktop computer with an

inexpensive webcam, and the manual focus of the webcam

was set to an intermediate focal distance: far enough for the

webcam to resolve barcodes sufficiently well to be detected

at a distance, but close enough for the webcam to resolve the

barcode clearly enough to read properly at close range. We

also experimented with autofocus webcams, but the time

lag due to the autofocus feature proved to be impractical for

a real-time system. Microsoft Speech API was utilized for

the oral directional feedback.

We devised a simple acoustic user interface to guide the

user to the barcode. For each image frame, if a candidate

barcode is detected then the system issues directional feed-

back instructing the user to move the camera left, right, up

or down to better center the barcode in the field of view. If

the barcode is oriented diagonally then the user is instructed

to rotate the barcode, to allow the barcode to be aligned ei-

ther approximately horizontally or vertically with the pixel

lattice; this was done because the square pixel lattice maxi-

mally resolves the 1D barcode pattern when the code axis is

perfectly horizontal or vertical, whereas barcodes oriented

diagonally are harder to resolve. (Note that it is unneces-

sary to tell the user which direction to rotate in, since the

user need only align the barcode to the pixel lattice mod-

ulo 90◦.) If the barcode is close enough to detect but too

far to read then the system tells the user to bring the cam-

era closer, or if the barcode covers a very big portion of the

webcam, the user is instructed to move farther to ensure the

Figure 4. Line Tally Algorithm

INITIALIZATION:

nL = minimum # of lines required

dL = maximum distance between matching lines

τS = minimum score required to declare barcode candidate

B = {} //list of candidate areas

SWEEP:

for orientation t = 0, 45, 90, 135 do

for line l = 0, . . . , lastLineInThisOrientation do

for barcode segment candidate c = 1, . . . , lastCandidateOnThisLine do

if ∃b ∈ B : beginb ≈ beginc, endb ≈ endc and dlb < dL then

//There was a previous barcode area candidate with similar beginning and end a little earlier

countb ← countb + 1
else

B ← B + c //Add this segment as the beginning of a new candidate area

countc ← 1
for b ∈ B do //check that the candidates are still valid

if dlb > dL then //have not seen a match in a while

countb ← countb − 1
if dlb > 2 ∗ dL then //have not seen a match in a long while

countb ← 0
if countb = 0 then //end of candidate

scoreb ← maxl∈bcount(l) //score is the max count over all lines in this area

if scoreb > τS then //if the minimum # lines has been seen

Record b as a barcode area segment

else

B ← B − b //Discard this candidate

Figure 5. Barcode Decoding Algorithm

INITIALIZATION:

Xinitial = lastEdge−firstEdge

95

FIND EDGES AND DIGIT PROBABILITIES:

Find the Nslices lines in the barcode with the highest edge count

for Slice i = 1, . . . , Nslices do

Estimate NfixedEdgeEstimates fixed edges

for Fixed Edge Estimate j = 1, . . . , NfixedEdgeEstimates do

for Barcode digit d = 1, . . . , 12 do

Get digit probabilities for each numeric digit 0, . . . , 9
Marginalize digit probabilities over all fixed edge estimates

Marginalize digit probabilities over all slices

BARCODE ESTIMATION:

for Barcode digit d = 1, . . . , 12 do

Calculate auxiliary running parity check digit probabilities.

ML Estimation of the 2 most likely sequence of auxiliary random variables

Convert auxiliary random variables back to barcode digits

BARCODE VERIFICATION:

if Probability of most likely sequence > K× Probability of the second most likely sequence then

if Most likely sequence differs from individually most likely digits by at most 1 digit then

OUTPUT BARCODE

Get new frame

whole barcode is captured.

Once the barcode is sufficiently close and well cen-

tered, the system attempts to read the barcode repeat-

edly (sounding a beep each time to inform the user) un-

til the barcode is decoded with sufficiently high confi-

dence. The barcode digit string read by the algorithm is

looked up in a UPC code database (freely available on-

line at http://www.upcdatabase.com/); if the string exists

in the database then the corresponding descriptive product

information is read aloud (e.g. “Walgreens Fancy Cashew

Halves with Pieces. Size/Weight: 8.5 oz. Manufacturer:

WALGREEN CO.”). If the string is not present in the

database then the system alerts the user to this fact and out-

puts the barcode string.

Even though the detection stage worked well at 320x240

resolution at around 15fps, for our experiments we used

640x480 resolution to be able to resolve more lines and

read the barcode when it is not exactly aligned. In this

mode, using a 2.4Ghz Intel Pentium processor with 2GB of

RAM, our algorithm ran at up to 7fps (detection and decod-

ing) without sound. However, due to the lag caused by the

TTS (text-to-speech) system, in normal circumstances we

are limited to only a few frames a second, which seemed to

be sufficient for this experiment.

7. Experimental Results

We first experimented informally with our system to de-

termine appropriate scanning strategies for locating bar-

codes as quickly as possible. Prior knowledge of the likely

locations of barcodes on various types of packages proved

to be helpful. For instance, on a cylindrical can, the bar-

code is always on the circumference of the cylinder near the

flat top or bottom. Another rule we have inferred is that the

barcode’s orientation is always aligned to the dimensions of

the box, and it is best to try to align the camera orientation

to that of the barcode.

A few scanning strategies quickly became clear: (a) it

is best to keep the package fixed and to move the cam-

era relative to it; if a portion of the package’s surface has

been scanned without finding any barcodes, then the pack-

age should be rotated before continuing the scan; (b) the

camera should be held several inches from the package sur-

face and moved slowly to avoid motion blur; (c) the user

must take care not to occlude any part of the package being

scanned with his/her fingers; and (d) once the system reli-

ably indicates the presence of a barcode, and the system has

directed the user to home in on it, the user may have to wait

a few to several seconds for the system to read the barcode.

To prove the feasibility of our combined detection and

reading system, we conducted an experiment with a nor-

mally sighted subject who was wearing a blindfold the en-

tire time. In a training session he successfully located and

read all ten packages that he was given (consisting of cans,

boxes and tubes); he was completely unfamiliar with four

of the packages, but had previously seen the remaining six.

Next, in the experiment session he was given ten packages,

none of which he had seen before. He was able to locate

all ten barcodes, and the system correctly read nine of the

ten barcodes. (The incorrectly read barcode was correct ex-

cept for two incorrect digits.) In our algorithm, we use the

check digit in the barcode estimation, which creates a trade-

off between efficiency and accuracy. It is possible to tune

the parameters so as to gain more speed by sacrificing some

accuracy and vice versa. This may be left as a choice for

the end user.

We also investigated the types of image regions that

passed various stages of the detection process. Fig. 6 shows

sample images captured by the webcam, with colored lines

denoting the following: (a) red lines indicate regions that

passed the line tally test but failed the entropy test; (b) yel-

low lines are for regions that passed the entropy test but had

too few edges to be considered as a full barcode candidate;

and (c) green lines indicate full barcode candidates that in-

voked the reading (decoding) algorithm.

Finally, we experimented with the webcam focus to see

how far we could detect a barcode. By setting the focus

near infinity, the algorithm was able to detect barcodes at

distances of up to 12 inches. Unfortunately, this focus set-

ting made close-up views of barcodes too blurry to be read.

In the future we hope to use an autofocus lens to be able to

focus well at all distance ranges, assuming it can be made

to focus fast enough for real-time use.

8. Conclusion

We have described a novel algorithm for finding and

reading 1D barcodes, intended for use by blind and visually

impaired users. A key feature of the algorithm is the abil-

ity to detect barcodes at some distance, allowing the user to

rapidly scan packages before homing in on a barcode. Ex-

perimental results with a blindfolded subject demonstrate

the feasibility of the system.

In the future we plan to port our system to a camera

phone, and to extend our system to symbologies other than

UPC-A, such as the the EAN-13 (which is widespread in

Europe).

9. Acknowledgments

The authors were supported by the The National Insti-

tutes of Health grant 1 R01 EY018890-01.

References

[1] A. Adelmann, M. Langheinrich, and G. Floerkemeier. A

toolkit for bar-code-recognition and resolving on camera

phones - jump starting the internet of things. In Workshop

on Mobile and Embedded Interactive Systems (MEIS’06) at

Informatik 2006, 2006.

[2] D. Chai and F. Hock. Locating and decoding EAN-13 bar-

codes from images captured by digital cameras. In Infor-

mation, Communications and Signal Processing, 2005 Fifth

International Conference on, pages 1595–1599, 2005.

[3] O. Gallo and R. Manduchi. Reading challenging bar-

codes with cameras. In IEEE Workshop on Applications of

Computer Vision (WACV) 2009, Snowbird, Utah, December

2009.

[4] E. Joseph and T. Pavlidis. Deblurring of bilevel waveforms.

IEEE Transactions on Image Processing, 2, 1993.

Figure 6. Sample intermediate detection stages. Red, yellow and green lines denote regions that pass successively more stringent detection

tests (see text for details). Audio instructions issued to user (such as “closer”) are printed in green type.

[5] W. Kongqiao. 1D barcode reading on camera phones. In-

ternational Journal of Image and Graphics, 7(3):529–550,

2007.

[6] S. Krešić-Jurić, D. Madej, and F. Santosa. Applications

of hidden Markov models in bar code decoding. Pattern

Recogn. Lett., 27(14):1665–1672, 2006.

[7] E. Ohbuchi, H. Hanaizumi, and L. A. Hock. Barcode read-

ers using the camera device in mobile phones. In CW ’04:

Proceedings of the 2004 International Conference on Cyber-

worlds, pages 260–265, Washington, DC, USA, 2004. IEEE

Computer Society.

[8] E. Tekin and J. Coughlan. Barcode project.

www.ski.org/Rehab/Coughlan lab/Barcode.

[9] E. Tekin and J. M. Coughlan. A bayesian algorithm for read-

ing 1-D barcodes. In Sixth Canadian Conference on Com-

puter and Robot Vision (CRV 2009), Kelowna, BC, CA, May

2009.

[10] S. Wachenfeld, S. Terlunen, and X. Jiang. Robust recogni-

tion of 1-D barcodes using camera phones. In Proceedings of

the International Conference on Patern Recognition, pages

1–4, 2008.

[11] H. Wang and Y. Zou. Camera readable 2D bar codes de-

sign and decoding for mobile phones. In Proceedings of the

International Conference on Image Processing, pages 469–

472, 2006.

[12] C. Zhang, J. Wang, S. Han, M. Yi, and Z. Zhang. Auto-

matic real-time barcode localization in complex scenes. In

Proceedings of the International Conference on Image Pro-

cessing, pages 497–500, 2006.

