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Abstract

We describe a novel framework for calculating dense,

accurate elevation maps from stereo, in which the height of

each point in the scene is estimated relative to the ground

plane. The key to our framework’s ability to estimate ele-

vation accurately is an MRF formulation of stereo that di-

rectly represents elevation at each pixel instead of the usual

disparity. By enforcing smoothness of elevation rather

than disparity (using pairwise interactions in the MRF), the

usual fronto-parallel bias is transformed into a horizontal

(parallel to the ground) bias – a bias that is more appro-

priate for scenes characterized by a dominant ground plane

viewed from an angle. This horizontal bias amounts to a

more informative prior for such scenes, which results in

more accurate surface reconstruction, with sub-pixel accu-

racy.

We apply this framework to the problem of finding small

obstacles, such as curbs and other small deviations from

the ground plane, a few meters in front of a vehicle (such

as a wheelchair or robot) that are missed by standard real-

time correlation stereo algorithms. We demonstrate a real-

time implementation of our framework on a GPU (we have

made the code publicly available), which processes a 640 x

480 stereo image pair in 160 ms using either our elevation

model or a standard disparity-based model (with 32 eleva-

tion or disparity levels), and describe experimental results.

1. Introduction

Stereo is becoming increasingly useful as a real-time

sensor for detecting important terrain features, such as ob-

stacles, curbs and fall-offs, for vehicles such as wheelchairs

(the particular application that motivated this paper) and

robots. However, while standard real-time correlation

window-based stereo algorithms are accurate enough to de-

termine the dominant ground plane in a scene and to de-

tect sufficiently large features at moderate range, the dis-

parity maps estimated by such algorithms are often so noisy

that smaller features may be lost in the noise – even at

fairly close range. One solution to this problem is to use

MRF stereo algorithms, which are significantly less noisy

than correlation window-based stereo methods, and cur-

rently rank among the top-performing stereo algorithms

[13]; while MRF algorithms are computationally intensive,

they can now be implemented to run rapidly using off-the-

shelf GPU hardware [16].

However, like most stereo algorithms, MRF stereo suf-

fers from a fronto-parallel bias imposed by the disparity

smoothness prior, typically expressed using pairwise (1st-

order) interactions between disparities at neighboring pix-

els. This bias is inappropriate in the very situations that

are crucial for terrain analysis, in which simpler algorithms

fail: finding modest-sized (but important) deviations from

the dominant ground plane, such as occur at curb edges

viewed at a distance. In these cases, standard stereo al-

gorithms easily establish that there are no large deviations

from the plane, but limited precision and the presence of

noise in the stereo correspondence limits the ability to de-

tect small deviations (corresponding to sub-pixel disparity

changes). Moreover, the fronto-parallel bias acts as an un-

realistic prior since the dominant ground plane is viewed at

an angle, and the bias can impair correct inference of the

disparities on (and near) the ground plane.

To circumvent this problem, we propose a novel MRF

formulation of stereo that directly represents elevation at

each pixel instead of the usual disparity. By enforcing

smoothness of elevation rather than disparity (using pair-

wise interactions in the MRF), the usual fronto-parallel

bias is transformed into a horizontal (parallel to the ground

plane) bias. In scenes dominated by a ground plane, this

horizontal bias acts to reduce noise in the estimation of dis-

parities on the ground plane, which makes it easier to de-

tect deviations from the ground plane – i.e. obstacles such

as curbs or stones.

We describe our algorithm and its real-time implementa-

tion on a GPU, and show experimental results demonstrat-

ing that it out-performs a conventional MRF stereo algo-

rithm (which uses the standard disparity representation) in

its ability to reconstruct ground plane surfaces and to detect

obstacles.



2. Related Work

A vast range of research has been conducted on the use of

stereo algorithms to detect and localize obstacles and other

depth discontinuities; here we survey a handful of represen-

tative work in this area.

A variety of algorithms have been devised to exploit the

dominant ground plane structure of typical street scenes. A

classic example of this type of work is GOLD (Generic Ob-

stacle and Lane Detection system) [1], which warps the left

and right views so that all points lying on the ground plane

are brought into correspondence (and thus simple image dif-

ferences reveal points that lie off the ground plane). Another

is V-disparity [9], which reduces the noise in reconstructing

the dominant road surface by assuming a single dominant

disparity in each row of the image. More recently, some

research has addressed the need for improved disparity ac-

curacy to find obstacles at long distances on flat surfaces,

such as [11], which explicitly models non-planar road sur-

faces to improve obstacle detection, and [6], which uses

sub-pixel disparity resolution and exploits a simple “gravi-

tational” prior that enforces the tendency for disparities to

decrease higher up in the image.

A related research theme is the development of algo-

rithms to detect specific kinds of obstacles, such as curbs

[10] and steps [12], which exploit the specific structure of

such obstacles to minimize the deleterious effects of stereo

noise. Some work in this category specifically addresses the

detection of obstacles for wheelchair applications, using 3D

representations such as an occupancy grid [14] or elevation

map [7].

Most of the work described so far in this section uses

standard stereo techniques to obtain disparity estimates and

process this disparity information in novel ways. However,

other research is concerned with making more fundamental

improvements to stereo algorithms to better model typical

3D environments. In particular, this body of work seeks

to improve upon the usual fronto-parallel bias imposed by

standard correlation or MRF stereo algorithms [13], to re-

flect the fact that many surfaces in typical environments are

planar but not fronto-parallel (i.e. slanted). One approach to

capture such slanted surfaces is sweep stereo, which iden-

tifies dominant surface orientations in a scene and explores

multiple depth candidates relative to each surface orienta-

tion; recent work [5] uses a GPU implementation to boost

the speed of sweep stereo to real-time. A similar approach

is the Manhattan stereo model [4] that solves for piece-

wise planar surfaces, aligned to dominant “Manhattan” di-

rections in a scene, in an MRF framework. Finally, work

on higher-order MRF stereo [15] improves upon the usual

1st-order smoothness prior, which enforces a fronto-parallel

bias, with a 2nd-order prior, which enforces a more general

co-linearity bias that is satisfied by planar structures at arbi-

trary slants.

Finally, recent work explores the speed-ups obtainable

by implementing MRF stereo algorithms on GPUs using be-

lief propagation (BP) [2], some of which even attains real-

time performance [16].

Our work combines aspects of many of these different re-

search threads. Motivated by the need to detect obstacles on

a ground plane from a distance, we sought a way of improv-

ing upon the fronto-parallel bias imposed by standard MRF

stereo. We accomplished this goal by using an elevation-

based representation, which imposes a prior that is better

suited to the environment, and which allows sub-pixel dis-

parity resolution. By using belief propagation to perform

inference with the model, we were able to implement the

algorithm to run on a GPU in real time.

3. Motivation for Elevation Framework

Our main thesis is that for many stereo applications in

which scenes are dominated by a ground plane, it is better

to represent depth information at each pixel using eleva-

tion (height from the ground plane) rather than the standard

disparity representation. The rationale for an elevation rep-

resentation is two-fold: the representation is more compact

and the smoothness prior expressed in this representation is

more accurate. We explain these rationales in more detail

below.

Figure 1. Top: (a) Input image showing typical ground plane

scene. (b) Disparity map output using correlation window stereo.

Bottom: (c) Disparity map from disparity-based stereo (disparity

range is not wide enough in this implementation to cover top and

bottom regions). (d) Elevation map from elevation-based stereo;

few elevation levels are needed to represent ground plane.

First, the elevation representation is more compact for

typical scenes (Fig. 1), in which most pixels have elevation

close to zero, whereas the disparities of the ground plane

vary widely from the bottom of the image to the top (requir-

ing large disparity ranges of roughly 0-31 pixels). A small

set of quantized elevation levels (e.g. 32 values ranging



across a 2-meter elevation span, from −1m through +1m)

suffice to finely resolve the ground plane geometry through-

out the image, including positive and negative obstacles on

the ground plane. However, the same number of disparity

levels (e.g. disparities 0 through 31) might be used to cover

the entire ground plane from the top to bottom of the im-

age; note that many of the higher disparity levels are only

relevant to the bottom part of the ground plane, leaving a

limited number of levels to resolve geometric details in the

upper part. Naturally, any fixed elevation range may be too

narrow to encompass all obstacles (e.g. most trees are much

higher than 1m), but the focus of this paper is on resolving

subtle geometric perturbations from the ground plane, and

most standard stereo algorithms will detect large perturba-

tions.

The second motivation for the elevation representation is

that the smoothness prior expressed in this representation

is more accurate for scenes dominated by a ground plane.

The standard MRF stereo smoothness prior expresses the

fact that disparities of neighboring pixels are similar. This

disparity prior imposes a fronto-parallel bias, which is in-

appropriate in the situations we are interested in, when the

camera line of sight is at an angle (e.g. roughly 45◦) to the

ground, and so the ground plane disparity increases linearly

(as a function of row coordinate) from the top to the bot-

tom of the image. In such cases, a more appropriate prior

would express the fact that elevations of neighboring pixels

are similar.

Note that we can convert freely between the elevation

and disparity representations. As shown in detail in Sec. 4,

given the equation of the ground plane, the elevation at a

given row and column in the image corresponds to a spe-

cific disparity (assuming knowledge of the stereo baseline

and camera focal length). While the prior can be conve-

niently expressed either in terms of elevation or disparity,

the likelihood model is naturally calculated in terms of dis-

parity by evaluating the goodness of match between a pixel

in the right image and the corresponding pixel in the left;

for the elevation model, the likelihood evaluates all eleva-

tion hypotheses at a pixel by internally converting the hy-

potheses into disparities.

Finally, we note an important advantage of the elevation

framework over an approach similar to the GOLD model

(described in the previous section) that we originally con-

sidered, in which one of the two images is warped so that all

points on the ground plane have zero disparity (and an ex-

plicit elevation representation is not needed for points on the

ground plane). Unfortunately, with this approach, points on

other planes parallel to the ground (i.e. planes with uniform,

non-zero elevation) have non-uniform disparity (which can

be proved from Eq. 7), so it would be difficult to use this ap-

proach to enforce a prior that favors smoothly varying (and

often locally uniform) elevation.

3.1. Ground plane analysis

To better understand the benefit of the elevation prior,

first consider a perfectly flat “reference” ground plane im-

aged under real-world imaging conditions (with camera

noise). If the reference ground plane is defined by R·n = k,

where R = (X,Y,Z) are 3D camera-aligned coordinates

(the positive Z-axis points along the camera line of sight,

and the X axis is approximately parallel to the ground), then

we can re-express this in terms of disparity as a function of

pixel coordinates (u, v). (Here the center of the rectified im-

age is (u, v) = (0, 0); u increases with increasing column

number and v increases with increasing row number.) First

we recall the projection equations:

u = fX/Z, v = fY/Z, Z = fB/d (1)

where d is disparity, f is the focal length and B is the cam-

era baseline separation. Since X = uZ/f and Y = vZ/f
we get Z = fk/(n · (u, v, f)). Then, since Z = fB/d we

obtain the disparity of the ground plane:

d(u, v) = fB/Z = Bn · (u, v, f)/k (2)

Note that the disparity is a linear function of the column

and row coordinates. If the camera is held with the baseline

horizontal (i.e. the X-axis is parallel to the ground), then

nx = 0 and the disparity of the ground plane is independent

of pixel column and varies only from one row to the next.

If a stereo algorithm quantizes disparity in some way

(e.g. integer values or some regular grid of values, as is

typically used with a discrete-valued MRF stereo model),

then the ideal estimated disparity field will jump from one

disparity level to the next every few rows. A significant dis-

advantage of the quantized disparity representation is that

even a perfectly flat plane has disparity jumps if it is not

fronto-parallel, and it may be difficult to distinguish such

jumps from discontinuities due to obstacles on the ground

plane. As a consequence, any attempt to smooth out the

disparity estimates by penalizing disparity jumps will have

the undesired side effect of also smoothing out true geomet-

ric discontinuities.

Conversely, in the elevation representation, a perfectly

flat plane will have a single elevation value across the im-

age. Even if the plane isn’t perfectly flat (e.g. a gradually

sloping sidewalk) or the reference ground plane equation

is slightly incorrect, the elevation will only change slowly

across the plane. Given the quantization of elevation val-

ues, this means that elevation jumps are rare on the ground

plane. Thus, the elevation change due to a small obstacle is

more likely to be detected.

In summary, the elevation representation introduces less

noise in its reconstruction of horizontal planes, and so it is

more sensitive to small obstacles on these planes. Finally,



we note that the elevation representation is robust to small

deviations from the horizontal (e.g. gently curved road sur-

faces).

4. Algorithm

We first describe the standard disparity-based MRF

model [3], and then describe the proposed elevation-based

MRF model, which is a simple variation of the first model.

4.1. Disparitybased MRF model

We are given the left and right grayscale images L and

R, which are assumed rectified so that a pixel in one im-

age matches a pixel in the same row in the other image.

The unknown disparity field is represented by D, with Dr

representing the disparity at pixel location r. A particular

disparity value Dr, where r = (u, v), has the following in-

terpretation: (u + Dr, v) in the left image corresponds to

(u, v) in the right image.

We define a smoothness prior (i.e. binary potential in the

MRF) on the disparity field D which enforces smoothness:

P (D) =
1

Z
e−βV (D) (3)

where Z is a normalizing constant ensuring that P (D) sums

to 1 over all possible values of D, β is a positive constant

that controls the peakedness of the probability distribution,

and V (D) =
∑

<rs> f(Dr,Ds), where the sum is over all

neighboring pairs of pixels r and s. Here f(Dr,Ds) is an

energy function that penalizes differences between dispar-

ities, and the particular form we use [3] is f(Dr,Ds) =
min(|Dr − Ds|, τ), which ensures that the penalty can be

no larger than τ .

Next we define a likelihood function (i.e. unary potential

in the MRF), which defines how the left and right images

provide evidence supporting particular disparity values:

P (m|D) =
∏

r

P (mr(Dr)|Dr) (4)

where the product is over all pixels in the image, and m
is the matching error across the entire image. Specifically,

mr(Dr) is the matching error between the left and right im-

ages assuming disparity Dr, defined as

mr(Dr) = |L(u + Dr, v) − R(u, v)| (5)

(again r = (u, v)). If the value of Dr is fractional (i.e.

sub-pixel resolution), then linear interpolation is used to es-

timate the value of L(u + Dr, v).
Finally, a simple model for the matching error is given

by:

P (mr(Dr)|Dr) =
1

Z ′
e−µmr(Dr) (6)

4.2. Elevationbased MRF model

The elevation-based MRF model is the same as the dis-

parity version above, except that the unknown disparity field

is replaced by an unknown elevation field E. The form

of the prior P (E) remains the same, which penalizes el-

evation differences among neighboring pixels: P (E) =
1
Z

e−βV (E).

However, the likelihood is slightly different from before

because it now evaluates each elevation hypothesis in terms

of the corresponding disparity hypothesis. We now discuss

precisely how this conversion is accomplished.

Given the equation of the ground plane, R·n = k, where

n points upward out of the ground, we define the elevation

of any 3D point R = (X,Y,Z) to be E(R) = n · R − k.

By definition, the elevation is zero on the ground plane, and

points above the ground plane have positive elevation.

First we note that elevation can be simply computed as

a function of disparity and pixel coordinate: E(u, v, d) =
r · n − k = (Zu/f, Zv/f, Z) · n − k where Z = fB/d.

Next, we can solve for Z in terms of E, so Z =
(f)(E+k)
(u,v,f)·n . Therefore we can convert elevation to disparity

using the following equation:

d(u, v, E) =
B

E + k
(u, v, f) · n (7)

The likelihood function has the same form as before:

P (m|E) =
∏

r
P (mr(Er)|Er), where P (mr(Er)|Er) =

1
Z′

e−µmr(Er). However, a crucial difference is that the

matching error is evaluated by converting elevation into dis-

parity, using Eq. 7:

mr(Er) = |L(u + d(u, v, Er), v) − R(u, v)| (8)

Finally, we estimate the ground plane equation off-line,

and assume that the definition changes only minimally over

time since the stereo camera is fixed to the wheelchair plat-

form it is mounted on. It would be straightforward to use

a robust method for automatically determining the ground

plane separately in each frame, but for the purposes of find-

ing elevation discontinuities, our stereo algorithm is robust

to small errors in the ground plane definition.

4.3. Inference and Implementation Details

We implemented the models as specified above but with

a few added enhancements. First, the raw images were first

smoothed with a Gaussian filter. Then, instead of defin-

ing the matching error solely in terms of the intensities of

the left and right images, we added a second term to the

matching error to measure the mismatch between the hor-

izontal derivatives of the smoothed intensities. Since the

horizontal derivative seemed to be a more reliable cue, we

weighted the intensity term by 0.1 and the derivative term



by 0.9 before adding them. Second, we made the strength

of the smoothness prior conditional on the strength of the

image gradient: if the gradient between two adjacent pixels

was above a threshold (suggesting the presence of an edge),

then a weaker smoothness was used than if the gradient was

below threshold. This is a standard procedure [13] exploit-

ing the fact that depth discontinuities almost always occur

at intensity discontinuities.

Inference in our model was performed using belief prop-

agation (BP), specifically sum-product BP (which estimates

the marginal probabilities at each pixel). (We also experi-

mented with max-product BP, which gave similar results but

took slightly more time to execute on the GPU.) In order to

speed up convergence, and also to improve results (such as

the ability to fill in low-texture regions with poor disparity

evidence), we implemented the MRF stereo models in mul-

tiscale (using three scales), as described in [3]. To further

improve fill-in behavior by discounting sufficiently noisy

evidence, we modified the definition of the likelihood func-

tion as follows: if the evidence at any pixel is sufficiently

ambiguous, then we “flatten” the likelihood function at that

pixel by assigning equal likelihood to all elevation (or dis-

parity) values. More precisely, we flatten the likelihood at

a pixel if the top likelihood score for a particular elevation

(or disparity) state is less than 10% of the sum of the scores

for all states at that pixel.

We set the model parameters by trial and error, separately

for each model, so as to make each model reconstruct both

ground planes and obstacles as cleanly as possible. In the

future, automatic learning procedures can be used (includ-

ing unsupervised techniques such as [17]) instead to im-

prove the model parameters.

Finally, we note that the code implementations for the

elevation and disparity models are very similar: the only

fundamental difference is in the unary potential calculation

embodied in the changes between Eq. 5 and Eq. 8.

5. GPU Implementation

As far as we know, the fastest existing MRF stereo GPU

implementation is [16], which processes 320x240 images

at 16 fps (62.5 ms/frame) with 16 disparity levels. By con-

trast, our algorithm processes each 640x480 image in 160

ms with 32 elevation/disparity levels. Even if the number of

disparity levels in the two implementations were the same,

ours would be faster on a per-pixel basis (since the compu-

tation time scales linearly with the number of pixels) – but

our performance is better still given that we process twice as

many elevation/disparity levels. In addition, we have made

our code freely available on our website [8] and in this sec-

tion we describe important implementation details.

We tested our implementation of stereo algorithm on

two different GPUs (GeForce 9800 GTX, GeForce GTX

260) with compute capabilities 1.1 and 1.3, respectively (the

speeds reported above were using the second, faster of the

two GPUs). A very serious processing bottleneck of GPU

implementation was storing and updating BP messages that

are kept in global memory: the GPU’s global memory is

much slower than constant, shared, register or texture mem-

ories. To speed up the access to the global memory we had

to fulfill the so-called “coalescing” requirement, which es-

sentially means that the innermost thread index should cor-

respond to adjacent memory locations (e.g. levels of dis-

parity). This requirement defines the division of labor into

threads and blocks as shown in Fig. 2.

Figure 2. Structure of threads and blocks that satisfies coalescing

requirement. The innermost thread index (threadIdx.x) accesses

consecutive locations in global memory (N levels of disparity).

The other dimensions were chosen based on the number of regis-

ters and shared memory consumed by a kernel so as to maximize

its processor occupancy.

To summarize, kernel invocations used two dimensional

blocks that consisted of threads that indexed disparity lev-

els (innermost dimension) as well as several row pixels (an-

other dimension). The grid structure was also 2D and used

blocks that indexed groups of pixels in the same row and

blocks that indexed rows. The number of pixels in a group

varied from 4 to 16 depending on the kernel’s memory con-

sumption so as to maximize its processor occupancy.

An important aspect of BP implementation is the mes-

sage update schedule. Synchronous updates typically result

in a slow convergence since there is only limited propa-

gation during the update. In comparison, during an asyn-

chronous update, messages travel back and forth across the

whole image on a single iteration. To implement such an

update on the parallel architecture one has to ensure that

only one row/column is processed at a time (i.e. in parallel)

for horizontal/vertical directions of update. The challenge

of doing this arises from the fact that the order of block

loading into GPU is undefined, while using explicit loops

has a huge kernel/block processing overhead. However, we

were able to figure out the pattern of block loading for each

compute capability and thus optimize the performance with

respect to the update schedule.



Another important feature was the use of textures on the

GPU, which speeds up access to global memory since tex-

tures are well cached when accessed locally in 2D. (The

main disadvantage of texture memory is that it only pro-

vides read-only access.) In our implementation, textures

were used to store all image data and binary (smoothness)

potentials. We did not use GPU-native texture interpolation

for sub-pixel disparity access since it was slower than the

one we implemented in our code. Because of their vast size,

unary potentials could not be stored as texture and were put

into global memory instead.

The following routines were implemented on the GPU:

image smoothing, image gradient, creating unary potentials,

message initialization, belief propagation, belief calcula-

tion, and finding the the most likely elevation/disparity state

(the “winners”) at each pixel. The following operations

were included in the timing that was 160ms per 640x480

frame (compute capability 1.3): loading a stereo pair from

the hard drive, image smoothing and gradient calculation,

creating unary potentials for all three scales, message ini-

tialization, running BP for two iterations on each scale, cal-

culating beliefs, finding the winners, and copying them to

the host.

6. Experimental Results

Since our elevation-based stereo model is intended for

scenes dominated by ground planes viewed from an an-

gle, we did not attempt to evaluate the algorithm on a stan-

dard dataset such as the Middlebury dataset (which does

not contain those sorts of scenes). Instead, we compare

the elevation-based model with the disparity model on typ-

ical outdoor scenes of interest, captured by a Point Grey

Bumblebee 2 stereo camera (grayscale images at 640 x 480)

mounted on a wheelchair ([7]). Both models use the same

type of disparity evidence but employ different represen-

tations and different priors; while both models can be im-

proved in various ways, the relative performance of the two

models in their current form should reflect how much of an

improvement is due to the elevation representation.

Since no metric ground truth range or disparity data is

available for these scenes, we decided to use a simpler form

of ground truth information: knowledge of which paved re-

gions in the scene can be classified as locally flat (neglect-

ing minor elevation discontinuities due to leaves or other

litter on the surface) or as non-flat (containing a discontinu-

ity such as a curb or obstacle, which is either clearly visible

or was known to the authors when we captured the images).

We conducted two experiments using this ground truth

information, one to evaluate the noise in reconstructing the

ground plane, and a second to evaluate the ability of the

models to discriminate flat regions from discontinuous re-

gions. Discontinuities arise from either “positive” obstacles

that protrude from the ground, such as a rock on the pave-

ment, or “negative” obstacles, such as curb boundaries with

elevation drops.

Before describing the experiments in detail, we first de-

scribe measures we took to equate the two stereo models

as closely as possible. We chose the elevation and dispar-

ity ranges such that (a) the ranges were adequate for re-

constructing the ground plane and any obstacles in a re-

gion of interest in the image and (b) the disparity resolution

was similar for both models, i.e. the difference in adjacent

disparity levels (corresponding to the consecutive elevation

states in the elevation model) was approximately equal to

the difference in disparity levels in the disparity model. We

chose the elevation levels to range from −0.4m to +0.8m,

equally spaced over N = 32 levels (the maximum num-

ber of levels that our GPU stereo implementation currently

handles); this implies that the range of disparities in the dis-

parity model was from 11 to 29 pixels, which was adequate

for capturing the ground plane in most of the image except

for some rows near the top and bottom. (Rows outside that

range would require disparities too low or high to fit in the

allowed range, thus explaining the noisy regions at the top

and bottom of Fig. 1(c).)

Figure 3. Standard deviation of elevations estimated by the two

stereo models (elevation and disparity) on regions known to be

flat. The standard deviations (i.e. noise levels) are lower for the

elevation model than the disparity model, and these standard devi-

ations tend to increase with distance to the camera.

The first experiment, which evaluates the noise in recon-

structing the ground plane, provides empirical evidence for

the claims made in Sec. 3.1. Regions of three images of

sidewalk scenes were manually identified as being locally

flat (i.e. no depth discontinuities inside), and were catego-

rized according to their distance to the camera. The stan-

dard deviations of the elevation inside these regions were

estimated using the elevation-based stereo model. Simi-

larly, the disparity-based stereo model was run on the same

images, and the resulting disparity maps were converted

to elevation estimates using the definition of the reference

ground plane; these estimates were used separately to es-

timate the average and standard deviation of the elevation.

The results are shown in Fig. 3, which shows that the stan-

dard deviations (i.e. noise levels) are lower for the elevation

model than the disparity model, and that these standard de-



viations tend to increase with distance to the camera.

Figure 4. 3D reconstructions of a positive obstacle (the concrete

parking block) from the two models. Top: original image, with

region of interest outlined in red. Middle: reconstruction from dis-

parity model. Bottom: reconstruction from elevation model. The

obstacle is more clearly discriminable from the flat background in

the elevation model.

Naturally, the noise in estimating the ground plane with

the elevation model could easily be decreased merely by in-

creasing the strength of the prior. However, Fig. 4 shows

3D reconstructions due to each model, suggesting that the

elevation model is better at reconstructing both flat regions

and depth discontinuities. To explore this difference fur-

ther, we conducted a second experiment to investigate the

ability of both stereo models to discriminate between flat

surfaces and discontinuous ones. We considered four dif-

ferent obstacles: three positive obstacles (a rock, drinking

cup and a concrete parking block) and one negative obsta-

cle (a curb viewed from the sidewalk), viewed from a range

of distances. The positive obstacles appeared in a total of

15 images, and there were 8 other images with the negative

obstacle, and all obstacles were recorded at a distance of

4m from the camera.

We then defined a local measure of elevation discontinu-

ity, and measured the distribution of this measure on flat and

non-flat regions of the image using an ROC curve. We refer

to this local measure of elevation discontinuity as a score,

which is defined as follows. The score at any pixel location

is defined in terms of the 50 x 50 pixel patch centered at

that location, and equals the 95th percentile elevation value

minus the 5th percentile value in the patch. The score has

units of elevation difference (in meters), and is a more ro-

bust version of a simpler scoring function equal to the max-

imum minus minimum elevation value in a patch. To permit

as fair a comparison as possible between the elevation and

disparity models, the output of the disparity model is con-

verted into elevation values before being evaluated by the

score function.

For each image in our dataset, a row in the image was

chosen such that when a pixel patch centered on the row

is scanned from left to right (each time moving the patch

25 pixels to the right), some of the patch locations would

intercept an obstacle. The patch locations with obstacles

in them were manually classified as non-flat regions, while

the other regions were classified as flat regions, thus estab-

lishing ground truth for the experiment. Flat patches tended

to have lower scores than non-flat patches; we quantified

this trend using an ROC curve in which the false positive

and true positive rates are determined by sweeping a score

threshold.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area under ROC curve (elev= 0.97, dispar=0.63)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area under ROC curve (elev= 0.85, disp=0.80)

Figure 5. ROC curves showing the discriminability of flat vs. non-

flat surfaces according to a simple elevation discontinuity mea-

sure. The red curves correspond to data generated by the eleva-

tion model, and the blue curves to data generated by the disparity

model; the left figure is for negative obstacle data, and the right

figure is for positive obstacles. In both cases, the AUC is higher

for the elevation model than the disparity model.

Separate ROC curves are shown (Fig. 5) for positive and

negative obstacles, with a total of 176 patches for positive

obstacles and 330 patches for negative obstacles used to

compute each ROC curve. For both types of obstacles, the

AUC (area under the ROC curve) was higher for the eleva-

tion model than the disparity model.

7. Conclusion

We have described a novel MRF stereo framework based

on explicitly modeling elevations, rather than disparities,

which is useful for scenes of typical man-made envi-

ronments with dominant ground plane structures that are

viewed from an angle. The main rationale for the eleva-

tion representation is that a smoothness prior on elevations

is more appropriate for these environments than one based

on disparities, since the latter imposes an unnatural fronto-

parallel plane bias. An additional important advantage of



the elevation representation is that it is more compact for

many scenes, in the sense that a small range of elevations

will be appropriate for resolving structure on and near the

entire ground plane surface, whereas many disparity lev-

els are required to accommodate near and far points on the

ground plane.

Our GPU implementation (both the elevation-based

MRF and disparity-based MRF code are freely available at

[8]) achieves real-time performance: 160 ms per stereo pair

at 640 x 480 pixel resolution (and N = 32 elevation or dis-

parity levels). Experimental results demonstrate that our ap-

proach reconstructs ground plane structures with less noise

than the disparity-based model, which means that small de-

viations (obstacles) are easier to resolve.

In the future we will explore several possible enhance-

ments to our framework. We will consider using belief

probabilities (estimated by BP) to estimate average eleva-

tion (or disparity) with a resolution finer than the quantized

levels, and may use pairwise beliefs to estimate the pres-

ence of discontinuities between adjacent pixels. We will

also explore searching for specific obstacle structures using

specialized measures (e.g. ridge strength as in [10] to find

curbs). Finally, we will investigate the use of our algorithm

in the application that originally motivated it, which is to de-

tect obstacles and other terrain hazards for blind wheelchair

users.
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