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Abstract

This paper formulates the problem of visual search as Bayesian
inference and defines a Bayesian ensemble of problem instances.
In particular, we address the problem of the detection of visual
contours in noise/clutter by optimizing a global criterion which
combines local intensity and geometry information. We analyze
the convergence rates of A* search algorithms using results from
information theory to bound the probability of rare events within
the Bayesian ensemble. This analysis determines characteristics of
the domain, which we call order parameters, that determine the
convergence rates. In particular, we present a specific admissible
A* algorithm with pruning which converges, with high probability,
with expected time O(N) in the size of the problem. In addi-
tion, we briefly summarize extensions of this work which address
fundamental limits of target contour detectability (i.e. algorithm
independent results) and the use of non-admissible heuristics.

1 Introduction

Many problems in vision, such as the detection of edges and object boundaries in
noise/clutter, see figure (1), require the use of search algorithms. Though many
algorithms have been proposed , see Yuille and Coughlan (1997) for a review, none
of them are clearly optimal and it is difficult to judge their relative effectiveness. One
approach has been to compare the results of algorithms on a representative dataset
of images. This is clearly highly desirable though determining a representative
dataset is often rather subjective.

In this paper we are specifically interested in the convergence rates of A* algorithms
(Pearl 1984). It can be shown (Yuille and Coughlan 1997) that many algorithms
proposed to detect visual contours are special cases of A* . We would like to
understand what characteristics of the problem domain determine the convergence



Figure 1: The difficulty of detecting the target path in clutter depends, by our
theory (Yuille and Coughlan 1998), on the order parameter K. The larger K the
less computation required. Left, an easy detection task with K = 3.1. Middle, a
hard detection task K = 1.6. Right, an impossible task with K = −0.7.

rates.

We formulate the problem of detecting object curves in images to be one of statistical
estimation. This assumes statistical knowledge of the images and the curves, see
section (2). Such statistical knowledge has often been used in computer vision for
determining optimization criteria to be minimized. We want to go one step further
and use this statistical knowledge to determine good search strategies by defining
a Bayesian ensemble of problem instances. For this ensemble, we can prove certain
curve and boundary detection algorithms, with high probability, achieve expected
time convergence in time linear with the size of the problem. Our analysis helps
determine important characteristics of the problem, which we call order parameters,
which quantify the difficulty of the problem.

The next section (2) of this paper describes the basic statistical assumptions we
make about the domain and describes the mathematical tools used in the remaining
sections. In section (3) we specify our search algorithm and establish convergence
rates. We conclude by placing this work in a larger context and summarizing recent
extensions.

2 Statistical Background

Our approach assumes that both the intensity properties and the geometrical shapes
of the target path (i.e. the edge contour) can be determined statistically. This path
can be considered to be a set of elementary path segments joined together. We first
consider the intensity properties along the edge and then the geometric properties.
The set of all possible paths can be represented by a tree structure, see figure (2).

The image properties at segments lying on the path are assumed to differ, in a
statistical sense, from those off the path. More precisely, we can design a filter φ(.)
with output {yx = φ(I(x))} for a segment at point x so that:

P (yx) = Pon(yx), if “x′′ lies on the true path

P (yx) = Poff (yx), if “x′′ lies off the true path. (1)

For example, we can think of the {yx} as being values of the edge strength at point
x and Pon, Poff being the probability distributions of the response of φ(.) on and
off an edge. The set of possible values of the random variable yx is the alphabet
with alphabet size M (i.e. yx can take any of M possible values). See (Geman and
Jedynak 1996) for examples of distributions for Pon, Poff used in computer vision
applications.

We now consider the geometry of the target contour. We require the path to be
made up of connected segments x1, x2, . . . , xN . There will be a Markov probability
distribution Pg(xi+1|xi) which specifies prior probabilistic knowledge of the target.



It is convenient, in terms of the graph search algorithms we will use, to consider that
each point x has a set of Q neighbours. Following terminology from graph theory,
we refer to Q as the branching factor. We will assume that the distribution Pg

depends only on the relative positions of xi+1 and xi. In other words, Pg(xi+1|xi) =
P∆g(xi+1 − xi). An important special case is when the probability distribution
is uniform for all branches (i.e. P∆g(∆x) = U(∆x) = 1/Q, ∀∆x). The joint
distribution P (X, Y ) of the road geometry X and filter responses Y determines the
Bayesian Ensemble.

By standard Bayesian analysis, the optimal path X∗ = {x∗1, . . . , x
∗
N} maximizes the

sum of the log posterior:

E(X) =
∑

i

log
Pon(y(xi))

Poff (y(xi))
+

∑

i

log
P∆g(xi+1 − xi)

U(xi+1 − xi)
, (2)

where the sum i is taken over all points on the target. U(xi+1 − xi) is the uniform
distribution and its presence merely changes the log posterior E(X) by a constant
value. It is included to make the form of the intensity and geometric terms similar,
which simplifies our later analysis.

We will refer to E(X) as the reward of the path X which is the sum of the intensity

rewards log
Pon(y(xi)

)

Poff (y(xi)
) and the geometric rewards log

P∆g(xi+1−xi)
U(xi+1−xi)

.

It is important to emphasize that our results can be extended to higher-order
Markov chain models (provided they are shift-invariant). We can, for example,
define the x variable to represent spatial orientation and position of a small edge
segment. This will allow our theory to apply to models, such as snakes, used in
recent successful vision applications (Geman and Jedynak 1996). (It is straightfor-
ward to transform the standard energy function formulation of snakes into a Markov
chain by discretizing and replacing the derivatives by differences. The smoothness
constraints, such as membranes and thin plate terms, will transform into first and
second order Markov chain connections respectively). Recent work by Zhu (1998)
shows that Markov chain models of this type can be learnt using Minimax Entropy
Learning theory from a representative set of examples. Indeed Zhu goes further by
demonstrating that other Gestalt grouping laws can be expressed in this framework
and learnt from representative data.

Most Bayesian vision theories have stopped at this point. The statistics of the prob-
lem domain are used only to determine the optimization criterion to be minimized
and are not exploited to analyze the complexity of algorithms for performing the op-
timization. In this paper, we go a stage further. We use the statistics of the problem
domain to define a Bayesian ensemble and hence to determine the effectiveness of
algorithms for optimizing criteria such as (2). To do this requires the use of Sanov’s
theorem for calculating the probability of rare events (Cover and Thomas 1991).
For the road tracking problem this can be re-expressed as the following theorem,
derived in (Yuille and Coughlan 1998):

Theorem 1. The probabilities that the spatially averaged log-likelihoods on, and
off, the true curve are above, or below, threshold T are bounded above as follows:

Pr{
1

n

n∑

i=1

{log
Pon(y(xi))

Poff (y(xi))
}on < T} ≤ (n + 1)M2−nD(PT ||Pon) (3)

Pr{
1

n

n∑

i=1

{log
Pon(y(xi))

Poff (y(xi))
}off > T} ≤ (n + 1)M2−nD(PT ||Poff ), (4)



where the subscripts on and off mean that the data is generated by Pon, Poff ,

PT (y) = P
1−λ(T )
on (y)P

λ(T )
off /Z(T ) where 0 ≤ λ(T ) ≤ 1 is a scalar which depends

on the threshold T and Z(T ) is a normalization factor. The value of λ(T ) is deter-

mined by the constraint
∑

y PT (y) log Pon(y)
Poff (y) = T .

In the next section, we will use Theorem 1 to determine a criterion for pruning
the search based on comparing the intensity reward to a threshold T (pruning will
also be done using the geometric reward). The choice of T involves a trade-off. If
T is large (i.e. close to D(Pon||Poff )) then we will rapidly reject false paths but
we might also prune out the target (true) path. Conversely, if T is small (close
to −D(Poff ||Pon)) then it is unlikely we will prune out the target path but we
may waste a lot of time exploring false paths. In this paper we choose T large and
write the fall-off factors (i.e. the exponents in the bounds of equations (3,4)) as
D(PT ||Pon) = ε1(T ), D(PT ||Poff ) = D(Pon||Poff )− ε2(T ) where ε1(T ), ε2(T ) are
positive and (ε1(T ), ε2(T )) 7→ (0, 0) as T 7→ D(Pon||Poff ). We perform a similar
analysis for the geometric rewards by substituting P∆g , U for Pon, Poff . We choose

a threshold T̂ satisfying −D(U ||P∆g) < T̂ < D(P∆g ||U). The results of Theorem
1 apply with the obvious substitutions. In particular, the alphabet factor becomes
Q (the branching factor). Once again, in this paper, we choose T̂ to be large and

obtain fall-off factors D(P
T̂
||P∆g) = ε̂1(T̂ ), D(P

T̂
||U) = D(P∆g ||U)− ε̂2(T̂ ).

3 Tree Search: A*, heuristics, and block pruning

We now consider a specific example, motivated by Geman and Jedynak (1996),
of searching for a path through a search tree. In Geman and Jedynak the path
corresponds to a road in an aerial image and they assume that they are given an
initial point and direction on the target path. They have a branching factor Q = 3
and, in their first version, the prior probability of branching is considered to be the
uniform distribution (later they consider more sophisticated priors). They assume
that no path segments overlap which means that the search space is a tree of size
QN where N is the size of the problem (i.e. the longest length). The size of the
problem requires an algorithm that converges in O(N) time and they demonstrate
an algorithm which empirically performs at this speed. But no proof of convergence
rates are given in their paper. It can be shown, see (Yuille and Coughlan 1997),
that the Geman and Jedynak algorithm is a close approximation to A* which uses
pruning. (Observe that Geman and Jedynak’s tree representation is a simplifying
assumption of the Bayesian model which assumes that once a path diverges from
the true path it can never recover, although we stress that the algorithm is able to
recover from false starts – for more details see Coughlan and Yuille 1998).

We consider an algorithm which uses an admissible A* heuristic and a pruning
mechanism. The idea is to examine the paths chosen by the A* heuristic. As the
length of the candidate path reaches an integer multiple of N0 we prune it based on
its intensity reward and its geometric reward evaluated on the previous N0 segments,
which we call a segment block. The reasoning is that few false paths will survive
this pruning for long but the target path will survive with high probability.

We prune on the intensity by eliminating all paths whose intensity reward, averaged
over the last N0 segments, is below a threshold T (recall that −D(Poff ||Pon) < T <
D(Pon||Poff ) and we will usually select T to take values close to D(Pon||Poff )).
In addition, we prune on the geometry by eliminating all paths whose geometric
rewards, averaged over the last N0 segments, are below T̂ (where −D(U ||P∆g) <

T̂ < D(P∆g||U) with T̂ typically being close to D(P∆g ||U)). More precisely, we



discard a path provided (for any integer z ≥ 0):

1

N0

(z+1)N0∑

i=zN0+1

log
Pon(yi)

Poff (yi)
< T, or

1

N0

(z+1)N0∑

i=zN0+1

log
P∆g(∆xi)

U(∆xi)
< T̂ . (5)

There are two important issues to address: (i) With what probability will the
algorithm converge?, (ii) How long will we expect it take to converge? The next
two subsections put bounds on these issues.

3.1 Probability of Convergence

Because of the pruning, there is a chance that there will be no paths which survive
pruning. To put a bound on this we calculate the probability that the target
(true) path survives the pruning. This gives a lower bound on the probability of
convergence (because there could be false paths which survive even if the target
path is mistakenly pruned out).

The pruning rules removes path segments for which the intensity reward rI or the
geometric reward rg fails the pruning test. The probability of failure by removing

a block segment of the true path, with rewards rt
I , r

t
g , is Pr(rt

I < T or rt
g < T̂ ) ≤

Pr(rt
I < T ) + Pr(rt

g < T̂ ) ≤ (N0 + 1)M2−N0ε1(T ) + (N0 + 1)Q2−N0ε̂1(T̂ ), where we
have used Theorem 1 to put bounds on the probabilities. The probability of pruning
out any N0 segments of the true path can therefore be made arbitrarily small by
choosing N0, T, T̂ so as to make N0ε1 and N0ε̂1 large.

It should be emphasized that the algorithm will not necessarily converge to the
exact target path. The admissible nature of the heuristic means that the algorithm
will converge to the path with highest reward which has survived the pruning. It
is highly probable that this path is close to the target path. Our recent results
(Coughlan and Yuille 1998, Yuille and Coughlan 1998) enable us to quantify this
claim.

3.2 Bounding the Number of False Paths

Suppose we face a Q-nary tree. We can order the false paths by the stage at which
they diverge from the target (true) path, see figure (2). For example, at the first
branch point the target path lies on only one of the Q branches and there are Q−1
false branches which generate the first set of false paths F1. Now consider all the
Q−1 false branches at the second target branch, these generate set F2. As we follow
along the true path we keep generating these false sets Fi. The set of all paths is
therefore the target path plus the union of the Fi (i = 1, . . . , N). To determine
convergence rates we must bound the amount of time we spend searching the Fi. If
the expected time to search each Fi is constant then searching for the target path
will at most take constant ·N steps.

Consider the set Fi of false paths which leave the true path at stage i. We will apply
our analysis to block segments of Fi which are completely off the true path. If (i−1)
is an integer multiple of N0 then all block segments of Fi will satisfy this condition.
Otherwise, we will start our analysis at the next block and make the worse case
assumption that all path segments up till this next block will be searched. Since
the distance to the next block is at most N0 − 1, this gives a maximum number of
QN0−1 starting blocks for any branch of Fi. Each Fi also has Q − 1 branches and
so this gives a generous upper bound of (Q− 1)QN0−1 starting blocks for each Fi.



F 1F 1

F 2F 2

F 3F 3 True

Figure 2: The target path is shown as the heavy line. The false path sets are
labelled as F1,F2, etc. with the numbering depending on how soon they leave the
target path. The branching factor Q = 3.

For each starting block, we wish to compute (or bound) the expected number of
blocks that are explored thereafter. This requires computing the fertility of a block,
the average number of paths in the block that survive pruning. Provided the fertility
is smaller than one, we can then apply results from the theory of branching processes
to determine the expected number of blocks searched in Fi.

The fertility q is the number of paths that survive the geometric pruning times the
probability that each survives the intensity pruning. This can be bounded (using
Theorem 1) by q ≤ q̂ where:

q̂ = QN0(N0 + 1)Q2−N0{D(P∆g ||U)−ε̂2(T̂ )}(N0 + 1)M2−N0{D(Pon||Poff )−ε2(T )}

= (N0 + 1)Q+M2−N0{D(Pon||Poff )−H(P∆g)−ε2(T )−ε̂2(T̂ )}, (6)

where we used the fact that D(P∆g ||U) = log Q−H(P∆g).

Observe that the condition q̂ < 1 can be satisfied provided D(Pon||Poff )−H(P∆g) >
0. This condition is intuitive, it requires that the edge detector information, quan-
tified by D(Pon||Poff ), must be greater than the uncertainty in the geometry mea-
sured by H(P∆g). In other words, the better the edge detector and the more
predictable the path geometry then the smaller q̂ will be.

We now apply the theory of branching processes to determine the expected number
of blocks explored from a starting block in Fi ,

∑∞
z=0 q̂z = 1/(1− q̂). The number

of branches of Fi is (Q− 1), the total number of segments explored per block is at
most QN0 , and we explore at most QN0−1 segments before reaching the first block.
The total number of Fi is N . Therefore the total number of segments wastefully
explored is at most N(Q− 1) 1

1−q̂
Q2N0−1. We summarize this result in a theorem:

Theorem 2. Provided q̂ = (N0 + 1)Q+M2−N0K < 1, where the order parameter

K = D(Pon||Poff ) − H(P∆g) − ε2(T ) − ε̂2(T̂ ), then the expected number of false

segments explored is at most N(Q− 1) 1
1−q̂

Q2N0−1.

Comment The requirement that q̂ < 1 is chiefly determined by the order parameter

K = D(Pon||Poff )−H(P∆g)− ε2(T )− ε̂2(T̂ ). Our convergence proof requires that
K > 0 and will break down if K < 0. Is this a limitation of our proof? Or does it
correspond to a fundamental difficulty in solving this tracking problem?

In more recent work (Yuille and Coughlan 1998) we extend the concept of order
parameters and show that they characterize the difficulty of visual search problem
independently of the algorithm. In other words, as K 7→ 0 the problem becomes
impossible to solve by any algorithm. There will be too many false paths which
have better rewards than the target path. As K 7→ 0 there is a phase transition in
the ease of solving the problem.



4 Conclusion

Our analysis shows it is possible to detect certain types of image contours in linear
expected time (with given starting points). We have shown how the convergence
rates depend on order parameters which characterize the problem domain. In par-
ticular, the entropy of the geometric prior and the Kullback-Leibler distance be-
tween Pon and Poff allow us to quantify intuitions about the power of geometrical
assumptions and edge detectors to solve these tasks.

Our more recent work (Yuille and Coughlan 1998) has extended this work by show-
ing that the order parameters can be used to specify the intrinsic (algorithm in-
dependent) difficulty of the search problem and that phase transitions occur when
these order parameters take critical values. In addition, we have proved conver-
gence rates for A* algorithms which use inadmissible heuristics or combinations of
heuristics and pruning (Coughlan and Yuille 1998).

As shown in (Yuille and Coughlan 1997) many of the search algorithms proposed
to solve vision search problems, such as (Geman and Jedynak 1996), are special
cases of A* (or close approximations). We therefore hope that the results of this
paper will throw light on the success of the algorithms and may suggest practical
improvements and speed ups.
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