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1 Introduction

The EM algorithm is typically applied to problems with three kinds of variables: an unknown
model parameter  we are trying to estimate, data z which has been observed, and an unobserved
variable y, whose value is unknown and should be marginalized over.

The goal is to perform maximum likelihood estimation of #, i.e. to find the # which maximizes
the log likelihood log P(z|f). The point of this note is to re-express this maximization in a
novel form which is equivalent to the interpretation of EM derived by Neal and Hinton [1]. This
new formulation makes it obvious that maximizing Neal and Hinton’s joint function of # and a
distribution on y is equivalent to maximum likelihood estimation.

The key point is to note that maximizing log P(z|0) over @ is equivalent to maximizing

log P(2]0) = D(P(y)||P(y]z,0)) (1)

jointly over  and P(y). Here P(y) is any probability distribution on y and D(p(y)|lq(y)) =
>, p(y)log(p(y)/q(y)) is the Kullback-Leibler divergence between p(y) and ¢(y). The non-
negativity of the Kullback-Leibler divergence, combined with the fact that the divergence is
zero only between identical distributions, ensures that the maximum is reached only by setting
P(y) equal to the true distribution on y, i.e. P(yl|z,0).

Equation (1) can be re-written as H(P) + >y P(y)log{P(y|z,0)P(z]0)}, where H(P) =
-, P(y)log P(y) is the entropy of P(y). This expression is in turn equivalent to

H(P)+Y_ P(y)log P(y, z|0), (2)

which is the same as the function F(P,#) given in Neal and Hinton. This function is maximized
iteratively, where each iteration consists of two separate maximations, one over ¢ and another
over P(y).
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