

A Transparent Interpretation of the EM Algorithm

James M. Coughlan

Smith-Kettlewell Eye Research Institute
2318 Fillmore St.
San Francisco, CA 94115

1 Introduction

The EM algorithm is typically applied to problems with three kinds of variables: an unknown model parameter θ we are trying to estimate, data z which has been observed, and an unobserved variable y , whose value is unknown and should be marginalized over.

The goal is to perform maximum likelihood estimation of θ , i.e. to find the θ which maximizes the log likelihood $\log P(z|\theta)$. The point of this note is to re-express this maximization in a novel form which is equivalent to the interpretation of EM derived by Neal and Hinton [1]. This new formulation makes it obvious that maximizing Neal and Hinton's joint function of θ and a distribution on y is equivalent to maximum likelihood estimation.

The key point is to note that maximizing $\log P(z|\theta)$ over θ is equivalent to maximizing

$$\log P(z|\theta) - D(\tilde{P}(y)||P(y|z, \theta)) \quad (1)$$

jointly over θ and $\tilde{P}(y)$. Here $\tilde{P}(y)$ is any probability distribution on y and $D(p(y)||q(y)) = \sum_y p(y) \log(p(y)/q(y))$ is the Kullback-Leibler divergence between $p(y)$ and $q(y)$. The non-negativity of the Kullback-Leibler divergence, combined with the fact that the divergence is zero only between identical distributions, ensures that the maximum is reached only by setting $\tilde{P}(y)$ equal to the true distribution on y , i.e. $P(y|z, \theta)$.

Equation (1) can be re-written as $H(\tilde{P}) + \sum_y \tilde{P}(y) \log\{P(y|z, \theta)P(z|\theta)\}$, where $H(\tilde{P}) = -\sum_y \tilde{P}(y) \log \tilde{P}(y)$ is the entropy of $\tilde{P}(y)$. This expression is in turn equivalent to

$$H(\tilde{P}) + \sum_y \tilde{P}(y) \log P(y, z|\theta), \quad (2)$$

which is the same as the function $F(\tilde{P}, \theta)$ given in Neal and Hinton. This function is maximized iteratively, where each iteration consists of two separate maximizations, one over θ and another over $\tilde{P}(y)$.

References

[1] R. Neal and G. Hinton. "A New View of the EM Algorithm that Justifies Incremental and Other Variants." *Biometrika*. 1993.