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Abstract

We describe the g-factor which relates probability distributions on
image features to distributions on the images themselves. The
g-factor depends only on our choice of features and lattice quan-
tization and is independent of the training image data. We illus-
trate the importance of the g-factor by analyzing Minimax Entropy
Learning (MEL) [8] (which learns image distributions in terms of
clique potentials corresponding to feature statistics). We first use
our analysis of the g-factor to determine when the MEL clique
potentials decouple for different features. Secondly, we show that
MEL clique potentials can be computed analytically by approxi-
mating the g-factor. We support our analysis by computer simula-
tions.

1 Introduction

There has recently been a lot of interest in learning probability models for vision.
The most common approach is to learn histograms of filter responses or, equiva-
lently, to learn probability distributions on features. See, for example, [6], [5], [4]. (In
this paper the features we are considering will be extracted from the image by filters
— hence we almost always use the terms “features” and “filters” synonymously.)

An alternative approach, however, is to learn probability distributions on the images
themselves. The Minimax Entropy Learning (MEL) theory [8] uses the maximum
entropy principle to learn Gibbs distributions in terms of clique potentials deter-
mined by the feature statistics. When applied to texture modeling it gives a way
to unify the filter based approaches (which are often very effective) with the Gibbs
distribution approaches (which are theoretically attractive).

As we describe in this paper, distributions on images and on features can be related
by a g-factor (such factors arise in statistical physics, see [3]). Understanding the



g-factor helps explain why the clique potentials learnt by MEL take the form that
they do as functions of the feature statistics. Moreover, the MEL clique potentials
for different features often seem to be decoupled and the g-factor can explain why,
and when, this occurs. (L.e. the two clique potentials corresponding to two features
A and B are identical whether we learn them jointly or independently).

The g-factor is determined only by the form of the features chosen and the spatial
lattice and quantization of the image grey-levels. It is completely independent of
the training image data. It should be stressed that the choice of image lattice
and grey-level quantization can make a big difference to the g-factor and hence to
the probability distributions which are the output of MEL. Approximations to the
g-factor are often best when the quantization is fine.

In Section (2), we briefly review Minimax Entropy Learning. Section (3) introduces
the g-factor and determines conditions for when clique potentials are decoupled. In
Section (4) we describe a simple approximation which enables us to learn the clique
potentials analytically.

2 Minimax Entropy Learning

Suppose we have training image data which we assume has been generated by an
(unknown) probability distribution Pr(#) where & represents an image. Minimax
Entropy Learning (MEL) [8] approximates Pr(Z) by selecting the distribution with
maximum entropy constrained by observed feature statistics (5(1?) = 4ps. This gives

P(Z|X) = 6;?;?, where X is a parameter chosen such that > P(EN)o(Z) = Dobs-
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We will treat the special case where the statistics (5 are the histogram of a shift-
invariant filter {f;(Z) : i = 1,..., N}. So ¢q = ¢o(Z) = %Zf\; da,f,(z) Where
a=1,...,Q indicates the (quantized) filter response values. The potentials become
X-6(@) = 259 5N Ma)dosi@ = 2 S A(fi(F)). Hence P(Z|X) becomes
a Gibbs distribution with clique potentials given by A(f;(Z)). This determines a
Markov random field with the clique structure given by the filters {f;}.

MEL also has a feature selection stage based on Minimum Entropy to determine
which features to use in the Maximum Entropy Principle. The features are evalu-
ated by computing the entropy — ZfP(f|X) log P(Z|X) for each choice of features
(with small entropies being preferred). A filter pursuit procedure was described to
determine which filters/features should be considered (our approximations work for
this also).

3 The g-Factor

This section defines the g-factor in subsection (3.1) and starts investigating its
properties in subsection (3.2). In particular, when, and why, do clique potentials
decouple? More precisely, when do the potentials for filters A and B learned si-
multaneously differ from the potentials for the two filters when they are learnt
independently?



3.1 Basic Properties of the g-Factor

-,

We now address these issues by introducing the g-factor g(v¢)) and the associated
distribution Py (t)):
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Figure 1: The g-factor g(z/_;) counts the number of images & that have statistics 1Z
Note that the g-factor depends only on the choice of filters and is independent of
the training image data.

The g-factor is essentially a combinational factor which counts the number of ways
that one can obtain statistics v, see figure (1). Equivalently, Py is the default
distribution on ¢ if the images are generated by white noise (ie. completely random
images).

We can use the g-factor to compute the induced distribution P(z/_; | X) on the statistics
determined by MEL:
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Observe that both P(|X) and log Z[X] are sufficient for computing the parameters
X. The X can be found by solving either of the following two (equivalent) equations:

dlog ZIX| -
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which shows that knowledge of the g-factor and X are all that is required to do
MEL.

Observe from equation (2) that we have P(¢|X = 0) = Py(¢)). In other words,
setting A = 0 corresponds to a uniform distribution on the images Z.

3.2 Decoupling Filters

We now derive an important property of the minimax entropy approach. As men-
tioned earlier, it often seems that the potentials for filters A and B decouple.
In other words, if one applies MEL to two filters A, B simultaneously by letting



1E = (JA,ﬁB), X = (XA, XB), and z/_;obs = (JQ)S,JE)S), then the solutions XA, 2B to
the equations:

> PEXL NP4 @), 67(@) = (s Pape), (4)

are the same (approximately) as the solutions to the equations ) P(& XN A(Z) =
P4 and EfP(ﬂXB)ggB (Z) = B _, see figure (2) for a real world example.
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Figure 2: Evidence for decoupling of features. The left and right panels show the
clique potentials learnt for the features 9/90x and 9/0y respectively. The solid lines
give the potentials when they are learnt individually. The dashed lines show the
potentials when they are learnt simultaneously. Figure courtesy of Prof. Xiuwen
Liu, USF.

We now show how this decoupling property arises naturally if the g-factor for the
two filters factorizes. This factorization, of course, is a property only of the form
of the statistics and is completely independent of whether the statistics of the two
filters are dependent for the training data.

Property I: Suppose we have two sufficient statistics ¢ (@), 53(5) which are inde-
pendent on the lattice in the sense that g(v?,¢vP) = g4 (¥A)gP (VP), then:

log Z[X*, XP] = log ZAX] + log ZB[XP], P(y*,9%) = PA(*)PE(YP), (5)

which implies that the parameters XA, XB can be solved from the independent equa-
tions:
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Moreover, the resulting distribution P(Z) can be obtained by multiplying the distri-
butions (I/ZA)e’\A'wA(f) and (1/ZB)eX” %@ together.

The point here is that the potential terms for the two statistics 1EA, 1EB decouple if
the phase factor g(zﬁA, JB ) can be factorized. We conjecture that this is effectively
the case for many linear filters used in vision processing. For example, it is plausible
that the g-factor for features 9/0x and 9/0y factorizes — and figure (2) shows
that their clique potentials do decouple (approximately). Clearly, if factorization
between filters occurs then it gives great simplification to the system.

It may, however, be questioned whether this decoupling is desirable. Recall that
this “factorization” is purely a property of the filters and the lattice (plus quan-
tization) and is completely independent of the training image data. If the g-factor



factorizes then MEL (using the feature marginals) will imply that P(z/JA wB) =
PA(z/JA)PB(z/JB) and so will predict that the joint histograms wobs,w
tically independent and uncorrelated.

ops Are statis-

4 Approximating the g-factor for a Single Histogram

We now consider the case where the statistic is a single histogram. Our aim is to
understand why features whose histograms are of stereotypical shape give rise to
potentials of the form given by figure (2).

Our results, of course, can be directly extended to multiple histograms if the filters
decouple, see subsection (3.2). We first describe the approximation and then discuss
its relevance for filter pursuit.

We rescale the X variables by N so that we have:

e X Ao -, '
P(fIA):ﬁ, P =9()—=, (7)

We now consider the approximation that the filter responses {f;} are independent
of each other when the images are uniformly distributed. This is the multinomial
approzimation. (We attempted a related approximation [1] which was less success-
ful). It implies that we can express the phase factor as being proportional to a
multinomial distribution:
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where Zanl e = 1 (by definition) and the {ag} are the means of the components

{1q} with respect to the distribution Py(¢)). As we will describe later, the {ovg}
will be determined by the filters {f;}. See technical report [2] for details of how to
compute the {a,}.

This approximation enables us to calculate MEL analytically.
Theorem With the multinomial approximation the log partition function is:

Q
log Z[\ = Nlog L + N log{z eratlogaay (9)

a=1
and the “potentials” {A\,} can be solved in terms of the observed data {Yops.a} to

be:
1/}obs,a
3

Qq

Ao = log

a=1,..Q. (10)
We note that there is an ambiguity Ao — Ao + K where K is an arbitrary number
(recall that ZQ 1¥(a) =1). We fiz this ambiguity by setting X=0 ifd = z/JObS
Proof. Direct calculation.

Our simulation results show that this simple approximation gives the typical po-
tential forms generated by Markov Chain Monte Carlo (MCMC) algorithms for
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Figure 3: (Top) the multinomial approximation. (Bottom) full MEL. (Left Panel)
the potentials, (Centre Panel) synthesized images, and (Right Panel) the difference
between the observed histogram (dashed line) and the histogram of the synthesized
images (bold line). Filters were d/dz and d/dy.

Minimax Entropy Learning. Compare the multinomial approximation results with
those obtained from a full implementation of MEL, see figure (3)

Filter pursuit is required to determine which filters carry most information.
MEL [8] prefers filters (statistics) which give rise to low entropy distributions
(this is the “Min” part of Minimax). The entropy is given by H(P) =
—ZfP(aﬂX) log P(Z|X) = log Z[X] — Zanl Aa¥q. For the multinomial approxi-
mation this can be computed to be NlogL — N Zanl 14 log Z—:

This gives an intuitive interpretation of feature pursuit: we should prefer filters
whose statistical response to the image training data is as large as possible from
their responses to uniformly distributed images. This is measured by the Kullback-
Leibler divergence 222:1 P, log % Recall that if the multinomial approximation is
used for multiple filters then we should simply add together the entropies of different
filters.

5 Discussion

This paper describes the g-factor which depends on the lattice and quantization
and is independent of the training image data. Alternatively it can be thought of
as being proportional to the feature responses when the input images are uniformly
distributed.

We showed that the g-factor can be used to relate probability distributions on
features to distributions on images. In particular, we described approximations



which, when valid, enable MEL to be computed analytically. In addition, we can
determine when the clique potentials for features decouple. These approximations
throw light on MEL and give guidelines to determine whether marginal histograms
should be used as input to MEL (or joint distributions are needed).

Our approach also emphasizes the importance of understanding the feature prop-
erties independent of the dataset and, in particular, to determine what the feature
histograms are when the input images are uniformly distributed. This depends
strongly on the quantization procedure used to describe the images. We also point
out that the problem of estimating clique potentials may get simpler for fine quan-
tization (because the approximations become more accurate).
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