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Abstract

Many problems in vision can be formulated as Bayesian
inference. It is important to determine the accuracy of these
inferences and how they depend on the problem domain.
In recent work, Coughlan and Yuille showed that, for a
restricted class of problems, the performance of Bayesian
inference could be summarized by an order parameter K
which depends on the probability distributions which char-
acterize the problem domain. In this paper, we general-
ize the theory of order parameters so that it applies to do-
mains for which the probability models can be obtained by
Minimax Entropy learning theory. By analyzing order pa-
rameters it is possible to determine whether a target can
be detected using a general purpose “generic” model or
whether a more specific “high-level” model is needed. At
critical values of the order parameters the problem becomes
unsolvable without the addition of extra prior knowledge.

1. Dept. Statistics. University of California, Los An-
geles, CA 90095. ymu@math.ucla.edu

1. Introduction

Many problems in vision can be formulated as Bayesian
inference. Two specific examples we will be concerned with
in this paper are texture discrimination and road tracking.
We are interested in determining the fundamental limits of
vision and, in particular, what are the specific properties
of the problem domain which make the visual task easy or
hard. For example, consider the task of detecting the three
target objects – stop sign, glia monster, and dalmation dog
– from the images in figure (1). What is it about the targets
and the domains which make these tasks easy or hard?

Coughlan and Yuille [10] introduced the concept of or-
der parameters in an attempt to characterize the difficulty of
certain visual tasks, in particular, the Geman and Jedynak

Figure 1. Left to right, three detection tasks
of increasing degrees of difficulty. The stop
sign (left) is easy to find. The glia monster
(centre) is harder. The dalmation dog (right)
is almost impossible.

model of road detection [5]. It was proved that important
properties of this task, such as the expected errors in the
MAP (maximum a posteriori) estimates of the road posi-
tion, depend on an order parameter K which is a function of
the probability distributions that characterize the problem.
For K < 0 the task becomes impossible on average. For
K > 0, quantities such as error rates behave as ∝ exp−NK

where N is the size of the problem. Thus K characterizes
the difficulty of the problem and can be thought of as anal-
ogous to the concept of signal to noise. The convergence
rates of A* search algorithms to find the road were also
functions of K [3].

The current paper extends the order parameter theory so
that it can be applied to problems where the probability
distributions of interest can be learnt by Minimax Entropy
learning theory [13],[14]. This is a richer and more realistic
class of probability models than those previously analyzed.
Generalizing order parameters, from those derived in [10],
requires a more powerful set of mathematical techniques.
The techniques used by Coughlan and Yuille to calculate
order parameters were based on Sanov’s theorem [4] and
required that the probability distributions, which specify the
problem, could be factorized. It was then observed by Wu
and Zhu, during their work on texture modelling [9], that



more general results could be obtained by using techniques
from the large deviation theory literature. In this paper, we
build on this observation and determine order parameters
for a general class of probability distributions and, in partic-
ular, to those which result from Minimax Entropy learning
[13],[14]. This enables us, for example, to determine order
parameters for more realistic models of curve tracking.

In this paper, we also explore a related problem. How
much harder do we make these problems by using a weaker
model (i.e. a less accurate probability distribution)? An
experienced biologist will doubtless be able to detect the
glia monster in figure (1) but a novice may be fooled by the
camouflage. Can we quantify how much easier we make
the task by using more information? (Which an expert bi-
ologist would presumably possess). This is important for
three reasons. Firstly, there may not be enough information
to obtain accurate probability distributions (or it would cost
too much to get this knowledge). Secondly, we may want to
search for several different targets and it would seem more
economical to use one prior model which would account for
all of these targets (at the cost of modelling each of them rel-
atively poorly) rather than having different models for each
target. Thirdly, algorithmic considerations may favour us-
ing a weaker prior rather than a prior which is more accurate
but harder to compute with. Coughlan and Yuille presented
results on this problem, which appeared in CVPR’99 [11],
but these depended on the factorization assumption used in
the Geman and Jedynak model [5].

In this paper, we derive these results for the more general
class of probability distributions. Our main result relates
the order parameter theory with Minimax Entropy learning
[13],[14] by stating that the information criterion [13] used
by the Minimax Entropy theory to measure the improved ac-
curacy of a more complex model pi+1 compared with a sim-
pler model pi, i.e. D(pi+1||pi), is exactly the increase of
the corresponding order parameter due to using p i+1 and
hence quantifies the improved performance of the better
model, see section (3). This result allows us to determine
how accurately (i.e. how many features and statistics) we
need to model the problem (and at which level) in order to
obtain the desired performance.

The structure of this paper is as follows. In section (2)
we derive order parameters for Minimax Entropy models.
We then describe, in section (3), how the order parame-
ters change if a simplified approximate model is used. Sec-
tion (4) calculates order parameters for curve detection for
Minimax entropy models. Finally, section (5) describes the
results of using simplified models for curve tracking.

2 Derivation of Order Parameters

In this section, we briefly summarize the order parameter
theory results. The full derivation [12] unifies and extends

the work reported in [10],[9].
For concreteness we will assume that there are two prob-

ability distributions PA(I), PB(I) for texture images I but
the results are general and can be applied directly to other
inference problems such as curve detection.

We require that the probability distributions are of the
form resulting from Minimax Entropy learning [13],[14].
These will be a class of Gibbs distributions which are shift-
invariant and obey certain scaling results (to be described
later). Each distribution is of form:

P (I|�β) =
e−N �β·�h(I)

Z(�β)
, (1)

where N is the size of the image I , �β is a parameter (inde-
pendent of N ), �h(.) are statistics defined on the image, and
Z(�β) is the partition function (a normalization constant).
The statistics can be, for example, (normalized) histograms
of filter outputs of an entire image and shift-invariance is
assumed in our analysis.

This determines an induced distribution on the feature
space of all possible values of the statistics:

P̂ (�h|�β) = |ΩN (�h)|e
−N �β·�h

Z(�β)
, (2)

where ΩN (�h) = {I : �h(I) = �h} and |ΩN (�h)| is the size
of this set. Let Q be the number of grayscale levels so
that the total number of all possible images is QN . Then
|ΩN (�h)|/QN can be considered to be a normalized proba-
bility distribution on �h induced by the uniform distribution
on all images (i.e.

∑
�h |ΩN (�h)|/QN = 1).

We want to analyze the chances of misclassification of
data generated by models of this form (e.g. texture classi-
fication and curve detection). To do this requires determin-
ing the probability of rare events such as when a sample of
one texture appears to look like a sample of a second (or
when random alignments of background clutter appear to
look like a contour and hence are confusable with a target
contour).

For probability distributions of the form specified by
equations (1,2) the analysis becomes simplified as the im-
age, and/or target size, becomes large [6]. Intuitively, this
is because the probability distribution in feature space be-
comes peaked as the size increases due to ergodicity (e.g.
the law of large numbers). Moreover, the theory gives tight
results on how fast the distributions become peaked as N
gets large.

This form can be used to put probabilities of the possibil-
ity of rare events. For example, H could consist of the set
of rare events that would cause misclassification (e.g. by
log-likelihood ratio tests) and the theory says that for suffi-
ciently large N we need only be concerned with the single
most likely rare event in H , see figure (2).
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Figure 2. The chance of getting a statistic in H
is dominated by the most likely statistic in H
(each point in the diagram represents a statis-
tic value �h). More precisely, if the distribution
generating the data has mode �h∗(�β) then, for
large N , the chances of the data lying in H
are dominated by the chances of getting the
statistic �h∗

H in H which is closest to �h∗(�β).

This result can be re-expressed [12] in terms of
the Kullback-Leibler divergence (D(PA||PB) =∑

I PA(I) log PA(I)/PB(I)) between probability dis-
tributions. This leads to a direct generalization of Sanov’s
theorem [4]. Sanov’s theorem – which applies only to data
which is identically, independently distributed (i.i.d) – and
its restriction to log-likelihood tests, was the key tool used
by Coughlan and Yuille [10] obtain their previous results on
order parameters. The results below enable us to generalize
all Coughlan and Yuille’s results to this more general class
of probability distributions.

For the vision tasks in this paper, the chances of misclas-
sification will behave as e−NK where K is an order param-
eter which summarizes the difficulty of the task. In the tasks
we consider, K will be expressed in terms of measures of
distance between the distributions PA, PB . In particular, for
our tasks K will involve the Kullback-Leibler divergence,
the Chernoff Information, and the Bhattacharyya bound [4].
The quantity we obtain will depend on the specific formula-
tion of the task.

To define Chernoff and Bhattacharyya, we must intro-
duce the e-geodesic between PA(I) and PB(I). This e-
geodesic consists of all distributions of form Pλ(I) =
Pλ

A(I)P 1−λ
B (I)/Z[λ] where 0 ≤ λ ≤ 1 and Z[λ] is

a normalization constant. The Chernoff information is
defined by C(PA, PB) = D(Pλ∗ ||PB) where λ∗ obeys
D(Pλ∗ ||PA) = D(Pλ∗ ||PB). The Bhattacharyya bound
is defined to be B(PA, PB) = (1/2)(D(P1/2||PA) +
D(P1/2||PB)) and results if λ = 1/2. Our results will be
summarized in the next section with detailed proofs given
in [12].

One can gain intuition about these quantities by com-
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Figure 3. Two Gaussian distributions with
the same variance. Kullback-Leibler, Cher-
noff, and Bhattarcharyya distances are all
proportional to the signal to noise ratio (µA −
µB)2/σ2.

,

Figure 4. Texture examples, two textures gen-
erated by Minimax Entropy learning distribu-
tions.

puting them when PA, PB are one-dimensional Gaussians
with the same variance σ2 and with means µA, µB . It
can easily be checked that Kullback-Leibler, Chernoff, and
Bhattarcharyya are all proportional to the signal to noise ra-
tio (µA − µB)2/σ2.

2.1 Bounds for Log-Likelihood Discrimination
Tasks

Suppose we have probability distributions, PA(I|�βA)
and PB(I|�βB), with corresponding potentials �βA, �βB , see
equation (1) (with same function �h(.)). For concreteness,
the data I can be thought of as being a texture image but the
results are general.

We now consider four texture tasks which involve ways
of distinguishing between the two textures. Each task will
involve the log-likelihood ratio test R = log PA(I)/PB(I).
For each task we determine an order parameter.

Theorem 1. The negative log probability per pixel that
a sample from PB(I) generates a reward R greater than,
or equal to, the average reward < R >PA of a sample from
PA tends to d(PA||PB) = limN �→∞(1/N)D(PA||PB) as
N �→ ∞. More informally Pr(R(I) ≥ < R >PA

|I drawn from PB(.)) ∼ e−Nd(PA||PB).
The second texture task involves determining whether a

sample I is generated by PA or PB .



Theorem 2. The negative log probability
per pixel that a sample from PA(I) is misclas-
sified as being from PB (and vice versa) tends to
c(PA, PB) = limN �→∞(1/N)C(PA, PB) as N �→ ∞,
where C(PA, PB) is the Chernoff information.
Pr(R(I) < 0|I drawn from PA(.)) ∼ e−Nc(PA,PB).

The third texture task involves two texture samples, one
each from PA and PB , and requires determining which is
which.

Theorem 3. The negative log probability
per pixel that the two samples from PA(I) and
PB(I) (one form each) are misclassified tends to
b(PA, PB) = limN �→∞(1/N)B(PA, PB) as N �→ ∞,
where B(PA, PB) is the Bhattarcharyya information.
Pr(misclassification) ∼ e−Nb(PA,PB).

The fourth texture task requires determining how easy it
is to confuse a sample from PA with many samples from
PB .

Theorem 4. Suppose we have eNQ samples of tex-
ture from PB . Then the expected number that have re-
ward higher than < R >PA is given by e−N{d(PA||PB)−Q},
where d(PA||PB) = limN �→∞(1/N)D(PA||PB). There is
a phase transition and the problem becomes insolvable if
Q > d(PA||PB).

Observe that in the first three situations the error rates
fall-off as e−NK where K is a non-negative constant and
N is the size of the problem. We call K an order parameter
for the task because it summarizes in a single number the
difficulty of the task (in the same way that order parameters,
such as magnetization, are used in statistical physics).

For the fourth task, there is more interesting behaviour
because the order parameter, K = d(PA||PB)−Q, can be-
come negative. When this happens there is a phase transi-
tion and the task becomes impossible – essentially because
there are so many distractors that there is a high probability
that one of them looks more like the target than the target it-
self. Intuitively, the search task then becomes like searching
for a needle in a haystack.

3 The wrong reward function

This section analyzes what happens if we have a weaker
approximate model of the probability distributions (as will
often be the case). How much do we lose by such approxi-
mations? Our main result is to show how order parameters
change when a weaker model is used and to demonstrate
a nice connection to the Minimax Entropy learning model
selection criterion.

In many situations, it may be impossible or impractical
to use the correct probability models for the problem. We
may need to approximate the true prior PH of the target ge-
ometry by a “generic” prior PG. How much do we lose by
using approximations? If PG is just a minor perturbation of

H H H H
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Figure 5. The Hierarchy. Two high-level mod-
els H1, H2 “project” onto a low-level generic
model PG1 . In situations with limited clutter it
will be possible to detect either H1 or H2 us-
ing the single generic model PG1 . This idea
can be extended to have hierarchies of pro-
jections. This is analogous to the superor-
dinate, basic level, and subordinate levels of
classification used in cognitive psychology.

PH then standard analysis shows that the concavity of the
Bayes risk means the system will be stable to such pertur-
bations. A more important case arises when PG is a poor
approximation to PH . In what regimes can we get away
with using a poor approximation? We will give results for
this case.

A particularly interesting form of “weakness” is when
the generic prior PG is a projection of the high-level prior
PH onto a simpler class of probability distributions. This
allows us to formulate the idea of a hierarchy in which the
priors for several high-level objects would all project onto
the identical low-level prior, see figure (5). For example,
we might have a set of priors {PHi : i = 1, ..., M} for
different members of the cat family. There might then be
a generic prior PG onto which all the {PHi} project and
which is considered the embodiment of “cattiness”.

To be more specific, consider the case of discriminat-
ing between data from two distributions PA, PB . The cor-
rect procedure is to use the log-likelihood ratio test R(I) =
log PA(I)/PB(I) to perform the classification. But sup-
pose we only know an approximation PÂ(I) to PA(I). How
do the order parameters vary if we use the modified reward
R̂(I) = log PÂ(I)/PB(I) to do classification but assuming
that the samples have been drawn from the correct distribu-
tion PA(I), or from PB(I)?

We assume that PÂ(I) is related to PA(I) by what we
call an Amari condition [1] – i.e.

∑
I PA(I) log PÂ(I) =∑

PÂ(I) log PÂ(I). This condition is motivated by Min-
imax entropy learning (and the results of Coughlan and
Yuille in CVPR)

In particular, Minimax Entropy learning naturally gives
rise to a sequence of increasingly accurate Gibbs distribu-
tions by pursuing additional features and statistics. The se-
quence p0 = U, p1, p2, ..., pk → ptrue (where k is the num-
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Figure 6. The Amari projection and a sequence
of prior models for animate object shapes by
minimax entropy using an increasing number
of feature statistics. See text for interpreta-
tion.

ber of features and statistics included in the model pk) starts
with p0 being a uniform distribution U and approaches the
true distribution ptrue in the limit [13]. The more high-level
(i.e. target specific) the model then the more target spe-
cific the statistics. Conversely, low-level (i.e. general pur-
pose) models will only use those statistics which are com-
mon to many targets. More precisely, each Gibbs distri-
bution pi is an Amari projection [1] of the “true” distri-
bution ptrue onto the sub-manifold Mi, with pi being the
closest element to ptrue in Mi, in terms of Kullback-Leibler
divergence D(ptrue||pi), see figure (6). As shown in fig-
ure (6), the first row, from left to right are typical shapes
sampled from three minimax entropy models[14]: a uni-
form model, a model matching contour based statistics, and
a model matching both contour and region based statistics.

For simplicity, we analyze the first task in section (2).
Thus we compute the expected reward < R̂ >PA=
D(PÂ||PB) if the data is generated by PA(I) and es-
timate the probability that data generated by PB will
have higher reward. We assume the Amari condition∑

I PA(I) log PÂ(I) =
∑

I PÂ(I) log PÂ(I) and the addi-
tional condition

∑
I log PB(I){PÂ(I) − PA(I)} = 0 (for

example, this is satisfied if PB is the uniform distribution).
More general conditions are described in [12].

Now we ask, what is the probability that we get a sam-
ple I from PB(.) with reward R̂(I) > < R̂ >PA ? The
problem can be formulated as in Theorem 1 of the previous
section. The only difference is that, because < R̂ >PA=
D(PÂ||PB), we can replace PA by PÂ everywhere in the

calculation.
We therefore obtain that the probability of error goes like

∼ e−D(PÂ||PB). This means that the order parameter is
higher by an amount D(PA||PB) − D(PÂ||PB) when we
use the “correct” reward function. This can be expressed as:

D(PA||PB) − D(PÂ||PB) =
∑

PA log
PA

PB
−

∑
PÂ log

PÂ

PB
,

= D(PA||PÂ) +
∑

log PB{PÂ − PA},

where we have used the Amari condition
∑

PA log PÂ =∑
PÂ log PÂ.
Using the condition

∑
log PB{PÂ − PA} = 0 we see

that the order parameter increases by D(PA||PÂ) when we
use the correct reward function. This is precisely the entropy
criterion used in Minimax Entropy learning in determining
the benefit of using an additional statistic because H(P Â)−
H(PA) = D(PA||PÂ)!. This demonstrates that accurate
prior models increase the order parameters.

We can carry through this analysis to the fourth task in
section (2) where we have to estimate the chances of con-
fusing a target with one of many distractors. The result is
that the phase transition will shift, depending on which re-
ward function is used, by the amount given above.

4 Detecting Curves in Images

We now apply the order parameter theory to the spe-
cific problem of detecting curves in images. In previous
work, we studied a factorizable model by Geman (D.) and
Jedynak, motivated by road tracking from aerial images [5],
which assumes a factorizable model. We now consider a
generalization of this model to the non-i.i.d. case, allowing
spatial coupling, using a Minimax Entropy learning model.

The model is given by Minimax entropy form. To define
the likelihood function we first choose three filters:

F 1(�x) = �∇I(�x) ·�̂t(�x) if �xεX, = �∇I ·�i otherwise

F 2(�x) = �∇I(�x) · �̂n(�x) if �xεX, = �∇I ·�j otherwise

F 3(�x) = I(�x) (3)

where �̂t(�x), �̂n(�x) are the tangent and normal to the curve at
�x, and�i,�j are the horizontal and vertical unit vectors of the
image plane. The curve X has M pixels and there are a
total of N pixels in the entire image.

We define {�hα
on,�hα

off : α = 1, 2, 3} to be the empirical
histograms of the {F α : α = 1, 2, 3} on and off the road
respectively (where α labels the filters F 1, F 2, ...). More
precisely, hα

on,z = 1
M

∑
�x∈X δz,F α(�x) are the components

– indexed by z – of the vector �hα
on, and similarly for �hα

off ,
hα

off,z = 1
N−M

∑
�x/∈X δz,F α(�x) are the components – in-

dexed by z – of the vector �hα
on. The likelihood function is



then given by:

P (I|X) =
1
Z

e
∑3

α=1
{M �βα

on·�hα
on+(N−M)�βα

off ·�hα
off}

∝ e
∑

α

∑
�xεX

{βα
on,F α(�x)−βα

off,F α(�x)}, (4)

where βα
on,z, β

α
off,z are the components of �βα

on, �βα
off . In our

simulations we typically allow F3 to have eight components
(i.e. the images have eight grey-level values) and F1, F2 to
have six components.

Similarly, we define the prior model for the road by
P (X) = p(�x1)

∏N
i=2 p(�xi|�xi−1) (the prior is chosen to pre-

vent the curve from ever intersecting itself). In some cases
we extend this to a second order Markov chain prior deter-
mined by distributions such as p(�xi|�xi−1, �xi−2).

This gives an overall reward function:

R(X |I) =
∑

i

log p(�xi|�xi−1)

+
∑

α

∑

�xεX

{βα
on,F α(�x) − βα

off,F α(�x)}. (5)

To learn this model from observed data �dα
on =<

�hα
on >observer and �dα

off =< �hα
off >observer Minimax En-

tropy learning [13],[14] requires us to estimate the poten-
tials �βα

on, �βα
off . In [12], we describe a recursive algorithm

for learning the model from real data.
We obtain order parameters for these models by applying

Theorem 4. These order parameters will have contributions
both from the geometry and the pixel intensity information,
see [12] for details. Figure (7) shows the results of simulat-
ing from the curve model for different distributions.

5 High-Low information

In this section we consider the effects of using the wrong
prior. More specifically, we will consider two possible ge-
ometry priors PH and PG related by an Amari projection,∑

X PH(X) log PG(X) =
∑

X PG(X) log PG(X). We
call PH(X) the high-level model and it is used to gener-
ate the data (i.e. it is the “true prior”). By contrast, PG(X)
is called the generic prior (i.e. it is the “wrong prior”).

We will perform inference on the data in two ways.
Firstly, we use the high-level prior in the reward function
(i.e. standard Bayesian inference). Secondly, we will use
the generic prior in the reward function. The theory predicts
there will be three regimes, ultra, challenging, and easy, see
caption of figure (8).

In figure (9), we consider two high-level models, second
order Markov chains, which we call roman road and english
road. They are both approximated by the same generic, first
order Markov, road model. We illustrate the three different
regimes.

,

,

,

Figure 7. (Top) Samples from the Minimax
Entropy curve model, K = 1.00 on left and
K = −0.43 on right. (Middle) The true curve
positions for the corresponding samples are
shown in white. The solution path, found by
dynamic programming, is in black. Places
where the solution overlaps with the true path
are shown in grey. (Bottom) The true path
and the solution for K = 1.0 (far left, and left).
The true path and the solution for K = −0.43
(right, and far right). Observe that for posi-
tive K, on the left, the solution is very close
to the true path. But if K is negative, on the
right, then the solution is very different from
the true path – i.e. the task becomes impossi-
ble. The order parameters calculated for the
models are consistent with the results. The
best paths are determined by optimizing the
reward functions using a dynamic program-
ming algorithm that does not require known
starting point [2].
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Figure 8. The Challenging regime figure. In
the ultra regime, detection of the curve is im-
possible even if the high-level model is used.
In the challenging regime we will be able to de-
tect the curve if we use the high-level model
but not if we use the generic model. In the
easy regime, both models are adequate to de-
tect the curve. The data is shown in the top
left square and the true path is shown in the
top right square. The results of estimation
using the high-level and generic models are
shown in the left and right middle squares re-
spectively. Their overlaps with the true path
are shown in the bottom two squares (simi-
lar conventions to the previous figures). Ob-
serve that the high-level model correctly finds
the true path (with a few pixels of error) but the
generic model fails (apart from finding one
small subsection).

Figure 9. Three panels, of two rows each, top
to bottom giving examples of ultra, challeng-
ing, and easy regimes. For each panel, the
top row gives a sample generated by an roman
road model (left), the best path found using the
roman road model (center), and the best path
found using the generic road model (right). Sim-
ilarly, for each panel, the bottom row gives
a sample generated by an english road model
(left), the best path found using the english
road model (center), and the best path found
using the generic road model (right). In the ultra
regime, top panel, no method works. In the
challenging regime (centre panel), the high-
level models (roman and english) find their
targets but the generic models make errors.
In the easy regime, everything works.



6. Conclusion

This paper demonstrated how to determine order param-
eters for visual problems for which the probability models
can be learnt by Minimax Entropy learning theory [13],[14].
It builds on the work of Coughlan and Yuille [10] on factor-
izable distributions and the work on texture by Wu and Zhu
[9].

This paper also investigated how much prior knowledge
is needed to detect a target road or curve in the presence of
clutter. We used order parameters to determine whether a
target could be detected using a general purpose “generic”
model or whether a more specific high level model was
needed. At critical values of the order parameters the prob-
lem becomes unsolvable without the addition of extra prior
knowledge. Results of this type were presented in CVPR’99
[11] for the restricted class of factorized probability distri-
butions.

We observe that our results are in a similar spirit to the
theoretical analysis by Tsotsos on the complexity of vision
[8]. The techniques used, however, are quite different and
the relationship between these two approaches is a topic
for further study. In addition, our results on phase transi-
tions are reminiscent of those obtained by Selman and Kirk-
patrick [7] but who also use completely different techniques
for analysis.

Hopefully, analysis of the type performed in this paper
can help quantify when high-level knowledge is needed for
visual tasks. This may throw light into the development of
efficient algorithms for segmentation and recognition.
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