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Abstract

We analyze the problem of detecting a road target in
background clutter and investigate the amount of prior (i.e.
target specific) knowledge needed to perform this search
task. The problem is formulated in terms of Bayesian in-
ference and we define a Bayesian ensemble of problem in-
stances. This formulation implies that the performance
measures of different models depend on order parameters
which characterize the problem. This demonstrates that if
there is little clutter then only weak knowledge about the
target is required in order to detect the target. However,
at a critical value of the order parameters there is a phase
transition and it becomes effectively impossible to detect the
target unless high-level target specific knowledge is used.
These phase transitions determine different regimes within
which different search strategies will be effective. These re-
sults have implications for bottom-up and top-down theo-
ries of vision.

To appear in Proceedings of Computer Vision and
Pattern Recognition: CVPR’99.

1. Introduction

Suppose we want to detect a target in background clutter.
How much knowledge about the target do we need to use?

In recent work [8] Yuille and Coughlan quantified the
difficulty of detecting targets, such as roads, in images in
terms of an order parameter K. This order parameter was
defined in terms of the statistical properties of the images
and the target and was used to characterize both the ex-
pected error in the solution and the expected convergence
rate. It was shown that the detection task had a phase tran-
sition at K = 0. For K < 0 it was impossible, on av-
erage, to detect the target by any algorithm. For K > 0
detection is possible. More precisely, the detection task is

formulated as MAP estimation and is equivalent to maxi-
mizing an appropriate reward function. We proved that the
expected number of ghosts (false paths caused by random
alignments of off-road pixels) with higher reward than the
true path reward decreases as 2−KN where N is the length
of the road. Moreover, the expected error rate and the algo-
rithmic convergence time decrease exponentially with K.
The size of K increases with the effectiveness of the edge
detector and with the greater the amount of prior knowl-
edge available about the target. The results were obtained
by mathematical proofs on the Bayesian ensemble of target
detection problem instances using the formulation of road
tracking by Geman and Jedynak [5].

In this paper, we use similar techniques to explore a re-
lated problem. How much harder do we make target detec-
tion by using a weaker model (i.e. a weaker prior proba-
bility distribution)? Can we quantify how much easier we
make the task by using more information about the target?

2. Bottom-Up and Top-Down Vision

But why should we want to use a weaker prior? Firstly,
there may not be enough information about the target to
have an accurate prior for it (or it would cost too much to
get this knowledge). Secondly, we may want to search for
several different targets and it would seem more economi-
cal to use one prior model which would account for all of
these targets (at the cost of modelling each of them rela-
tively poorly) rather than having different models for each
target. Thirdly, algorithmic considerations may favour us-
ing a weaker prior rather than a prior which is more accurate
but harder to compute with.

We also observe that the standard bottom-up paradigm
of computer vision can be thought of in these terms. The
early processing of the images makes use of general pur-
pose weak prior assumptions (which often seem so intu-
itive that they are unstated) such as edges being smooth.



For example, a recent system by Geiger and Liu [4] for de-
tecting human figures uses weak prior knowledge of edge
smoothness, as implemented by snakes [6], to detect bound-
ary segments of objects which are then grouped, using ob-
ject specific knowledge, to locate specific objects. This
system is effective and computationally efficient but it will
break down if the background clutter is sufficiently compli-
cated that the snake algorithms are unable to find the object
boundaries. In such situations, however, it may still be pos-
sible to detect the object if a high-level prior model is used.
It is well known that humans can recognize certain objects,
such as Mooney faces and dalmatian dogs (see, [7]), when
it appears that low level assumptions about the domain will
break down. In such cases, only a top-down strategy seems
possible. But a purely top-down strategy is probably more
computationally intensive than a bottom-up strategy. When
can one get away with using an efficient bottom-up strat-
egy?

The debate between bottom-up and top-down paradigms
for vision is of long standing. See the chapter by Mumford
in [7] for a recent discussion of these issues. But what has
been lacking so far is a concrete quantitive analysis of the
relative effectiveness of these strategies.

This paper develops a theory to contrast bottom-up and
top-down approaches for the specific problem of road track-
ing [5]. This is a domain which is simple enough to allow
rigorous mathematical analysis but is realistic enough for
the results to be directly generalizable to the situations stud-
ied by [4],[1], and hopefully to other domains. It helps that
the Geman and Jedynak theory for road tracking [5] is both
theoretically elegant and also highly effective in practice.

More precisely, our approach characterizes the road
detection task in terms of order-parameters for both the
bottom-up and top-down strategies. It will be shown that in
certain regimes of the order parameters both strategies will
be effective (in the sense of finding a close approximation
to the true solution). In other regimes the top-down strategy
will work but the bottom-up strategy will not. In yet other
regimes the target detection problem becomes impossible
to solve by any approach. We will also analyze the speed
of algorithms for solving the problems. Our results sug-
gest that the bottom-up strategy can often be significantly
quicker than the top-down strategy and it makes sense to
use it, particularly if we are searching for one of several
different types of road.

2.1. Background and Previous Work

Tracking curved objects in real images is an important
practical problem in computer vision. We consider a spe-
cific formulation of the problem of road tracking from aerial
images by Geman (D.) and Jedynak [5]. This approach as-
sumes that both the intensity properties and the geometrical

shapes of the target path (i.e. the edge contour) can be mod-
elled statistically. This path can be considered to be a set
of elementary path segments joined together. We first con-
sider the intensity properties along the edge and then the
geometric properties.

The image properties of segments lying on the path are
assumed to differ, in a statistical sense, from those off the
path. More precisely, we can design a filter φ(.) with output
{yx = φ(I(x))} for a segment at point x so that:

P (yx) = Pon(yx), if “x′′ lies on the true path

P (yx) = Poff (yx), if “x′′ lies off the true path. (1)

For example, we can think of the {yx} as being values of
the edge strength at point x and Pon, Poff being the prob-
ability distributions of the response of φ(.) on and off an
edge. The set of possible values of the random variable yx

is the alphabet with alphabet size M .
We now consider the geometry of the target contour.

We require the path to be made up of connected segments
x1, x2, . . . , xN . There will be a Markov probability dis-
tribution Pg(xi+1|xi) which specifies prior probabilistic
knowledge of the target. Each point x has a set of Q neigh-
bours. Following terminology from graph theory, we refer
to Q as the branching factor. We will assume that the dis-
tribution Pg depends only on the relative positions of xi+1

and xi. In other words, Pg(xi+1|xi) = P∆g(xi+1−xi). An
important special case is when the probability distribution is
uniform for all branches (i.e. P∆g(∆x) = U(∆x) = 1/Q
∀∆x).

By standard Bayesian analysis, the optimal (MAP esti-
mate) path X∗ = {x∗1, . . . , x

∗
N} maximizes the sum of the

log posterior ratios:

R(X) =
∑

i

log
Pon(y(xi))

Poff (y(xi))
+

∑

i

log
P∆g(xi+1 − xi)

U(xi+1 − xi)
,

(2)
where the sum i is taken over all points on the target.
U(xi+1 − xi) is the uniform distribution and its presence
merely changes the log posterior R(X) by a constant value.
It is included to make the form of the intensity and geomet-
ric terms similar, which simplifies our later analysis.

We will refer to R(X) as the reward of the path X which

is the sum of the intensity rewards log
Pon(y(xi)

)

Poff (y(xi)
) and the

geometric rewards log
P∆g(xi+1−xi)
U(xi+1−xi)

.
As we will show, this formulation can be extended to

deal with second order and higher level priors (provided
they are shift-invariant). (See figures (2,3,4, 5) for exam-
ples of first order models and figure (6) for examples of
second order Markov models.) This allows our theory to
apply to models such as snakes [6]. (It is straightforward
to transform the standard energy function formulation of
snakes into a Markov chain by discretizing and replacing



the derivatives by differences. The smoothness constraints,
such as membranes and thin plate terms, will transform into
first and second order Markov chain connections respec-
tively). Recent work by Zhu [10] shows that Markov chain
models of this type can be learnt using Minimax Entropy
Learning theory from a representative set of examples.

3. Fundamental Limits

As shown in [8], the Bayesian formulation of our prob-
lems naturally gives rise to a probability distribution on the
ensemble of problem instances, which is called the Bayesian
Ensemble. Using the Bayesian Ensemble we can compute
order parameters which determine the behaviour of typical
problem instances (i.e. those which occur with high proba-
bility). Technically, the proofs involve adapting techniques
from information theory, such as Sanov’s theorem, which
were developed to bound the probability of rare events oc-
curring [3]. For the road tracking problem, a rare event
would be when a subpath in the background noise/clutter
has greater reward than a subpath of the true road – i.e.
looks more like a road.

For the road tracking task, the order parameter K
which is the sum of (twice) the Bhattacharyya dis-
tances 2B(Pon, Poff ) = −2 log{

∑
y P

1/2
on (y)P

1/2
off (y)}

and 2B(P∆g, U) minus the entropy H(U) of the uniform
distribution. The smaller these two distances the harder the
problem becomes. Intuitively, the better the edge detector –
as evaluated by 2B(Pon, Poff ) – and the more specific the
signal – as measured by 2B(P∆g , U)−H(U), the easier it is
to detect. Yuille and Coughlan [8] show that there is a phase
transition at K = 0 so that the problem becomes effectively
impossible to solve by any algorithm for K < 0. Other
properties of interest to the problem, such as the expected
convergence rates of algorithms and the expected errors in
the estimated road position can be expressed in terms of K,
see section (7).

All these results, however, assumed that there was a fixed
geometric prior model. What happens if we use the wrong
prior for the reasons specified in the introduction? How
badly do our results degrade if we use the wrong prior?
Suppose we have several types of roads and we do not know
which one we should be looking for – can we get away with
using a simple generic prior to detect these different types
of road simultaneously? We now address these issues.

4. High-Level and Generic Models

Suppose we have a single high-level model for a road
with a high level geometric prior PH (∆x). Let us assume a
weaker generic prior PG(∆x). We can define two different

H H H H

G G

G

1 2 3 4

1 2

Figure 1. The Hierarchy. Two high-level mod-
els H1, H2 “project” onto a low-level generic
model PG1 . In situations with limited clutter it
will be possible to detect either H1 or H2 us-
ing the single generic model PG1 . This idea
can be extended to have hierarchies of pro-
jections. This is analogous to the superor-
dinate, basic level, and subordinate levels of
classification used in cognitive psychology.

rewards RG and RH :

RG({xi}) =
∑

i

log
Pon(yi)

Poff (yi)
+

∑

i

log
PG(∆xi)

U(∆xi)
,

RH({xi}) =
∑

i

log
Pon(yi)

Poff (yi)
+

∑

i

log
PH(∆xi)

U(∆xi)
. (3)

The optimal Bayesian strategy to search for the road
would be to use the high level model and evaluate paths
based on their rewards RH . But this strategy ignores the
computation time involved in using the prior PH . For ex-
ample, PH might be a second or higher order model while
PG might be a first order Markov model (which would be
easier to search over). Also, we might not know the ex-
act form of PH . Perhaps the most important situation, to
be considered in a later section, is when we can use a sin-
gle generic model to search for a target which may be one
of several different models. Using a single generic model
(provided it is powerful enough) to detect the road can be
significantly faster than testing each possible road model in
turn.

But how “weak” should the generic prior PG be? One
possibility is that PG is an approximation to PH . Such a sit-
uation will often arise when we do not know the true prior
distribution of a target. If PG is just a minor perturbation of
PH then standard analysis shows that the concavity of the
Bayes risk means the system will be stable to such pertur-
bations. A more important case arises when PG is a poor
approximation to PH . In what regimes can we get away
with using a poor approximation? We will give results for
this case.

A more interesting form of “weakness” is when the
generic prior PG is a projection of the high-level prior PH

onto a simpler class of probability distributions. This al-
lows us to formulate the idea of a hierarchy in which the



priors for several high-level objects would all project onto
the identical low-level prior, see figure (1). For example,
we might have a set of priors {PHi

: i = 1, ..., M} for
different members of the cat family. There might then be
a generic prior PG onto which all the {PHi

} project and
which is considered the embodiment of “cattiness”. See [2]
for details on this projection approach and how it relates to
the Zhu, Wu, Mumford theory of learning [9].

In this paper we will be concerned with the Amari (Am)
and Bhatta (Bh) projections. These projections imply that
the distributions to be projected, PH(x), are related to the
generic distributions PG(x) by:

∑

x

PH (x) log PG(x) =
∑

x

PG(x) log PG(x), Am

∑
x PH(x)P

−1/2
G (x) log PG(x)

∑
x P

1/2
G (x) log PG(x)

=

∑
x PH(x)P

−1/2
G (x)

∑
x P

1/2
G (x)

Bh.

These two projections are special in that they allow us
to obtain analytic expressions for the order parameters. It
should be emphasized that order parameters can be derived
for other projections or, as will show, for other forms of ap-
proximations, but these parameters are expressed in terms
of the minimization of a function of one variable. Such or-
der parameters are easy to calculate by computer but do not
have the simple intuitive forms which arise from the Amari
and Bhatta projections.

The Amari projection is important because it corre-
sponds to the minimax entropy criterion used in the learning
theory developed by Zhu, Wu, Mumford [9]. It allows us to
obtain analytic expressions for the order parameters for a
specific road search task. The Bhatta projection is slightly
more complicated but it gives us analytic expressions for
the order parameters for a slightly more realistic road search
task.

5. The Order Parameters

We use the techniques outlined in section (3) to calcu-
late the order parameters. These calculations are variants of
those used in [8] and are too lengthy to include here. (The
details are written up in a technical report which can be ob-
tained upon request).

Our first case is when the generic prior PG is obtained
from a high-level prior PH by Amari projection. For rea-
sons of space, we also use this example to illustrate what
happens if we use a “poor” approximation to the true high-
level model. We consider using the generic reward RG and
the high-level reward RH . The criterion is to determine the
probability that a ghost (a fluctuation of off-road pixels) will
have higher reward than the expected true path reward un-
der either of the two rewards. We obtain order parameters

,

Figure 2. The Ultra Regime KG
H < KA

G < 0.
Top left, the input image. Top right, the true
path is shown in white and the errors of the
best path found using the Generic model are
shown in black. Bottom left, similar, for the
High-Level model. Observe that although the
best paths found are close to the true path
there is comparatively little overlap. A dy-
namic programming algorithm was used to
determine the best solution for either choice
of reward.

KA
H , KA, G for the high-level and generic rewards respec-

tively (the superscript A refers to Amari):

KA
H = D(Pon||Poff ) + D(PH ||U) − log Q,

KA
G = D(Pon||Poff ) + D(PG||U) − log Q. (4)

It follows from the definition of Amari projection that
KA

H − KA
G = D(PH ||U) − D(PG||U) = D(PH ||PG)

(where D(P ||Q) =
∑

y P (y) log P (y)/Q(y) is the
Kullback-Leibler divergence between distributions P (y)
and Q(y)). Therefore the high-level prior PH has a big-
ger order parameter by an amount which depends on the
distance between it and PG as measured by the Kullback-
Leibler divergence D(PH ||PG). Recall [8] that the target
detection problem becomes insolvable (by any algorithm)
when the order parameter is less than zero. Hence there
are three regimes: (I) The Ultra Regime, see figure (2), is
when KA

G < KA
H < 0 (i.e. D(PH ||U) + D(Pon||Poff ) <

log Q) and the problem cannot be solved (on average) by
any model (or algorithm). (II) The Challenging Regime,
see figure (3), where KA

G < 0 < KA
H (i.e. log Q <

D(PH ||U)+D(Pon||Poff ) < log Q+D(PH ||PG)) within
which the problem can be solved by the high-level model
but not by the generic model. (III) The Easy Regime, see
figure (4), where KA

H > KA
G > 0 and the problem can be

solved by either the generic or the high-level model.
In our simulations, see figures (2,3,4), we generate the

target true paths by stochastic sampling from the high level
model. To detect the best path we apply a dynamic pro-
gramming algorithm to optimize the high-level or generic
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Figure 3. The Challenging Regime KA
G < 0 <

KA
H . Same conventions as previous figure.

Observe that the Generic models fails (top
right) but the High-Level model succeeds
(bottom).

reward functions applied to the generated data. Dynamic
programming is guaranteed to find the solution with highest
reward.

The second case is when we use the Bhatta projection
with rewards either RG or RH . We now use the criterion
that a ghost will have higher reward than the true path (i.e.
we now take the fluctuations of the true path rewards into
account which is more realistic). This yields order parame-
ters:

KB
H = 2B(Pon||Poff ) + 2B(PH , U) − log Q

KB
G = 2B(Pon||Poff ) + B̂(PH , PG) − log Q, (5)

where B(Pon||Poff ) =

− log
∑

y{P
1/2
on (y)P

1/2
off (y)} and B̂(PG, PH) =

− log(
∑

x P
1/2
G (x))(

∑
x PH(x)P

−1/2
G (x))/Q. It can

be verified that 2B(PH , U) > B̂(PG, PH) and so, once
again, we will have three similar regimes – Ultra, Chal-
lenging, and Easy – corresponding to KB

G < KB
H < 0,

KB
G < 0 < KB

H , and KB
H > KB

G > 0. These regimes have
the same interpretations as above.

The third case is when we do not use the Amari or Bhatta
projections. This includes: (a) projections differing from
Amari and Bhatta, and (b) situations where PG is a (poor)
approximation to PH . This gives order parameters:

KH = 2B(Pon||Poff ) + 2B(PH , U) − log Q

KG =

4∑

i=1

log Zi[γ
∗] − log Q, (6)

where Z1[γ] =
∑

y P 1−γ
on (y)P γ

off (y), Z2[γ] =
∑

x PH(x)P−γ
G (x), Z3[γ] =

∑
y P γ

on(y)P 1−γ
off (y),

and Z4[γ] =
∑

x P γ
G(x). The value γ∗ =

,

Figure 4. The Easy Regime 0 < KA
G < KA

H .
Same conventions as previous figure. In this
regime both the Generic and High-Level mod-
els succeed.

argmin0≤γ≤1

∑4
i=1 log Zi[γ]. (log Z[γ] is convex so

minimizing it is easy).
Once again, we get the same three regimes with the same

interpretations.
In our experience, changing the projections (approxima-

tions) only causes the boundaries of the regimes to shift and
does not alter their basic properties. Moreover, so far, we
have observed little change in the regime boundaries if we
switch from the Amari to the Bhatta projection (see techni-
cal report).

6. Multiple Hypotheses and Higher-Order
Markov Models

We now apply our theory to deal with multiple (two or
more) high-level models and with high-level models defined
by second-order Markov chains.

The prototypical case for two, or more, high-level mod-
els is illustrated in figure (5). High-level model H1 prefers
roads which move to the right (see the white paths in the left
hand panels of figure (5)) while high-level model H2 likes
roads moving to the left (see white paths in the right panels).
Both models H1 and H2 project to the same generic model
G, by Amari projection, and thus form part of a hierarchy,
see figure (1). Our theory again enables us to calculate or-
der parameters and identify three regimes: (I) The Ultra
Regime where none of the models (H1, H2 or G) can find
the target. (II) The Challenging Regime where the high-
level models H1, H2 can find targets generated by H1 and
H2 respectively but the generic model G cannot find either.
(III) The Easy Regime where all the models can locate the
targets effectively. Once again, the best paths for the differ-
ent rewards was found using dynamic programming (which
is guaranteed to find the global solution).

In the Easy Regime, little is gained by using the two
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Figure 5. Two High-Level models H1, H2.
Three sets of four panels for Ultra, Challeng-
ing, and Easy regimes (top to bottom). The
data in the left and right columns is gener-
ated by H1 and H2 respectively. The top two
rows are the Ultra regime with the true paths
(white) and the errors of the best paths (black)
for Generic model (first row), H1 model (sec-
ond row, left) and H2 model (second row,
right). All models give poor results in this
regime. The middle two rows are similarly or-
ganized and show good results for the High-
Level models and significantly poorer results
for the Generic. The bottom two rows (same
conventions) demonstrate the effectiveness
of all models in the Easy regime.

high-level models. It may indeed be more computationally
efficient to use the generic model to detect the target. The
target could then be classified as being H1 or H2 in a sub-
sequent classification stage. We will discuss computational
tradeoffs of these two approaches in the next section.

We now repeat this example using high-level models
H3, H4 defined by second order Markov chains, see fig-
ure (6). This second order property allows us to obtain more
interesting models. For example, model H3 generates very
wiggly roads (“English” roads) (see left panel of figure (6))
while model H4 generates roads that have long straight sec-
tions with occasional sharp changes in direction (“Roman”
roads, see right hand panels). It is straightforward to com-
pute order parameters for these models (the second-order

Markov property requires slight modifications to the ear-
lier calculations) and, as before, we get order parameters
which specify the three standard Ultra, Challenging, and
Easy regimes – see figure (6). In this figure, we point out a
fluke where the high-level model H4 correctly found the tar-
get even in the Ultra Regime. By our theory, this is possible
though highly unlikely. Another unlikely outcome is shown
in the bottom right panel where the H4 model has detected
the target to one hundred percent accuracy. This is reflected
in the overall darkness of the panel because, with no black
pixels to indicate errors, our graphics package has altered
the brightness of the panel (compared to the other panels
which do contain black errors). Dynamic programming is
used to find the best solutions by global optimization.

,

,

,

,

,

,

Figure 6. Two High-Level models second-
order Markov models H3, H4. Three sets of
four panels for Ultra, Challenging, and Easy
regimes (top to bottom). The data in the left
and right columns is generated by H3 and H4

respectively. The top two rows are the Ul-
tra regime with the true paths (white) and the
errors of the best paths (black) for Generic
model (first row), H3 model (second row, left)
and H4 model (second row, right). All mod-
els give poor results in this regime. The
middle two rows are similarly organized and
show good results for the High-Level mod-
els and significantly poorer results for the
Generic. The bottom two rows (same con-
ventions) demonstrate the effectiveness of all
models in the Easy regime.



7. More Precise Analysis of Performance Mea-
sures

So far, we have only discussed whether the target can be
detected or not in terms of the order parameters of the mod-
els. But our analysis also yields more precise, performance
measures which determine the accuracy of the solution and
the complexity of A* search algorithms for finding the so-
lution. These results (see technical report for more details)
suggest that these performance measures are very sensitive
to the precise values of the order parameters K close to the
phase transitions at K = 0. But they are relatively insensi-
tive to the precise values of K elsewhere. (This is consistent
with the typical behaviour of physical systems which have
phase transitions).

8. Summary and Conclusions

This paper investigated how much prior knowledge is
needed to detect a target road in the presence of clutter. We
used the concept of order parameters to determine whether
a target could be detected using a general purpose “generic”
model or whether a more specific high level model was
needed. At critical values of the order parameters the prob-
lem becomes unsolvable without the addition of extra prior
knowledge. We discussed the implication of these results
for bottom-up and top-down theories of vision.

The results of this paper were obtained by analysis of the
Bayesian ensemble of problem instances. We anticipate that
our approach will generalize to other vision problems and
can be used to determine performance measures for models
in terms of order parameters. Our results should be of par-
ticular importance to problems for which one can use learn-
ing techniques [9] to determine suitable probability models
as input to our analysis.
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