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Abstract

There has been much recent work on measuring image statistics and on learning
probability distributions on images. We observe that the mapping from images to statistics
is many-to-one and show it can be quantified by a phase space factor. This phase space
approach throws light on the Minimax Entropy technique for learning Gibbs distributions
on images with potentials derived from image statistics and elucidates the ambiguities that
are inherent to determining the potentials. In addition, it shows that if the phase factor can
be approximated by an analytic distribution then the computation time for Minimax
entropy learning can be vastly reduced. An illustration of this concept, using a Gaussian to
approximate the phase factor, leads to a new algorithm called "Minutemax,” which gives a
good approximation to the results of Zhu and Mumford in just seconds of CPU time. The
phase space approach also gives insight into the multi-scale potentials found by Zhu and
Mumford and suggest that the forms of the potentials are influenced greatly by phase
space considerations. Finally, we prove that probability distributions learned in feature
space alone are equivalent to Minimax Entropy learning with a multinomial
approximation of the phase factor.

1 Introduction

Bayesian probability theory gives a powerful framework for visual perception [3]. This approach,
however, requires specifying prior probabilities and likelihood functions. Learning these probabilities
is difficult because it requires estimating distributions on random variables of very high dimensions
(for example, images with 200 x 200 pixels, or shape curves of length 400 pixels). An important
recent advance is the Minimax Entropy Learning theory. This theory was developed by Zhu, Wu and
Mumford [7],[8],, [9] and enables them to learn probability distributions for the intensity properties
and shapes of natural stimuli and clutter. In addition, when applied to real world images it has
an interesting link to the work on natural image statistics [2][6][4]. We wish to simplify Minimax
and make the learning easier, faster and more transparent. Ideally we would also like to determine
which filters are useful (i.e. perform filter pursuit) without going to the trouble of learning their
corresponding probability distributions.

In this paper we present a phase space approach to Minimax Entropy learning. This approach is based



on the observation that the mapping from images to statistics is many-to-one and can be quantified by
a phase space factor. If this phase space factor can be approximated by an analytic function then we
obtain approximate "Minutemax” algorithms which greatly speed up the learning process. In some
versions of this approximation, the unknown parameters of the distribution to be learned are related
linearly to the empirical statistics of the image data set, and may be solved for in seconds or less.
Independent of this approximation, the Minutemax framework also illuminates an important combi-
natoric aspect of Minimax, namely the fact that many different images can give rise to same image
statistics. This ”phase space” factor explains the ambiguities inherent in learning the parameters of
the unknown distribution, and motivates the approximation that reduces the problem to linear algebra.

2 An Overview of Minimax

We wish to learn a distribution P(I) on images, where I denotes the set of pixel values I(x,y) on a
finite image lattice, and each value I(z,y) is quantized to a finite set of intensity values. * We define
a set of image statistics ¢1 (I), #2(I),. .., ¢s(I), which we concatenate as a single vector function
5(1). (The statistics in Minimax Learning are defined in the next subsection in terms of histograms
of linear or non-linear filter responses across entire images, but the results in this section generalize
to any statistics that are deterministic functions of the image.) If these statistics have empirical
mean d =< gz?(I) > on a dataset of images (we assume a large enough dataset for the law of large
numbers to apply; see Zhu and Mumford for an analysis of the errors inherent in this assumption) then
the maximum entropy distribution Pas(I) with these empirical statistics is an exponential (Gibbs)
distribution of the form
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where the potential X is set o that < ¢(I) > = d.

In summary, the goal of Minimax Learning is to to find an appropriate set of image statistics for
the domain of interest (i.e. the pursuit of maximally informative filters) and to estimate X given d.
Extensive computation is required to determine X; the phase space approach to Minimax Learning
motivates approximations that make X easy to estimate.

Minimax Entropy Learning may also be presented in terms of the geometry of probability distribu-
tions, pioneered by researchers such as Rao and Amari. This information geometry perspective, as
well the topic of filter pursuit and its connection to the phase space approach, are covered in Coughlan
and Yuille [1].

3 A Phase Space Per spective on Minimax

How does a theory like Minimax Entropy Learning relate to the idea of going directly to feature space
of images and learning distributions on these feature responses? We observe that the mapping from
images to statistics is many-to-one and show it can be quantified by a phase space factor. This phase
space approach throws light on the Minimax Entropy technique for learning Gibbs distributions on
images with potentials derived from image statistics and elucidates the ambiguities that are inherent
to determining the potentials. It demonstrates ways to estimate the potential X approximately in a
very quick manner (though, like many approximations, the approach does not always yield good
results). In addition, it shows that if the phase factor can be approximated by an analytic distribution
then the computation time for Minimax entropy learning can be vastly reduced. Finally, we prove that
probability distributions learned in feature space alone are equivalent to Minimax Entropy learning
with a multinomial approximation of the phase factor.

3.1 ImageHistogram Statistics

First, we review the method of computing image histogram statistics. The statistics we consider
(following [7],[8], and [9]) are defined as histograms of the responses of one or more filters applied

1 fact, this approach is general and applies to any patterns, not just images.



across an entire image. Consider a single filter f (linear or non-linear) with response fx(I) centered
at position x in the image. If the filter is linear, then this response may be defined in terms of
convolution with a kernel &, i.e. fx(I) = (k= I)(x). Without loss of generality, we will consider all
filters as having quantized integer responses from 1 through finqz.

For notational convenience we transform the filter response fx(I) to a binary representation BX(I),

defined as a column vector with f,,., components: EX,Z(I) = J. (1), Where index z ranges from
1 through fmae. This vector is composed of all zeros except for the entry corresponding to the filter

response, which is set to one. The image statistics vector is then defined as the average of the EX(I) ’s
over all N pixels:

- 1 -

o) = 5 D be(D).

The entries in 5(1) then sum to 1. Note that the empirical mean of the statistics, J whose entries also
sum to 1, can be regarded as a probability distribution specifying the empirical frequency of each
possible filter response.

We can generalize to the case of multiple filters £, f@ ... ) with binary representations
b (1), 52(T), ..., bY™ (T). The m histograms ¢V (T), (), ..., ¢ (1), defined as ¢ (I) =
N% Yo b (I), are concatenated into a single vector ¢(I). (Different filters may be defined at dif-
ferent scales of the image lattice, in which case a filter response may only be defined on a decimated
version of the original lattice. For example, N; = N/4 for afilter () one level of coarseness above
the original lattice.) In general we have Zle ¢i(I) = m, where S = 211 () e Again we note
that d, whose entries in this case sum to m, can be regarded as a set of m probability distributions,
each specifying the empirical frequency of filter responses for one filter.

3.2 ThePhase Factor

-,

The original Minimax distribution P, (I) induces a distribution P (¢) on the statistics themselves,
without reference to a particular image:

Par(do) = Y 65 50 Prr(T) = g(do) ¥)
I
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where g(¢) is a combinatoric phase space factor, with a corresponding normalized combinatoric
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distribution g(¢), defined by:
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where the phase space factor g(gE) counts the number of images I having statistics &, N is the number
of pixels and Q is the number of pixel intensity levels, i.e. Q" is the total number of possible images
I. It should be emphasized that the phase factor depends only on the set of filters chosen and is
independent of the true distribution P(I). Thus the phase factor can be computed offline, independent
of the image data set.

-

Later in this paper we will discuss two useful approximations to g(¢): a Gaussian approximation,
which yields the swift approximation for learning, and a multinomial approximation, which estab-
lishes a connection between Minimax and standard feature learning.

3.3 TheNon-Uniqueness of the Potential X

Clearly, X may be shifted by an additive constant (\; — X\, = \; + k for all ), yielding a different
normalization constant Z(\’) but preserving Pas(I). In this section we show that other, non-trivial
ambiguities in X which preserve Py (I) can exist, stemming from the fact that some values of 5



are inconsistent with every possible image I and hence never arise (in any possible image dataset).
These “intrinsic” ambiguities are inherent to Minimax and are independent of the true distribution
P(I). We will also discuss a second type of possible ambiguity which depends on the characteristics
of the image dataset used for learning.

We can uncover the intrinsic ambiguities in X by examining the covariance C' of g(&), defined as
C=> 3 3(9) (¢ — &) (¢ — &7, where we define the mean & = >g §(4)$. (See [1] for details on
calculating the mean ¢'and covariance C' for any set of linear filters or non-linear filters that are scalar
functions of linear filters.) The null space of C is at least one-dimensional, reflecting a constraint
on the set of allowed values of ¢ (i.e. all ¢ for which g(¢) # 0): namely, the sum of all histogram
responses Zle ¢ (T) is constant, meaning that Cé = 0, where ¢ is the column vector containing
all ones. Defining the set of all possible statistics values ® = {5 : g($) # 0}, the null space of C

reflects degeneracy (i.e. flatness) in ®. As we will show in the following theorem, X is determined
only up to a hyperplane whose dimension is the nullity of C.

Theorem 1 (Intrinsic Ambiguity in ). Cf = 0 if and only if eX+A¢M /7(X + i) and
e*?M /7(X) are identical distributions on I.

Proof. Cji = 0 implies 7" Cji = 0, sothat >, GV (¢ — &) (b — &Tji = 0. But we can
re-express this as Z&@ 3(9)[(é — &T@)? = 0, and since each term is non-negative this implies

that [(¢ — &)7ji]> = 0 for all ¢ € ®. Thisexpression may bewrittenas ¢ - ji = ¢- jifor all ¢ € @,
from which the forward result follows directly.

To prove the converse, note that /i - d?(I) must be constant for all I, implying that q_ﬁT [ = constant

= =

forall ¢ € ©. Butthen Cji = 3" 5.4 §(8)(¢ — O)(6 — &) [i < Y504 3(6) (6 — &) = 0.

In addition to this intrinsic ambiguity in X, it is also it is possible that different values of X may

yield distinct distributions which nevertheless have the same mean statistics < d? > on the image
dataset. (As shown in [1], there is a convex set of distributions, of which the true distribution P(T) is
a member, which share the same mean statistics < $ >.) This second kind of ambiguity stems from
the fact that the mean statistics convey only a fraction of the information that is contained the true
distribution P(T). To resolve this second ambiguity it is necessary to extract more information from
the image data set. The simplest way to achieve this is to use a larger (or more informative) set of
filters to lower the entropy of Pas(I) (this topic is discussed in more detail [1]).

Alternatively, one can extend Minimax to include second-order statistics, i.e. the covariance of $
in addition to its mean d. Note that the covariance of qg is well-defined in the standard Minimax
distribution; it is quite possible that the empirical covariance may be significantly lower in certain
dimensions than that predicted by standard Minimax. In other words, while Minimax might assume
a large variation along these dimensions, a low empirical covariance would mean that second-order
Minimax would restrict these variations. This added information would not only lower the entropy
of Par(X) but would also produce long-range coupling between pixels that are far apart on the lattice.
This is an important topic for future research.

4 The Minutemax Approximations

We now illustrate the phase space approach by showing that suitable approximations of the phase

space factor g(q?) make it easy to estimate the potential X given the empirical mean d. The resulting
fast approximations to Minimax Learning are called "Minutemax” algorithms.

-,

4.1 The Gaussian Approximation of g(¢)

If the phase space factor g(&) may be approximated as a multi-variate Gaussian (see [1] for a justifi-

-,

cation of this approximation) then the probability distribution Pxs(¢) = g(q?) % reduces to another



multi-variate Gaussian. As we will see, this result greatly simplifies the problem of estimating the
potential \.

Recall that the mean and covariance of g(a) are denoted by ¢and C, respectively (see [1] for details
on calculating these quantities). The null space of C' has dimension n and is spanned by vectors

@™, @@ . g™ Asdiscussed in Theorem 1, for all feasible values of ¢ and all i in the null space,
i - ¢ is aconstant k. Thus we have that

- 5oz -1,z =
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where the subscript denoteTs pr?jection onto the rank of C. Thus Pyauss($)  ggauss(@)e™? o
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where 1/;T is the prOJectlon of any 1/; that satisfies 1/; = &+ CX. Since Pgauss( *) is a Gaussian we
have < ¢ > gauss= 1/; = d, and so we can write a linear equation relating Xand d:

d=c+CX (6)

It can be shown (Zhu - private communication) that this is equivalent to one step of Newton-Raphson
for minimization of an appropriate cost function. This will fail to be a good approximation is the cost
function is highly non-quadratic. As explained in [1], the Gaussian approximation is also equivalent
to a second-order perturbation expansion of the partltlon function Z (A ) higher-order corrections can

be made by computing higher-order moments of g(¢).

4.2 Experimental Results

We tested the Gaussian Minutemax procedure on two sets of filters: a single (fine scale) image
gradient filter 81 /dx, and a set of multi-scale image gradient filters defined at three scales, similar to
those used by Zhu and Mumford [9]. In both sets, the fine scale gradient filter is linear with kernel
(1,—1), representing a discretization of 9/0x. In the second set, the medium scale filter kernel is
(U2, —Uz2)/4 and the coarse scale kernel is (U, —U4)/16, where U,, denotes the n x n matrix of
all ones. The responses of the medium and coarse filters were rounded (i.e. quantized) to the nearest
integer, thus adding a non-linearity to these filters. Finally, d was measured on a data set of over 100

natural images; the fine scale components of d are shown in the first panel of Figure (1).

A X that solves d = &+ CX is shown in the second panel of Figure (1) for the first filter, and in the
three panels of Figure (2) for the multi-scale filter set. (The solution to d = &+ CX was obtained
by a fast gradient descent technique described in [1] to find a X with minimum norm.) The form
of X is qualitatively similar to that obtained by Zhu (bearing in mind that Zhu disregarded any filter
responses with magnitude above @/2, i.e. his filter response range is half of ours). In addition, the
eigenvectors of C with small eigenvalues are large away from the origin, so one should not trust the
values of the potentials there (obtained by any algorithm.

Zhu and Mumford [9] report interactions between filters applied at different scales. This is because
the resulting potentials appear different than the potential at the fine scale even though the histograms
appear similar at all scales. We argue, however, that some of this “interaction” is due to the different
phase factors at different scales. In other words the potentials would look different at different scales
even if the histograms were identical because of differing phase factors.

4.3 TheMultinomial Approximation of g(q_s')

Many learning theories simply make probability distributions on feature space. How do they differ
from Minimax Entropy Learning which works on image space?
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Figure 1: d on left, \ for first filter alone on right. (The X is displayed with a minus sign
for consistency with Zhu and Mumford’s sign convention.)

Figure 2: From left to right: the fine, medium and coarse components of \.

By examining the phase factor we will show that the two approaches are not identical in general. The
feature space learning ignores the coupling between the filters which arise due to how the statistics
are obtained.

More precisely, the probability distribution obtained on feature space, Pr, is equivalent to the Mini-
max distribution P if, and only if, the phase factor is multinomial.

We begin the analysis by considering a single filter. As before we define the combinatoric mean ¢ =
Zg §(#)¢. The multinomial approximation of g(¢) is equivalent to assuming that the combinatoric
frequencies of filter responses are independent from pixel to pixel. Since the combinatoric frequency

of filter response j € {1,2,..., fmas} IS ¢; and there are N¢; pixels with response j, we have:
Gmutt(P) = c; V' ————— and Prut(¢) (CJ‘@A]‘/N)N%‘ e
1} DT (V) H fmes (Ngy)!
0]

using Pmult(d_;) x gmult(a)ex‘g. Therefore Pmult(cg) is also a multinomial. Shifting the A;’s by
an appropriate additive constant, we can make the constant of proportionality in the above equation
equal to 1. In this case we have

< ¢ Smur=c;e™ N and \; = Nlog(d;/c;) (8)

by setting < ¢; > e t0 the empirical mean d;.

Note that if any component d; of the empirical mean is close to 0 then by equation 8 any small

perturbations in d; (e.g. from sampling error) will yield large changes in X making the estimate of
that component unstable.

-

Figure 3: Left to right: d, ¢, and X as given by multinomial approximation for the 9/9x
filter at fine scale.



-,

We can generalize the multinomial approximation of g(¢) to the multiple filter case merely by factor-

-

ing gmuit(¢) into separate multinomials, one for each filter. Of course, this approximation neglects
all interactions among filters (and among pixels).

4.4 TheMultinomial Approximation and Featurel earning

The connection between the multinomial approximation and feature learning is straightforward once
we consider a distribution on the feature vector f This distribution (denoted Pr for “feature”) is
constructed assuming independent filter responses from pixel to pixel and whose statistics matches
the empirical mean d: Pr(f) = [[., d(y,), where f; denotes the filter response at pixel . Then it

-,

follows that Pr(¢) is a multinomial:

fmaa

Pe(@) =[] 4 "’% ©

j=1 j=1
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Since d; = ¢;e*i/N by equation 8, we have that Pr(¢) = Pruii ().

5 Conclusion

The main point of this paper is to introduce the phase space factor to quantify the mapping between
images and their feature statistics. This phase space approach can: (i) provide fast approximate
“Minutemax” algorithms, (ii) clarify the relationship between probability distributions learnt in fea-
ture and image space, and (iii) to determine intrinsic ambiguities which may be resolved by second
order statistics.
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