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1 Introduction

This note discusses 3D geometry for a single camera in Sections 2-6, and then
covers the basics of stereo in Sections 7-9. It combines most of the contents of
two older documents, “Notes on 3D Geometry” and “Enforcing a Ground Plane
Bias by Image Shearing.”

2 Basic Projection Equations

The (u,v) image coordinates are:

u = c—w/2 (1)
= r—~h/2 (2)

where ¢ is the column and 7 is the row. (This is a Point Grey convention, and
it assumes the camera center is exactly in the center column and row of the
image. In fact, proper camera calibration can be done to get a better estimate
of the center.)

The (X,Y, Z) coordinate system is shown in Fig. 1, and the (u,v) system in
Fig. 2: Z points along line of sight, away from camera; X (and also u) points
from left to right as you face the image plane (your eyes are pointing in the Z
direction); similarly, ¥ (and also v) points from top to down as you face the
image plane. (0,0,0) is the camera center (the pinhole in a pinhole camera).

The projection equations are:

u = fX/Z (3)
fY/z (4)

where f is the camera focal length. (If w and v are expressed in pixels, then f
should also be measured in pixels.)

3 Vanishing Points

Any 3D direction gives rise to a vanishing point (VP) in the image. Given a
3D direction vector d, we can parameterize a line in that direction as all points



object

col image < i5 the
- ( U world
row image = 7 world
5y b
viewing X world
direction

4 &

Figure 1: XYZ camera-centered coordinate system, following the Point Grey
convention. Note that the positive Z-axis is the camera line of sight, pointing
away from the eye.

p(t) = po + td, where ¢t is a real number. It is easy to show that the VP, defined
as the value of (u,v) in the limit of ¢ approaching —oco or +oo, is given by
(u,v) = (fdy/d., fdy/d.). Notice that this doesn’t depend on py — in other
words, all parallel lines sharing the same direction have the same VP.

4 Calculating Horizon

A plane defines a 2D space of directions, and each direction has its own VP;
you can show that the set of VPs forms a line in the image, called the horizon.

Assume we are given a ground plane defined by r-n = k, where r = (X, Y, Z),
n = (ng, Ny, n,)=ground plane unit vector. Then you can show that the horizon
is defined by all points (u,v) such that n-(u, v, f) = 0. Notice that this equation
doesn’t depend on the value of k.

The way to prove this is to suppose that we are given a vector a that is
perpendicular to n, i.e. a-n = 0. The VP of a is (u,v) = (faz/a., fa,/az).
Then n - (u,v, f) = (f/a.)(nzaz + nyay +n.az) = 0.

5 Unwarping Ground Plane

Suppose the ground plane is defined by r-n = k, where k < 0 and |k| is the height
of the camera above the ground. (We assume that n is the unit-length upward-
facing normal coming out of the ground, the opposite of the down direction.)
Then any point in the image below the horizon (below in the image sense) maps
to a 3D location on the ground plane, and we can describe this 3D location in
2D ground coordinates.

First we find the mapping from (u,v) to the corresponding 3D location on
ground plane:
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Figure 2: uv coordinate system that corresponds to projecting XYZ coordinates
to the image plane, again following the Point Grey convention.

From u = fX/Z and v = fY/Z we have that (uZ/f,vZ/f,Z)-n = k. Then
Z =k/[n-(u/f,v/f,1)] and we can also solve for X and Y using the u = fX/Z
and v = fY/Z equations.

Next we describe the 3D location in 2D ground coordinates:

We need to find a 2D basis in the ground plane, i.e. two vectors a and b
lying in the ground plane that are orthogonal. To do this we will first project
the X-axis onto the ground plane by calculating how much of it projects onto
the ground normal, and subtracting that off:

a x X —(n-X)n = (1,0,0) — nyn, where X is the unit vector in the
X-direction. Next we normalize a to unit length (not shown here). Then we
calculate b = n x a, where x is the 3D vector product. If the camera is roughly
horizontal, then a will be approx. parallel to the X-direction and b will be in
the forward direction along the ground.

Finally, to project r = (X,Y, Z) into 2D ground coordinates, first define
po = kn, which is the 3D location of the user’s shoes (i.e. the spot on the
ground directly below the camera). Then we get 2D ground coordinates (u’,v'),
where v/ = (r — pg) - a and v = (r — pg) - b. These coordinates will have units
of meters if k is defined in meters.

6 Mapping Image Pixels onto Ground Plane

Given the ground plane defined as above, r - n = k, then given a pixel with
image coordinates (u,v) we would like to determine the (X,Y, Z) coordinates
of this pixel assuming it corresponds to a point lying on the ground plane.

The solution is to rewrite the projection equations as X = uZ/f, ¥ =
vZ/f and to rewrite the plane equation in terms of Z (but not X or Y):
(uZ/fvZ/f,Z) - n = k. We can then solve for Z as Z = fk/[(u,v, f) - n],
and can use the rewritten projection equations, X = uZ/f, Y = vZ/f, to



determine X and Y.

7 Basic Stereo Equations

Now we discuss stereo for a pair of rectified cameras, for which a row in the left
camera matches the same row in the right camera.

We use the same (u,v) and (X,Y,Z) coordinate systems as before. The
reference (right) camera’s center is at (0,0,0) as before, but the center of the
other camera is at (—B, 0,0) and is shifted by a baseline distance B > 0 from the
reference camera. Note that the image coordinates (u,v) refer to the reference
image, not the other image.

The projection equations relate (u,v), (X,Y, Z) and the disparity d:

w = fX/Z (5)
v o= fY)Z (6)
Z = fB/d (7)

In the Point Grey convention, the right image R(u,v) is the reference image,
and the left image is L(u,v). This convention gives us the following interpreta-
tion for the disparity map d(u, v): (u,v) in the right image maps to (u+d(u,v), v)
in the left image. In other words,

L(u+ d(u,v),v) = R(u,v) (8)

provided the camera gain is similar in the left and right images.

8 Disparity of Ground Plane

As before, the ground plane is defined by r - n = k, where r = (X,Y, 72),
n = (ng, Ny, n,)=ground plane unit vector.

If we assume every point in the scene lies on the ground plane then we can
project any point onto this plane:

Since X =uZ/f and Y =vZ/f we get Z = fk/(n- (u,v, f)).

Finally, since in general Z = fB/d we have the predicted disparity:

dy(u,v) = fB/Z = Bn - (u,v, f)/k (9)

i.e. the predicted disparity (assuming every point in the scene lies on the ground
plane) as a function of v and v, called d,4(u,v). Note that the disparity is linear
in the image row and column coordinates.



9 Converting Between Disparity and Elevation

This is useful for implementing an MRF in terms of elevations instead of dis-
parities.

Given a unit normal direction vector n, define the elevation of any point
r=(X,Y,Z) to be E(r) =n-r. (Sometimes we measure the elevation relative
to a ground plane defined by n - r = k, in which case we subtract k from the
above expression for E(r). In this section we will continue to use E(r), which
is by definition equal to zero at the camera center.)

Converting disparity to elevation: E(u,v,d) =r-n = (Zu/f, Zv/f,Z) - n
where Z = fB/d.

Converting elevation to disparity: this is a bit more work. d(u,v, E) = fB/Z
so let’s solve for Z. We know that £ = (X,Y,Z) -n = (Zu/f,Zv/f,Z) -n =

Z/f(u,v, f)-n,s0 Z = (“{% Therefore

d(u, v, E) = g(u,v,f) n (10)

Note that these equations hold whether or not the baseline is roughly hori-
zontal (i.e. ngy = 0).



