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Efficient Saccade Planning Requires Time and Clear Choices
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Abstract

We use eye movements constantly to gather information. Saccades are efficient when they
maximize the information required for the task, however there is controversy regarding the
efficiency of eye movement planning. For example, saccades are efficient when searching for a
single target (Nature, 434 (2005) 387-91), but are inefficient when searching for an unknown
number of targets in noise, particularly under time pressure (Vision Research 74 (2012), 61-71).
In this study, we used a multiple-target search paradigm and explored whether altering the noise
level or increasing saccadic latency improved efficiency. Experiments used stimuli with two levels
of discriminability such that saccades to the less discriminable stimuli provided more information.
When these two noise levels corresponded to low and moderate visibility, most observers did not
preferentially select informative locations, but looked at uncertain and probable target locations
equally often. We then examined whether eye movements could be made more efficient by
increasing the discriminability of the two stimulus levels and by delaying the first saccade so that
there was more time for decision processes to influence the saccade choices. Some observers did
indeed increase the proportion of their saccades to informative locations under these conditions.
Others, however, made as many saccades as they could during the limited time and were
unselective about the saccade goal. A clear trend that emerges across all experiments is that
conditions with a greater proportion of efficient saccades are associated with a longer latency to
initiate saccades, suggesting that the choice of informative locations requires deliberate planning.
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Introduction

Our eyes are moving constantly at the rate of approximately three times per second to gather
information from our dynamic surroundings. We know from Yarbus (1967) that we move
our eyes to different parts of the image depending on the task. Recently there has been an
interest in determining if these eye movements gather information efficiently for the task at
hand, i.e., whether each saccade maximizes task-relevant information. Studies to date
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provide mixed results, depending on the task. Some studies indicate that saccadic targeting
is efficient. For instance, eye movements executed during search for a single target appear to
be efficient (Najemnik & Geisler, 2005, 2008) and appear to incorporate knowledge about
where the target is most likely to occur (Chukoskie, Snider, Mozer, Krauzlis & Sejnowski,
2013, but see Araujo, Pavel & Kowler, 2001). On the other hand, other studies show that
saccades are not always directed to maximize expected gain in a reward/penalty paradigm
(Strizke, Trommershauser & Gegenfertner, 2009; Ackermann & Landy, 2013; Schutz,
Trommershauser & Gegenfurtner, 2012), nor do they fully incorporate the decrease in
visibility with target eccentricity (Zhang, Morvan & Maloney, 2010). Furthermore, saccades
are grossly inefficient in tasks requiring a sequence of eye movements to gather information
about multiple targets (Verghese, 2012). Here we investigate conditions that may lead to
improvements in the efficiency of active visual search for an unknown number of targets.

The current study is based on the Verghese (2012) study that used 6 potential target
locations and a limited time for active visual search. Here, the observer’s task is to find an
unknown number of targets embedded in noise. As trial duration is limited and there is not
sufficient time to examine all potential target locations, an efficient strategy within a
Bayesian information-maximization framework is to saccade to a location that maximizes
the information gained across all target locations (Najemnik & Geisler, 2005, Renninger et
al, 2007). For instance, a saccade directed midway between 2 uncertain locations increases
the information at both locations, compared to a saccade that goes directly toward one of the
target locations. However, our studies (Verghese, 2012) show that human saccades are not
directed at locations that maximize global information, but are directed at potential target
locations. But even this local strategy is not efficient; observers make saccades to locations
where the posterior probability is high (probable locations), rather than to informative
locations where the uncertainty (entropy) is high. Thus saccade strategy does not appear to
be efficient at either a global or a local level. But why are observers not able to implement a
local strategy that selects informative locations over probable target locations, where there is
little information to be gained?

Does this occur because the noise level was so high, that it is hard to distinguish the more
probable target locations from uncertain locations? Here, we investigate whether making the
probable target locations clearly visible minimizes the need to examine them and therefore
helps the observer direct saccades to more uncertain locations. In this study, the targets and
distractors were horizontal and vertical Gabor patches respectively, embedded in noise.
Because of the large orientation difference, the stimuli were clearly discriminable at high
signal-to-noise ratios (SNR). We used two levels of SNR in our experiment: low, and
moderate or high. The low level was set so that observers were uncertain about the
orientation of the patch and needed to make a saccade to the patch to determine the
orientation. The “moderate” level was set so that observers were reasonably confident about
target identity (>80%) without having to make a saccade. The first experiment indicated that
most observers did not look preferentially at uncertain locations.

We wondered whether increasing the discriminability between the two SNR levels (as in
Hooge & Erkelens, 1999) would make it easier to ignore the more discriminable stimuli and
select the more uncertain stimuli. Accordingly, in subsequent experiments we set the “high”
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SNR to near infinity by removing all the noise. This manipulation increased the number of
saccades to the uncertain targets. However some observers still tended to make short-latency
saccades to the clearly visible horizontal targets. To determine whether delaying saccades
would give observers the time necessary to determine the most uncertain locations we asked
observers to hold fixation briefly after display onset. Delaying saccades helped some
observers make more efficient saccades. Others, however, still attempted to make saccades
to as many locations as possible without selecting uncertain locations.

Methods

Participants

Five (4 female, 1 male) individuals, ranging in age from 27 to 50 voluntarily took part in our
experiments. Two observers were authors (O1 and O2); the other three were naive as to the
purpose of the experiment. Observer O3 had participated previously in psychophysical
experiments, observers (O4 and O5) were practiced at psychophysical and eye movement
experiments. All observers had normal vision or vision corrected to normal, and provided
informed consent, in writing, to participate in the experiments. The Smith-Kettlewell
Institutional Review Board approved the experimental protocol. All experiments were
carried out in accordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

Stimuli

The basic design of the experiment was similar to Verghese (2012). Stimuli were presented
on 21” ViewSonic G225f monitor that was gamma-corrected. Observers viewed the display
binocularly at a distance of 1m, such that a pixel subtended 0.02°. In this study the stimuli
were made up of six Gabor patches equally spaced on an invisible circle centered at fixation
with a radius of 3 deg (see Figure 1). To avoid placement of targets along cardinal axes,
stimuli were placed at 60° angular intervals starting at 15° counter clockwise from right
horizontal (i.e., at 15, 75, 135, 195, 255 and 315 degrees around the circle). Targets were
horizontal Gabors, and distractors were vertical Gabor patches. The spatial frequency of the
sine wave in the Gabor was 5 c/deg and the standard deviation of the Gabor envelope was
set to spatial period/ A2, or 0.14 °. This resulted in about 1.5 cycles of the grating being
visible. Random noise of contrast 0.38 was added to the patches at each location. Each patch
was 1° in diameter. The Gabors were displayed in cosine (even) phase and the contrast of
the sinusoid was randomly set to one of two values— 0.19 and 0.38 in Experiment 1,
corresponding to low and moderate SNR values of 0.5 and 1 respectively. In Experiments 2
and 3 the noise was removed from the higher-contrast patch, taking the signal-to-noise ratio
towards infinity. Each of the six locations had equal probability of being assigned a lower or
higher SNR signal, regardless of whether it was a target or distractor.

Design

Each location had an independent probability of having a horizontal target. This probability
was held fixed within a block of 100 trials and was set to one of three values: 0.17, 0.5, or
0.83. Participants were informed about the value of the prior before each block. Viewing
was binocular. Monocular (left) eye movements were monitored with an Eyelink 1000. A
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block of experiments began with an eye-tracker calibration using a 5-point grid. At the start
of each trial, the observer was required to fixate a central fixation dot and press the space bar
to initiate the trial. The trial was initiated only if eye position was within 1° of the fixation
dot. Observers were free to move their eyes once the trial started. Display duration was
limited to 900 ms. The central fixation dot remained visible throughout the trial except in
Experiment 3, where it disappeared 200 ms into the trial. At the end of the trial observers
were presented with a report screen with gray discs marking the location of the six stimuli
and had to indicate all target locations by clicking on them. A trial was scored correct only if
all targets and no distractors were selected. The observer had the option to click a “Forgot”
button if he/she could not remember the location of the targets. These trials were rare (<5%)
and were not analyzed further. Auditory feedback was provided.

Before the main search experiments, we determined the ability of observers to discriminate
horizontal from vertical Gabor patches. Observers were asked to identify the orientation
(horizontal/vertical) of single Gabor patch presented at one of 5 SNR values. The patch was
presented for 100 ms followed by a mask, in a known location at an eccentricity of 0, 1, 2 or
3 degrees to the right of fixation, along the horizontal meridian. This measurement also
provided a visibility map for the target as a function of eccentricity, We chose SNR values
of 0.5 and 1 for Experiment 1 because these values satisfied our criterion for a pair of SNR
values for which visibility at an eccentricity of 3° was poor at the lower SNR, and was good
at the higher SNR. Figure S2 in Supplementary Materials shows the visibility plots for these
two SNR values: visibility declines considerably at 3° for an SNR of 0.5, but is high and
declines only slightly with eccentricity for an SNR of 1. Because we measured visibility
only along the horizontal meridian, it could be argued that our measurements don’t take in to
account horizontal-vertical asymmetries or enhanced visibility in the lower visual field
(Carrasco, Talgar, Cameron, 2001). However, Carrasco et al (2001) showed that these
anisotropies are not significant at the small eccentricity (3°) and low spatial frequency (5 ¢/
degree) used in our study.

Experiment 1 and 2 consisted of two parts. The first part determined the visibility of the
peripheral patches in the absence of eye movements, while the observer fixated the central
spot for 900ms. This no-saccade condition was repeated in separate blocks for each of the
three target priors. These data provided a realistic estimate of the visibility of these patches
in the context of the actual experiment using multiple patches, as opposed to visibility
measured with a single patch. In addition, measuring these values for different priors
provided an indication of how the probability of correctly discriminating the different
stimulus types is affected by the prior. The second part of the experiment allowed active
search with eye movements, and used the same sequence of trials as the no-saccade
condition, for a particular value of target prior. Thus the two parts of the experiment used
identical stimuli, without and with saccades, allowing us to determine how saccades
improved the visibility of stimuli. As mentioned before, Experiments 2 and 3 were similar to
Experiment 1, except that noise was removed from the higher contrast patch, and that a
200ms delay was introduced in Experiment 3 before the saccade-go signal. Observers were
asked to wait until fixation offset to initiate saccades. In all experiments, the value of the
target prior was kept fixed for a block of 100 trials.
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Model

A given patch was considered fixated if the saccade landed within 1.5° of the center of the
patch, i.e., the saccade was closer to that patch than to any other patch or to central fixation.
Saccades were defined as eye movements with a velocity of at least 30 °/s and fixations
were required to have a dwell time of at least 50 ms.

We analyzed performance in our experiments within a Bayesian information theoretic
framework as in Verghese (2012), but we restricted our analysis to two sub-ideal models—a
local entropy model and a maximum a posteriori (MAP) model. To summarize briefly, for
every trial, we computed the likelihood of a target at each location, and used Bayes rule to
combine it with the prior probability of a target for that block, to calculate the posterior
probability of the target at that location. We then determined the accuracy of the trial when
saccades targeted (i) locations with the highest entropy (largest uncertainty as in Legge et al,
1997, Lee & Yu, 2000; Renninger et al, 2007), or (ii) locations with the highest posterior
probability of signal (Beutter et al 2003, Najemnik & Geisler, 2005, Verghese 2012).

Specifically at each location i, we defined the posterior probability of the horizontal target
P(H]|r;), and the vertical distractor P(H|r;), in the following manner:

p(H)pi(ri|H)
p(H)pi(ri H)+p(V)pi(ri|V)

pi(Hl|ri)=

p(V)pi(ri|V)

Pi(V|’"i):p(H)pi(ri|H)—|—p(V)pi(7’z‘|V)

(¢))

The prior probability of the target P(H) and distractor P(V), sum to 1; i.e. P(H) + P(V) =1.
As in Verghese, (2012), we assumed that each location generated a response r; to a filter
matched to the target properties (orientation, spatial frequency and position centered on the
target location)!. The likelihoods, P(ri|H), P(ri]V) were computed by comparing the
measured response [ to the distribution of target and distractor, generated over 10,000
samples of noise at that particular SNR (see Figure 2). These template response distributions
were Gaussian, with a standard deviation of 1. The mean of the target distribution depended
on SNR and was 10.3 and 15.2 at SNR values of 0.5 and 1 respectively. The mean of the
distractor distribution was 8.2 regardless of SNR. The distractor has a non-zero mean
because the stimulus defined as gamma-corrected luminance values and the template was
cosine phase and hence contained a DC term.

Consistent with (Cover & Thomas, 1991), the entropy at a location i was defined:

entropy;= — (p;(H|r;)In(p;(H|r;))+pi(V]r)n(p:(V]r:)) @

IThis is a sub-ideal search template. The ideal template for discrimination is the difference of the target and distractor templates.
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In this study, we compare the observer’s performance to model strategies that direct
saccades to stimulus locations. This choice is a “local” model motivated by the fact that
observed saccade distributions in our previous work and in this study are typically clustered
around stimulus locations rather than a global model that considers all potential fixation
locations in the display (as in Najemnik & Geisler, 2005; Renninger et al, 2007). Figure S1
plots the saccade distribution of 5 observers and shows that observers’ saccades are directed
towards target locations.

Before the trial was initiated, the probability of a target at each location was set to the value
of the prior. After the display came on, the likelihood of a target at each location was
calculated by comparing the response of a matched horizontal filter to the distribution of
responses to target and distractor. The posterior was updated by multiplying the likelihood
by the prior. The model then chose saccade locations according to the Maximum a posteriori
(MAP), local entropy, or random strategy. When the model followed the MAP strategy, it
selected locations in descending order based on the posterior probability, starting with the
location with the highest posterior probability, and fixated these locations in turn. Thus, this
model selected locations on the basis of how probable the target was at that location. When
the model implemented an entropy strategy, it chose locations in the order of decreasing
entropy. Entropy is maximum when uncertainty is maximum, i.e., when the posterior
probability of target and distractor at a location are equal. Conversely, entropy is zero when
the posterior probability of either target or distractor is 1. We also considered the predictions
of a model that selected locations at random, with the constraint that each location was
selected only once. For the comparison between models in Figure 3, we ignored the
observer’s internal noise, but for comparison between model and observer in Figure 5, we
incorporated internal noise estimated from the measured discriminability between target and
distractor into the response distributions.

To generate model predictions to compare the performance of the three models, we made a
few simplifying assumptions. Ideally the posterior should be updated after each saccade. But
previous work suggested that observers did not incorporate knowledge from one saccade
before planning the next saccade (Renninger et al, 2007, Figure 8B) particularly when the
intersaccadic interval is short as in Caspi, Beutter, Eckstein, (2004). The average
intersaccadic interval in our study was much shorter than the typical 200 to 300 ms between
saccades—the interval between the first and second saccade was 177 + 8 ms and that
between second and third saccades was 156 + 2 ms. We therefore assumed that locations for
potential saccades are selected based on initial posteriors estimated from central fixation and
that all saccades are planned before the execution of the first saccade. We also made a
further assumption regarding unsaccaded locations. Because each stimulus location was 3°
away from its nearest neighbor and from the central fixation dot, and because observers
typically made saccades towards these locations rather than between them, we assumed that
a saccade to a particular location only improved the visibility at that location and not at any
other location. We assumed that the model discriminated the stimuli perfectly at saccaded
locations (This aspect of the model applies only to the model predictions in Figure 3 and not
to version of the model based on individual observers’ discriminability in Figure 5). At the
end of the trial, the model selected all locations where the posterior probability of the target
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was greater than 0.5. Proportion correct for a trial was computed by comparing model
choices to the true target locations in that trial. A trial was deemed correct if the model
correctly selected all target locations and discarded all distractor locations.

Figure 3 compares model predictions of the three strategies. Proportion correct at identifying
all the targets in a trial are plotted as a function of the number of saccades, for different
values of prior probability. For each strategy, the model chose saccade locations based on
the Bayesian framework outlined above. The left, middle, and right panels show
performance for prior target probability set to 0.17, 0.5 or 0.83, respectively. In each panel
the green, red and blue curves show the predicted accuracy of the Entropy, MAP and
Random strategies. Clearly the probability of correctly identifying all the targets in a trial
depends both on the number of saccades, and on the prior probability of the target. In
general, proportion correct increases with the number of saccades. If we focus on
performance with 2-3 saccades (the average number of saccades in a trial across our
observers), the prior probability of the target has a profound effect on performance for each
of the strategies. For all values of target prior, the entropy strategy produces the highest
proportion correct. When the prior is low (0.17) and targets are relatively rare, the MAP
strategy (blue) does almost as well as the Entropy strategy (green). However, as the prior
increases the MAP strategy becomes increasingly inefficient. When the prior probability of
the target is 0.83, the MAP model performs worse than the random model (red). Thus the
Entropy strategy is clearly more efficient than the MAP strategy when targets are frequent.
Do our observers incorporate this more efficient saccade strategy?

To generate trial-by-trial model predictions for each observer, the model made the same
number of saccades as the observer did on a trial, but selected locations based the MAP,
Entropy, or Random strategy. To compare model and human performance, we incorporated
each observer’s visibility map (internal noise) into the model prediction. (See S2 in
Supplementary Materials. As we do not have a visibility map for OS5, we used the average
visibility map from the other 4 observers to predict her data.) To incorporate the observer’s
internal noise, we increased the standard deviation of the templatebased target and distractor
distributions to match the observer’s d’ at 3° eccentricity, for that SNR. We drew a sample
from the modified target distribution at target locations, and from the modified distractor
distribution at distractor locations. We then calculated the likelihood of target and distractor
based on this sample. After multiplying the likelihood by the prior, we used the posterior
probabilities at each location to determine which locations to fixate. At the start of the trial,
locations were chosen in the order of decreasing entropy in the uncertainty reduction model
and in the order of decreasing posterior probability of target for the MAP model. No updates
occurred during the trial. At the end of the trial, the actual discriminability at each location
was determined by individual observer discriminability at saccaded and non-saccaded
locations. The d’ at saccaded locations was set to the d’ at the eccentricity of the nearest
fixation; at non-saccaded locations we substituted the average discriminability measured in
the no-saccade version of the experiment, at the corresponding value of SNR and prior. We
did not take the particular location of the target into account, because we do not find strong
evidence for anisotropy: the discriminability difference between the upper and lower visual
field was marginally significant (p=0.058) at an SNR of 0.5, but not significant for SNR of
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1. There was no significant difference between locations near the horizontal and vertical
meridians for either SNR. We believe the use of each observer’s discriminability estimated
from identical stimuli in the no-saccade condition is a significant improvement over the
hypothetical distributions used to generate model predictions in Verghese (2012).

Experiment 1: Multiple-target search with noisy targets

The first part of the experiment measured observers’ performance in the absence of
saccades. Observers fixated the central fixation spot for the duration of the trial (900 ms)
and then selected locations that contained the target. Fixation was monitored and trials
where eye position deviated by more than 1° were discarded. The no-saccade condition was
repeated for all three values of stimulus prior, in separate blocks. These measurements
provided baseline visibility for all the 4 stimulus types (low/moderate SNR for target/
distractor) in the context of the experiment with multiple stimuli, for each observer, and
were used in the model predictions to determine presence/absence of the target at un-
saccaded locations.

The second part of the experiment measured performance following active visual search for
900 ms on stimuli identical to those presented in the no-saccade condition, presented in the
same sequence. We first analyzed these data is to determine whether saccades select
probable (MAP) or uncertain (entropy) locations. We compared how many observed
saccades in a block of trials were compatible with model predictions that included internal
noise. For example, if the observer made 3 saccades in a trial, we compared the fixated
locations to the 3 most uncertain (highest entropy) locations and to the 3 most probable
(highest posterior probability) locations selected by the models. The number of entropy
(MAP) saccades the observer made in a trial corresponded to how many of the observer’s
fixated locations matched the respective model choices. The leftmost panel of Figure 4
shows saccade strategy in Experiment 1 as a ratio of saccades that selected uncertain versus
probable locations as a function of target prior. If observers were efficient they would direct
their saccades to more uncertain locations when the target was more frequent. Considerable
variability among observers is evident. One experienced observer (and author) O2 shows a
greater ratio of Entropy to MAP saccades when the target prior is 0.83. Others have the
same proportion of Entropy to MAP saccades for all target priors, with a ratio close to 1
(dashed line). On average (thick line) the ratio was not significantly different than 1 (F(2,8)
= 1.96, p = 0.203), suggesting that observers use these two strategies equally often.
Importantly in this Experiment, the ratio is not lessthan 1 as it was in Verghese (2012)
where observers made saccades preferentially to probable target locations when the prior
probability of target was higher. One possible reason for this difference is that half the
stimuli (on average) had higher SNR, making them more visible. Another possible reason is
that it was easier to identify stimulus locations in this study because noise was not uniformly
distributed within the central display region, but confined to distinct stimulus patches.

We also analyzed individual accuracy on the task and compared it to a model that makes the
same number of saccades on a trial and uses discriminability measured in the nosaccade
condition (for that observer) to judge the presence of a target at non-saccaded locations. The
data for Experiment 1 are shown in the leftmost column of Figure 5 where each of the five

Vision Res. Author manuscript; available in PMC 2016 August 01.



1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Ghahghaei and Verghese Page 9

rows shows data for one observer. The black symbols show observed performance (error
bars show 95% binomial confidence intervals), and the green, blue, and red lines show the
model predictions for the Entropy, MAP, and Random strategies, respectively. We first
compare the data at different prior levels to model predictions and then compare overall
performance across all priors to the model. The Entropy and MAP model predictions are
similar for low priors, but diverge as prior increases, with the entropy strategy predicting
significantly better performance at a prior of 0.83. The Random strategy is worse than these
two strategies at low values of prior, but is better than the MAP strategy at a prior of 0.83.

If we look at the data across all observers, we see that trial accuracy is best when targets are
rare at a prior of 0.17, declines considerably when targets and distractors are equally
probable at a prior of 0.5, and improves slightly when targets are frequent at a prior of 0.83.
If we look at the data of individual observers and compare these to model predictions based
on each person’s individual visibility, it is clear that observers differ considerably.
Observers 1 and 2 (authors and most practiced observers) have performance consistent with
the entropy strategy (green) when targets are rare and frequent (priors of 0.17 and 0.83).
When targets and distractors are equally likely at a location (prior=0.5), their performance
falls short of the entropy prediction. Across all values of prior, only O2’s data are well fit by
the entropy model. Table 1 shows y2 values for the fit of each model to observer data, with
models that are not rejected shown in bold. Models with a ¥2>5.99, the critical value for
p=0.95 and 2 degrees of freedom, are rejected.

In general, observers 3, 4, and 5 perform worse than the entropy model. Their performance
is close to the entropy/MAP prediction when targets are rare (prior=0. 17)2, and lie between
the MAP and entropy predictions when targets are most frequent (prior=0.83), consistent
with their saccades selecting probable and uncertain locations equally often. For these three
observers, performance is closest to the prediction of a random model) when targets and
distractors are equally likely at each location (prior=0.5). One possibility is that this
condition is susceptible to memory demands because observers have to remember which
three of the six patches (on average) are targets. This is perhaps more demanding than
remembering the few locations that have targets when the prior is low, or the few locations
that don’t have targets when the prior is high. Table 1 shows that in the case of O4, both the
Random and MAP models are not rejected. We used the Akaike Information Criterion
(Burnham & Anderson, 2002) to calculate the relative likelihood of each model and
determine which is a better fit to the data (see Supplementary materials). In this case, the
AIC strongly favors the Random model.

It is possible that observers could not readily determine which patches had lower SNR, and
were therefore not able to direct saccades to these more uncertain patches. To examine this
possibility, we conducted a control experiment to measure the discriminability of the patches
with lower SNR from patches with higher SNR. Two SNR values were chosen for each trial,
with one of them always set to the lower SNR value used in Experiment 1. The display

1duosnuep Joyiny

203’s accuracy appears to be better than model predictions based on her visibility functions (see Supplementary Materials),
particularly for prior=0.17. This is likely because the visibility of the stimuli measured in brief (100 ms) presentation underestimates
the visibility in the experiments.
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duration was brief (100 ms) with the two patches presented to the left and right of fixation at
an eccentricity of 3°. Observers were asked to ignore the orientation of the Gabors, which
were equally likely to be horizontal or vertical, and simply judge whether the patch on the
left or the right contained the low-SNR target. Fixation was monitored and trials where eye
position deviated by more than 1° were discarded. Four of our 5 observers participated in
this control experiment.

Figure 6 plots the average discriminability across observers as a function of the higher SNR
value. It is clear that the two SNR values used in Experiment 1 were discriminated only
about 82% of the time. We wondered whether saccades would consistently select the more
uncertain (lower SNR) target if we made the pair of SNR values in the experiment perfectly
discriminable, by removing all the noise from the higher SNR stimuli (rightmost point in the
Figure 6).

Experiment 2: Multiple-target search with clear and noisy stimuli

The goal of this experiment was to determine whether presenting observers with two classes
of clearly discriminable stimuli (with and without noise) would help direct saccades to the
noisy, uncertain stimuli. This experiment was identical to Experiment 1 except that the
higher SNR patches had no added noise. As before, we first measured performance in a no-
saccade version to obtain an estimate of visibility of the 4 stimulus types when they were at
a distance of 3° from fixation and no saccade was made to them.

We then measured performance when eye movements were allowed to the same stimuli. The
middle panel of Figure 4 shows saccade strategy as the ratio of saccades that selected
entropy locations relative to MAP locations. The ratio is close to 1 when targets are rare,
consistent with the similarity of the model predictions for a target prior of 0.17. When
targets and distractors are equally likely (prior =0.5), most observers still make a similar
number of entropy and MAP saccades, but when targets are frequent (prior = 0.83), most
observers now show a slight preference for entropy locations. Thus, increasing the
discriminability between clear and noisy targets did not significantly increase the proportion
of saccades to uncertain locations.

If we examine the overall trial accuracy (probability of finding all the targets) in this
Experiment, the panels in the middle column of Figure 5 show that overall accuracy is
roughly similar to that in Experiment 1 even though the orientation of the Gabor is now
clearly visible in half the stimuli. This result indicates that it is the discriminability of the
lower SNR patches that is driving the overall accuracy; the average d’ across observers at
the lower SNR was 1.28+0.40, and for the higher SNR was 2.73+0.58. The crucial question
is whether making the noisy stimuli clearly discriminable from the clear stimuli causes
performance to be closer to the entropy model. The answer depends on the observer. Table 2
shows that across all values of prior, the performance of O2 is consistent with the entropy
prediction, that of O1 and O4 with the random model, and that of O5 with the MAP
prediction.

In related studies (Verghese & Ghahghaei, 2012; Janssen & Verghese, 2015) we looked at
choice of saccade goal vs. saccade latency and noted that longer latency to the first saccade
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was correlated with a greater proportion of saccades to uncertain locations. This outcome
indicates that planning saccades to uncertain locations takes time, compared to making
saccades to locations that look most like the target. We wondered whether delaying the first
saccade would improve saccade efficiency in this study.

Experiment 3: Search with Delayed Saccades

This experiment examined the effect of delaying the first saccade on the choice of saccade
goal. The experiment was identical to Experiment 2, except that the fixation spot was on
only for the first 200 ms. Offset of the fixation spot was a saccade-go signal. Observers were
allowed to move their eyes freely for the next 700 ms, resulting in a total display duration of
900 ms, as before. Although observers were asked to wait until the fixation spot disappeared
before initiating saccades, we analyzed all trials even if the first saccade was made before
the central fixation spot disappeared.

As the SNR levels were identical to Experiment 2, we did not conduct a no-saccade version
of Experiment 3. As expected, introducing a fixation delay increased saccade latency for 4
out of 5 observers. O5 seems to have ignored the instructions to hold fixation for the first
200 ms. The latency of the first saccade, averaged over prior, was 505ms, 310ms, 375 ms,
388ms and 155ms for O1, 02, O3, O4 and OS5, respectively. An analysis of fixation choice
shows that some observers made a greater proportion of entropy saccades in Experiment 4
(Figure 2, rightmost panel). Observers 1, 2, and 3 consistently made entropy saccades at all
target priors, and increased the proportion of entropy saccades with target prior. Observers 4
and 5 did not change their saccade strategy.

Individual observer accuracy in this experiment (Figure 5) shows that when targets were
frequent (prior=0.83) and saccades to uncertain locations would have conferred the greatest
advantage over saccades to probable locations, observers O1 and O2 did as well as the
entropy model prediction, whereas observers O3, O4 performed close to the prediction of
the MAP model, and observer 05’s performance was in between the entropy and random
models. Table 3 shows that performance in the task was consistent with individual saccade
strategy for all observers except O3. Her saccades selected entropy locations, but her
accuracy was not consistent with the Entropy model. We investigated whether the
discrepancy was because she could not remember the exact target locations when there were
many targets. But this was not the case. Her accuracy is poor when targets are rare and when
targets are frequent. Overall it appears that each observer uses a specific strategy to perform
the task. We examine these strategies in the section Further Analyses, below.

Further Analyses

Relation between efficient saccades and prior

Figure 3 shows that when 2 or 3 saccades are made per trial, the predicted model accuracy
based on an Entropy strategy is better than that based on a MAP strategy, particularly when
the target is more frequent. How well did observers incorporate the prior probability of the
target into their saccade strategy? Did our experimental manipulations across experiments 1,
2 and 3 affect observer’s strategy? A 3 (Experiments: 1, 2 and 3) x 3 (prior: 0.17, 0.5 and
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0.83) repeated-measures ANOVA on the Entropy-to-MAP saccade ratio revealed an
interaction between experiment and prior (F(2,8) = 5.34, p = 0.034). Breaking down this
interaction across different experiments revealed that the effect of prior was significant only
in Experiment 3 (F(2,8) = 5.73, p = 0.029): the ratio increased significantly with prior in
Experiment 3. This significant effect is mostly driven by the results of O1, O2 and O3 who
showed an increase in the ratio with prior (Figure 4). For these observers, when the choices
were clear and the first saccade was delayed, the prior significantly affected their saccade
strategy with a greater proportion of saccades made towards uncertain than probable
locations at higher values of the prior.

Relation between efficient saccades and saccade latency

The most consistent result in our study, across observers and experimental conditions, is that
a longer latency for the first saccade is associated with a greater proportion of saccades to
uncertain locations. Figure 7A plots the ratio of saccades to uncertain locations relative to
those to probable target locations versus the latency of the first saccade. For each prior, we
show data for all 5 observers across 3 experiments (15 points in all). The slope of the
regression line is positive and significantly different from zero for target priors of 0.5 and 0.
83 (p<.01 and p< 0.001, respectively). When targets are rare (prior=0.17), the slope is
positive but only marginally significant (p=0.06). Thus, it is clear that when observers took
longer to initiate saccades, those saccades preferentially selected uncertain locations. This is
consistent with the choice of uncertain locations being a more deliberate strategy. The
longer latencies associated with more efficient saccade strategies is consistent with the
relative “neural computing time” required by the various saccade strategies. The MAP
strategy perhaps requires less computation than the entropy strategy, which is a less complex
computation than the full Bayesian model (Najemnik & Geisler, 2005, 2008, 2009).

Relation between efficient saccades and accuracy

The predictions in Figure 3 indicate that overall accuracy in a condition should increase
when observers make saccades to higher entropy locations. The relation between efficient
saccades and accuracy is not apparent in the individual data panels in Figure 5. We therefore
plotted each observer’s accuracy with respect to their Entropy-to-MAP saccade ratio, as
shown in Figure 7B. We plot the data for each value of prior separately. Accuracy is
positively correlated with making more entropy saccades. The slopes for target priors of
0.17 and 0.5 are not significantly different from zero, but the slope for a target prior of 0.83
is marginally significant (p=0.053). A within-subject ANOVA shows that there is an effect
of prior on proportion correct (F(2,8)=13.82, p=0.003). Pairwise comparisons with
Bonferroni correction showed accuracy was significantly different between priors of 0.17
and 0.5 (p<0.001) and marginally different between priors of 0.17 and 0.83 (p=0.09). There
was no difference in accuracy between priors of 0.5 and 0.83. If we combine the data across
priors of 0.5 and 0.83, there is a significant correlation between accuracy and Entropy-to-
MAP Saccade ratio (R=0.475, p<0.01), indicating that saccades to uncertain locations
improve accuracy when there are multiple targets.

Another very clear trend is that each observer has a consistent saccade strategy. Observers 4
and 5 made as many saccades as possible, with the shortest latency to initiate saccades (see
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Figure 8B), and were less selective about target location, resulting in Entropy-to-MAP
saccade ratios close to 1. In fact 05 had a stereotyped pattern of saccades, starting at the top
or top left, and moving counter-clockwise to fixate as many locations as possible. This
tendency was undiminished across the three experiments (see supplementary figure S1).
Observer 2 consistently made longer-latency saccades that selected uncertain locations,
while Observer 1 and 3 tended to make more uncertain saccades in Experiments 2 and 3.
The trend for saccades to have longer latency when they select informative locations is
consistent with other studies that show that shorter latency saccades are dominated by
salience and that it takes longer for saccades to be directed to a less salient target or to
incorporate reward (Donk & Van Zoest, 2011; Schutz et al, 2012; Janssen & Verghese,
2015). It is important to note the difference between the results of the current study and
those of Verghese (2012) where none of the observers, even non-naive observers with
considerable practice, made saccades preferentially to uncertain locations. Here we see that
the authors (O1 and O2) and to some extent naive observer O3 are able to direct saccades to
uncertain locations because these locations are easier to identify. Thus, in this less
demanding situation, it is possible with deliberation to plan an efficient course of action.

Tradeoff between humber of locations visited and a selective saccade strategy

Setting aside all of the theory behind informative saccades, are there multiple strategies that
achieve equivalent performance on the task? Given that selecting informative locations is
time-consuming, can observers do as well or better by being less selective and visiting as
many locations as possible? To address these questions we replot the data from Figure 5
averaging each observer’s accuracy across the three experiments for each value of prior
(Figure 8A). Alongside, we plot the average number of saccades as a function of target prior
(Figure 8B). The same symbols refer to specific observers as in Figure 3 and 7 (the colors
are added to more easily identify observers). It is clear that O4 and O5 who tend to make the
most number of saccades (Figure 8B) perform quite well when the target prior is low. We
also know from Figure 3 that O4 and OS5 have an Entropy-to-MAP saccade ratio close to 1,
which means that they have no preference for uncertain over probable locations. Thus it
appears they are making as many non-selective saccades as possible during the 900 ms
display. Furthermore, the distribution of their saccades shows a preference for locations in
the upper field. As the targets are randomly distributed, their preference for these locations
makes their saccade choice only as good as a strategy that selects locations randomly. This
strategy does have an impact on performance when targets are frequent (prior=0.83),
because they do not make enough saccades to cover both clear and noisy targets. In
comparison O2, who consistently makes the fewest saccades and selects uncertain locations,
has high trial accuracy at all values of the prior, including when targets are frequent. The
cost of unselective saccades is most apparent at high values of target prior. Thus, making
many saccades does not improve performance over making more deliberate saccades to
obtain information.

Observer’s goal: foraging or finding all targets?

There is another possibility — observers who do not select informative locations may be
making saccades to confirm the presence of a target. As in foraging for food, they might
want to reach likely targets first, before trying to find all the targets. To investigate this
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possibility we compared average discriminabiliity in the saccade version of Experiments 2
and 3 to the discriminability in the no-saccade condition. Our objective here is to determine
whether overall discriminability improved in the saccade condition. If observers made
saccades to MAP locations, where the discriminability was high even without a saccade,
then there would not be a significant increase in d’, compared to the no-saccade condition.
However, if the observer made a saccade to high entropy (informative) locations, then the
increase in d” would be higher. We calculated d’, the ability to discriminate horizontal target
from vertical distractor from the average number of hits and false alarms (across all six
locations for all 100 trials in the block) for each value of target prior. Because we used
identical trials in the saccade and no-saccade conditions, there are no differences in
orientation, contrast or placement of stimuli. Therefore the only changes in discriminability
are due to the saccade. Figure 9 plots the data from the saccade and no-saccade conditions as
filled and open symbols, respectively, in separate panels for each observer. For 4 out of 5
observers, saccades improve discriminability when targets are rare (prior=0.17). However
only observers O1 and O2 show increased d’ in the saccade condition when targets are
frequent (prior=0.83). This result is consistent with the previous comparison of overall
accuracy to the entropy model prediction showing that these two observers direct saccades
to informative locations. Observers O3, and O4 direct their saccades to higher-visibility
target locations, resulting in no improvement in d° when targets were frequent. Observer O5
has a very conservative criterion in the no-saccade condition and has no false alarms.
Because of this strategy, her d’ is pegged at the maximum for the no-saccade condition.
Thus it appears that naive observers adopt a saccade strategy directed at confirming target
presence at probable locations, rather than finding all the targets in the display.

Discussion

We set out to determine how observers selected saccade targets in a visual search task with
an unknown number of targets. The time for active search was limited and correct
performance depended on finding all the targets, so efficient search required directing
saccades to locations where more information could be gained. This strategy was
particularly important when the probability of targets was high. In the context of our
experiments, efficient visual search involved saccades towards uncertain stimuli but
observers differed in their ability to direct saccades to these stimuli. The most practiced
observer, O2, consistently made saccades to uncertain locations, but two naive observers
seemed to choose equally between uncertain and MAP locations and generate as many
saccades as they could within the 900 ms interval.

Comparison to single-target search

Even though most observers do not select uncertain locations, they perform as well as the
Entropy model when targets are rare (prior=0.17). This condition is the closest to single-
target search although there is a difference. When the prior probability of the target at a
location is set to 0.17, the frequency of 1-target trials is the highest, although there could be
anywhere from 0 to 6 targets on any given trial. Therefore our results are consistent with
other studies showing that accuracy in visual search for single targets is efficient. Of course
it is difficult to distinguish the MAP and entropy models for single/rare targets, because the
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locations selected by the models often overlap. Our fixation analysis suggests that observers
on average did not select uncertain locations when targets were rare, but Najemnik and
Geisler (2008) show that the pattern of fixations for a single target in 1/f noise is indeed
consistent with an entropy model that chooses local regions of high entropy. On the other
hand, Rao et al (2002) and Beutter et al (2003) show that saccades in a single-target search
targeted MAP locations.

Saccade efficiency

While searching for an unknown number of targets, observers show biases in eye movement
behavior consistent with maximizing information. For example, saccades are biased to upper
visual field locations to compensate for the poorer sensitivity in this region (Najemnik &
Geisler, 2009). In addition, saccades tend to be hypometric, so that the parafovea is not
wasted on the edges of the display (Renninger et al, 2007). But beyond these general
adaptations, naive observers in our task do not make saccades to locations where they will
gain the most information. This is perhaps because observers have had little experience with
situations where they need to gather visual information from multiple locations under time
pressure. In the real world, moving the eyes toward salient targets (Itti & Koch, 2005, Itti &
Baldi, 2009), or probable target locations (Zelinsky, 2008) is adequate for many tasks.
Practice with multiple-target search seems to make saccades more efficient as the most
practiced observer is the only one who consistently made saccades consistent with the
entropy strategy. It is possible that individuals who are experts at monitoring multiple
targets including action video game players, quality control inspectors on an assembly line,
recycling plant workers who sort mixed recycling streams, and subsistence hunters, will
make more efficient saccades.

While there are several studies that show that maximizing the information gained with every
fixation is an optimal way to gathering information with a foveated system, (Legge, Klitz,
and Tjan 1997; Lee & Yu, 2000; Raj, Frazor, Geisler & Bovik, 2005; Butko and Movellan,
2010), fewer studies have compared these models to human performance. One counter-
example is reading where Legge, Hooven, Klitz, Mansfield, and Tjan (2002) showed that
that the characteristic eye movement patterns such as skipping small words, fixating the
center of words, and backward saccades were consistent with the eyes moving to
informative locations. In their case the specific task was to identify the upcoming word from
a fixed lexicon of words. However they did not perform a saccade-by saccade analysis of
eye-movement patterns, so it is not clear that each fixation was optimized to gather
maximum information.

Another example of a task that benefits from selecting informative locations is object
recognition (Renninger, Verghese and Coughlan, 2007). In their study Renninger et al
(2007) had observers examine a novel silhouette with eye movements in a limited time, and
then had them distinguish this silhouette from a similar silhouette. The fixation locations of
observers in this task appeared equally consistent with two models: a model that selected
salient locations, and a model that selected local regions with high entropy, but with a bias
toward the centroid of the shape. The authors argued in favor of the local entropy model
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because the distribution of model fixations across all shapes in the experiment resembled
observers’ fixation distributions more than did the salience model.

Finally, there is the example of face recognition. Peterson & Eckstein (2012) showed that in
a task where observers were asked to make a single saccade to a face to determine the
identity, gender or emotional state, they chose a location that maximized the information
necessary to make the judgment. It is interesting to note that the tasks in which humans
make saccades that are consistent with maximizing information are highly practiced tasks
that are ecologically relevant (face recognition and reading). For tasks such as visual search,
observers are typically searching for a single target, so they tend to direct saccades to the
most probable target location. They simply extend this search behavior, which is effective
for single targets, to the case of finding multiple unknown targets. They do so even when the
targets are quite visible, suggesting that there might be a confirmation bias in visual search.

Saccade planning is deliberate

Other studies have shown that short-latency saccades go to the salient stimuli, even if they
are distractors (Donk & van Zoest, 2011) and when they are not rewarded (Schutz et al,
2012). Thus it appears that the saccadic system might have evolved to respond quickly to
salient targets because they signal ecologically important stimuli such as ripe fruit through
salient color, or a predator through salient motion in the periphery. It is also clear that
saccades that incorporate task-relevant information take longer—whether the task is to find
the less salient target, to ignore the salient stimulus and find the rewarded stimulus, or to
find the most informative locations (Donk & Van Zoest, Schutz et al, 2012, Janssen &
Verghese, 2015). The current study shows that a strategy that preferentially selects
informative entropy locations is correlated with a longer latency for the first saccade. More
importantly, we were able to show that deliberately delaying the first saccade caused
observers to make a greater proportion of entropy saccades. Therefore it appears that it takes
time for saccades to incorporate task-relevant information, and to overcome the reflexive
tendency for saccades to target salient locations.

Conclusion

In the context of active visual search for an unknown number of targets in a limited time, we
investigated whether the choice of saccades locations combines bottom-up image-based
factors with the specific demands of a task. As there was only enough time to make eye
movements to a subset of possible target locations, we examined whether saccades adapt to
choose locations where the most information can be gained. In a sequence of three
experiments that made it progressively easier to identify informative locations, we found
that observers differed considerably in their saccadic strategy. Some made as many saccades
as possible without consideration as to whether these were to informative locations; others
made more informative saccades, particularly when the informative locations were easier to
identify and when targets were frequent. Less selective saccades were associated with
shorter latency and a greater number of saccades whereas saccades to more informative
locations were correlated with a longer saccade latency suggesting that the latter is a
deliberate strategy. Thus we show that efficient saccade planning takes time.

Vision Res. Author manuscript; available in PMC 2016 August 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Ghahghaei and Verghese Page 17

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by NSF grant BCS-0963914 and NIH grant RO1 EY022394 to PV. We thank Chris
Janssen, Suzanne McKee, and Natela Shanidze and two anonymous reviewers for helpful feedback on the
manuscript. We also thank Val Morash for advice on the statistical analysis.

References

Ackermann JF, Landy MS. Choice of saccade endpoint under risk. Journal of Vision. 2013; 13(3):27,
1-20. [PubMed: 24023277]
Araujo C, Kowler E, Pavel M. Eye movements during visual search: the costs of choosing the optimal
path. Vision Research. 2001; 41:3613-3625. [PubMed: 11718799]
Beutter BR, Eckstein MP, Stone LS. Saccadic and perceptual performance in visual search tasks. I.
Contrast detection and discrimination. Journal of the Optical Society of America A. 2003; 20(7):
1341-1355.
Burnham, KP.; Anderson, DR. Model Selection and Multimodel Inference: A Practical Information-
Theoretic Approach. 2nd ed.. Springer-Verlag; 2002. ISBN 0-387-95364-7.
Butko NJ, Movellan JR. Infomax control of eye movements. IEEE Transactions on Autonomous
Mental Development. 2010; 2(2):91-107.
Carrasco M, Talgar CP, Cameron EL. Characterizing visual performance fields: effects of transient
covert attention, spatial frequency, eccentricity, task and set size. Spatial Vision. 2001; 15(1):61-75.
[PubMed: 11893125]
Caspi A, Beutter BR, Eckstein MP. The time course of visual information accrual guiding eye
movements. Proc Natl Acad Sci U S A. 2004; 101(35):13086—-13090. [PubMed: 15326284]
Chukoskie L, Snider J, Mozer MC, Krauzlis RJ, Sejnowski TJ. Learning where to look for a hidden
target. Proceedings of the National Academy of Science. 2013; 110(2):10438-10445.
Cover, TM.; Thomas, JA. Elements of Information Theory. New Jersey: John Wiley and Sons
Hoboken; 2001.
Donk M, Van Zoest W. No control in orientation search: The effects of instruction on oculomotor
selection in visual search. Vision Research. 2011; 51:2156-2166. [PubMed: 21875612]

Hooge IT, Erkelens CJ. Adjustment of fixation duration in visual search. Vision Research. 1998;
38(9):1295-1302. [PubMed: 9666997]

Janssen CP, Verghese P. Stop before you saccade: Looking into an artificial peripheral scotoma.
Journal of Vision. 2015; 15(5):7. [PubMed: 26067525]

Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention.
Vision Research. 2000; 40:1489-1506. [PubMed: 10788654]

Itti L, Baldi P. Bayesian surprise attracts human attention. Vision Research. 2009; 49:1295-1306.
[PubMed: 18834898]

Lee TS, Yu S. An information-theoretic framework for understanding saccadic behaviors. Advances in
Neural Information Processing Systems. 2000; 12:834-840.

Legge GE, Klitz TS, Tjan BS. Mr. Chips: An ideal-observer model of reading. Psychological Review.
1997; 104:524-553. [PubMed: 9243963]

Legge GE, Hooven TA, Klitz TS, Mansfield JS, Tjan BS. Mr. Chips 2002: New insights from an ideal-
observer model ofreading. Vision Research. 2002; 42:2219-2234. [PubMed: 12207981]

Najemnik J, Geisler WS. Optimal eye movement strategies in visual search. Nature. 2005; 434(7031):
387-391. [PubMed: 15772663]

Najemnik J, Geisler WS. Eye movement statistics in humans are consistent with an optimal search
strategy. Journal of Vision. 2008; 8(3):4.1-14. [PubMed: 18484810]

Vision Res. Author manuscript; available in PMC 2016 August 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Ghahghaei and Verghese Page 18

Peterson MF, Eckstein MP. Looking just below the eyes is optimal across face recognition tasks.
Proceedings of the National Academy of Science. 2012; 109(48):E3314-E3323.

Raj R, Geisler WS, Frazor RA, Bovik AC. Contrast statistics for foveated visual systems: fixation
selection by minimizing contrast entropy. Journal of Optical Society of America A Opt Image Sci
Vis. 2005; 22:2039-2049.

Raftery, AE. Bayesian model selection in social research: With discussion. In: Marsden, PV., editor.
Sociological Methodology. Washington, DC: American Sociological Association; 1995. p.
111-195.

Rao RP, Zelinsky GJ, Hayhoe MM, Ballard DH. Eye movements in iconic visual search. Vision
Research. 2002; 42(11):1447-1463. [PubMed: 12044751]

Renninger LW, Verghese P, Coughlan J. Where to look next? Eye movements reduce local
uncertainty. Journal of Vision. 2007; 7(3):6, 1-17. http://journalofvision.org//7/3/6/. [PubMed:
17461684]

Schutz AC, Trommershauser J, Gegenfertner KR. Dynamic integration of information about salience
and value for saccadic eye movements. Proceedings of the National Academy of Science. 2012;
109:7547-7552.

Stizke M, Trommershauser J, Gegenfertner KR. Effects of salience and reward information during
saccadic decisions under risk. Journal of the Optical Society of America A. 2009; 26(11):B1-B13.

Verghese P, Ghahghaei S. Immediate feedback improves saccade efficiency. Journal of Vision. 2013;
13(9)

Verghese P. Active search for multiple targets is inefficient. Vision Research. 2012; 74:61-71.
[PubMed: 22929812]

Yarbus, AL. Eye movements and vision. New York: Plenum Press; 1967.

Zelinsky GJ. A theory of eye movements during target acquisition. Psychological Review. 2008;
115(4):787-835. [PubMed: 18954205]

Zhang H, Morvan C, Maloney LT. Gambling in the visual periphery: a conjoint-measurement analysis
of human ability to judge uncertainty. PLoS Comput Biol. 2010; 6(12):e1001023. [PubMed:
21152007]

Vision Res. Author manuscript; available in PMC 2016 August 01.



1duosnuey Joyiny 1duosnuey Joyiny 1duosnuepy Joyiny

1duosnuep Joyiny

Ghahghaei and Verghese

Vision Res. Author manuscript; available in PMC 2016 August 01.

Page 19



1duosnuey Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuep Joyiny

Ghahghaei and Verghese Page 20

A B

Figure 1.
Stimulus configuration. A. Stimuli used in Experiment 1. Horizontal Gabor targets and

vertical Gabor distractors were embedded in noise. The noise contrast was fixed but the
Gabor contrast was set to 0.19 and 0.38 resulting in stimuli of low and moderate visibility
stimuli. B. In Experiments 2 & 3, the moderate visibility stimuli were replaced by high-
contrast Gabor patches with no added noise.
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Figure 2.
Model stages: A. Before the trial begins, the probability of a target at each location is equal

to the prior probability, set to prior=0.5 in this case. The two-bar histograms at stimulus
locations thus show equal probability for target and distractor. B. The measurement stage
computes the response of a filter matched to the horizontal target at each location and
estimates the likelihood of the target by comparing the response to the corresponding
distributions to the target and distractor at the corresponding SNR. C. The posterior is the
product of prior and the likelihood at each location. The locations marked in blue and green
indicate the maximum a posteriori probability (MAP) and the highest entropy location,
respectively.
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Model performance (proportion of trials correct) as a function of the number of saccades for

different prior probabilities of the target. The model predictions are based on the assumption

that locations with saccades are discriminated perfectly and locations without saccades are

discriminated based on the response to a filter selective to the target.
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Figure 4.
The ratio of Entropy to MAP saccades is plotted as a function of prior probability for

Experiments 1, 2 and 3. The dashed line represents a ratio of 1. Different symbols show data
for different observers and the continuous line shows the average with error bars
representing the standard error across the 5 observers.
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o1

02

03

04

05

Proportion correct versus target prior. Each column plots data for a particular Experiment,

with Experiment 1 on the left, Experiment 2 in the middle and Experiment 3 on the right.

The rows plot data for individual observers. The black symbols represent accuracy in a

block of 100 trials with error bars showing the binomial 95% confidence intervals. The

green, blue and red lines represent the predictions of the entropy, MAP and Random models.
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Proportion correct versus the signal-to noise ratio of the higher SNR value in each trial. The
arrow represents the higher SNR value used in Experiment 1.
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Figure 7.
The relation of saccade strategy to latency and accuracy. A. The ratio of saccades to

uncertain locations relative to probable target locations is plotted versus latency of the first
saccade. The dashed line represents a ratio of 1. The open, gray and black symbols represent
data for target priors of 0.17, 0.5 and 0.83 respectively, and the corresponding lines are the
regression lines through the data. The lines have a slope significantly different from zero for
priors of 0.5 and 0.83. Each symbol represents the data of one observer for the 3
experiments. B. Accuracy vs. entropy-to-MAP saccade ratio. Accuracy is positively
correlated with a greater number of entropy saccades. The regression line has a positive
slope that is marginally significant for a target prior of 0.83.
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Figure 8.

Prior Probabity of Target

Comparison of accuracy and number of saccades. A. Accuracy (proportion of trials in which

all targets were detected) is plotted versus the prior probability of the target. Data are

averaged across the three experiments. B. The average number of saccades is plotted as a

function of target prior. The error bars plot the standard error of the mean across

experiments.
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Figure 9.

Average d’ for the saccade and no-saccade conditions as a function of the prior probability

of the target. The filled and open symbols represent data for the saccade and no-saccade

conditions, respectively.
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Table 1

2 values for the fits of each of the three models to each observer’s data in Experiment 1. Models that are not rejected (p 20.95) are indicated in bold. For
observer O4, the AIC strongly favors the Random model over the MAP.

Observer/Model | O1 02 03 04 05

MAP 3.69 | 944 | 17.8 | 426 | 111
Entropy 158 | 215 | 224 | 17.3 | 8.51
Random 148 | 6.07 | 22.7 | 2.77 | 25.0
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Table 2

2 values for the fits of each of the three models to the data in Experiment 2. Models that cannot be rejected at the 0.95 level are indicated in bold. If more
than one model satisfies this criterion, we calculate the AIC to determine which model is a better fit to the data (see Supplementary materials). For O1, the
AIC positively favors the random model, and for O4, it strongly favors the random model. For OS5, the AIC positively favors the MAP model.
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Observer/Model | O1 02 03 04 05
MAP 4.97 7.38 | 22.15 | 5.58 2.19
Entropy 34.39 | 1.37 | 30.38 | 17.99 | 36.35
Random 4.01 851 | 11.85 | 3.96 2.99
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Table 3

2 values for the fits of each of the three models to the data in Experiment 3. Models that cannot be rejected at the 0.95 level are indicated in bold. If more
than one model satisfies this criterion, we calculate the AIC to determine which model is a better fit to the data (see Supplementary materials). For O2, the
AIC strongly favors the Entropy model. The AIC positively favors the MAP model for O3 and compellingly favors it for O4.
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Observer/Model | O1 02 03 04 05
MAP 109.22 | 5.28 | 1.82 1.95 | 46.00
Entropy 6.64 1.76 | 1832 | 1545 | 8.49
Random 53.23 6.01 | 5.22 4.67 10.85
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