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Abstract

The 1D barcode is a ubiquitous labeling technology, with
symbologies such as UPC used to label approximately 99%
of all packaged goods in the US. It would be very conve-
nient for consumers to be able to read these barcodes using
portable cameras (e.g. mobile phones), but the limited qual-
ity and resolution of images taken by these cameras often
make it difficult to read the barcodes accurately. We pro-
pose a Bayesian framework for reading 1D barcodes that
models the shape and appearance of barcodes, allowing for
geometric distortions and image noise, and exploiting the
redundant information contained in the parity digit. An im-
portant feature of our framework is that it doesn’t require
that every barcode edge be detected in the image. Exper-
iments on a publicly available dataset of barcode images
explore the range of images that are readable, and compar-
isons with two commercial readers demonstrate the supe-
rior performance of our algorithm.

1. Introduction

The 1D barcode was developed as a package label that
could be swiftly and accurately read by a laser scanner.
It has become ubiquitous, with symbologies such as UPC
used to label approximately 99% of all packaged goods in
the US [1]. There is a strong demand for systems to read 1D
barcodes from images acquired by portable cameras (such
as on cell phones), but the 1D patterns are often poorly re-
solved by these cameras because of motion blur and an in-
ability to focus sufficiently close. A variety of 2D barcodes
have been designed that are much better suited for camera
acquisition [2, 3], but for the next several years 1D barcodes
will remain the dominant type of label for most packaged
goods.

There has been a variety of research done on algorithms
for reading 1D barcodes, which we survey briefly here.
Most past work has dealt with scanline data (typically ac-
quired by a laser scanner), using waveform analysis, deblur-
ring and other signal processing techniques to detect edges
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[4, 5, 6]. The approach in [7] is similar to ours in its use
of probabilistic HMM modeling, but it assumes that every
edge in the barcode is detected in the scanline data, which
is an assumption that we remove in our algorithm. (The
HMM approach assigns edge transition states to the entire
sequence of observed edges in a scanline, whereas our ap-
proach is a deformable template that uses hidden variables
to model the locations of each barcode edge, regardless of
which edges are visible.) Another difference is that our
approach jointly performs decoding and error correction.
There has also been work on reading 1D barcodes from im-
ages rather than laser scanner data, some of which uses 2D
analysis such as the Hough transform to detect edges [8].

Some recent work reports impressive accuracy [9, 10],
but the image datasets on which the algorithm were tested
are not yet available ([10] states that the data will be avail-
able to the public but this is not the case at the time of writ-
ing). However, we emphasize that the readability of a bar-
code image varies greatly depending on the image quality;
under some conditions (e.g. using a camera phone, which
has limited resolution and ability to focus close-up) many
images are blurry even when the photographer takes the im-
ages carefully. For instance, in [9] the barcodes are pho-
tographed at a resolution such that the module (width of
the narrowest bar) is about 4.5 pixels wide, which may be
too high a resolution to achieve consistently with a camera
phone. Therefore, it is crucial that the images used to evalu-
ate a barcode reading algorithm be made publicly available.

Our contribution is a Bayesian deformable template
model for reading barcodes that is robust to noise due to
non-uniform lighting, geometric and perspective distortion
and to missing edges and low resolution images. We have
posted our dataset online for public use, and plan to add to
the dataset as the project continues.

We have not yet tackled the problem of localizing bar-
codes in cluttered images, but there is work on this problem
[11, 9] that we will draw on in the future.



2. Bayesian Model

We have devised a Bayesian deformable template [12]
model of the barcode that combines prior knowledge of
barcode geometry, including the allowed configuration of
bars and allowing for geometric distortions, with evidence
for edges based on intensity gradients. Our model is also
strengthened by exploiting the checksum information em-
bedded in the barcode, which constrains the values of the
encoded digits, thereby allowing us to detect and correct
single-digit errors. In this paper we specialize to a particu-
lar symbology that is commonly used in North America, the
UPC-A, but we emphasize that our approach will generalize
straightforwardly to any 1D barcode pattern.

2.1. Barcode Structure

The UPC-A barcode (see Fig. 1) encodes a string of
twelve decimal digits (each digit is an integer from 0
through 9), where the last digit is a checksum that is a func-
tion of the previous eleven. The barcode pattern consists of
a sequence of black bars and white gaps between the bars
(we will refer to both as bars). There are 29 white and 30
black bars, giving a total of N = 60 edges. The edges
have alternating polarity, and from left to right the polarity
of edge i (where i = 1,..., N)is (—1)%. Each bar has one
of four possible widths: A, 2A, 3A or 4A, where A is the
modulus or fundamental width of the barcode.
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Figure 1. UPC-A barcode, encoding 12 digits.

Each digit value is encoded by a sequence of four bars
(with total width 7A). In addition to the twelve digit re-
gions, there are three 'guard’ regions in the barcode: the
start region (two black bars separated by a white bar) on
the left, the middle region separating the sixth and seventh
digits (three white bars separated by two black bars), and
the end region on the right (the same pattern as the start re-
gion). See Fig. 2 for an illustration of these regions. The
total width of the barcode is 95A.

The 60 edges in the barcode are classified into two cate-
gories, fixed and variable. Fixed edges are those associated
with the guard bands (also shown in Fig. 2), whose location

is independent of the encoded digits. Variable edges are the
edges in the digit regions whose locations define the digit

encoding.
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Figure 2. Fixed edges of UPC-A barcode
shown as dashed red lines. Labels on bot-
tom denote the guard regions and the 12 digit
regions between the fixed edges.

2.2. Model Basics

In this paper we assume that the bar code has been seg-
mented from the image, and that we know the approximate
orientation, which allows us to construct several scanlines
across the barcode. We first describe the model for a single
scanline cutting from left to right across the barcode; later
we will extend the model to multiple scanlines. In addition,
in later sections we will describe two variants of the basic
model, Model 1 and 2.

The scanline defines an = coordinate system, and the
intensity along the scanline is denoted I(z). The edge
strength e(x) is defined as the intensity derivative dI/dz.
Local maxima and minima of e(x) define the edge locations
in the scanline, and the first and last observed edge locations
spanning the entire barcode (of width 95A) are used to es-
timate A for the scanline. We denote all the information in
the scanline by S.

The locations of all N = 60 edges are denoted by the
sequence X = (x1,2,...,2xN). We denote the fixed edges
in X by Xy, and the variable edges by X, so that with a
slight abuse of notation we can write X = (X7, X,).

The unknown digits are denoted by the sequence D =
(dl,dg, ey dlg), where d; € {0, 1,..., 9}

The basic model, P(X, D|S), can be described as a fac-
tor graph (see Fig. 3) of the following form:

1 ,
P(X,D|S) = e HXS$)=600D) "

where L(X,S) is the (log) likelihood term that rewards
edge locations lying on high-gradient parts of the scanline,
and G(X, D) is the geometric term that enforces the spa-
tial relationships among different edges given the digit se-
quence.



First we describe the likelihood term L(X,.S) in more
detail. It is defined as:

N
L(X,8) = Li(w:,5) 2

i=1
where the precise form of L; differs between Model 1 and
Model 2 (see details in the next subsections). In both cases
it enforces the polarity constraint that edge z; must have
polarity (—1)¢, i.e. L;(z;,S) = oo if dI/dx(x;) has the

wrong sign.

Note that we can rewrite L(X, .S) as two terms, one con-
taining fixed edges and the other containing variable edges:

L(X,S)ZLf(Xf,S)—‘rLU(XU,S) 3)

Next we describe the geometric prior term G(X, D):

The first term, G s (X7 ), enforces the appropriate spacing
between fixed edges: for instance, we expect that xo —x; ~
A. This expected separation distance is expressed with
a quadratic energy term G}(a:l,xg) = Bf(zg — 1 —
A)?H (w9 — x1) for the first two edges, and similarly for
all other consecutive fixed edges. Here H (x) is a function
that equals one for positive values of z and co otherwise,
which enforces the fact that consecutive edges are ordered
from left to right instead of right to left; 3 is a positive
constant. In addition, since each digit region encompasses
a width of 7TA, we enforce this property with the following
energy term: G (4, 28) = (O (v — x4 — TA)? H (25— 4)
for the first digit, and similarly for the other digits.

The second term, G,(Xy,X,,D), enforces the
appropriate spacing between variable edge locations
that encode digit values. Each digit value (0-9) cor-
responds to a sequence of four widths. In order
from O through 9, the associated width sequences are:
(3,2,1,1),(2,2,2,1),(2,1,2,2),(1,4,1,1),(1,1, 3, 2),
(1,2,3,1),(1,1,1,4),(1,3,1,2),(1,2,1,3),(3,1,1,2).
These spacings are enforced by energy functions such as
Gyl(za, w5,dy) = Bu(ws — x4 — wi(dr))*H (x5 — 4),
where w1 (d;) is the first width corresponding to digit dy
(and 3, is a positive constant).

The next two subsections describe two variants of this
model that we have implemented.

2.3. Model 1

Model 1 is the simpler of the two models. In this model,
we first normalize e(x) = dI/dx by rescaling it so that its
absolute value has a maximum equal to one. We then extract
edges as the local minima and maxima of e(z), and denote
the sequence as Y = (y1,y2, ... yar). The locations y; are

estimated to sub-pixel accuracy by modeling the value of
e(x) as locally quadratic. This sequence defines the set of
allowed edges (M > N, meaning that we have observed at
least as many edges as needed in the barcode), i.e. allowed
values of the ;. We then define the evidence for each edge
as L;(z;,9) = ale(z;)|H (e(z;)(—1)"), which enforces the
need for x; to have the correct polarity.

In Model 1 we estimate the edge locations using the fol-
lowing procedure. First we use the Viterbi algorithm [13]
to calculate the fixed edge locations:

X}“:argrglcian(Xf,S)JrGf(Xf) ®)
f

Then using this result, Viterbi is used again to calcuate
the variable edge locations:

Xy = argmin Ly(X,, $) + Gu(X}, X,, D) (6)

We now have estimated all edge locations X* before esti-
mating the digit values. (Model 2 marginalizes over edge
locations instead, which confers certain advantages and dis-
advantages relative to Model 1.)

To estimate the marginal probability of any given digit
we use the following expression:

%efEi(X D,3) 7
where D on the RHS has the value of d; specified on the
LHS, and ¢ specifies which digit in the string is to be esti-
mated. Here F;(X, D, S) comprises all terms in L(X,.S)
and G(X, D) that depend on the edge locations defining d;.

If multiple scanlines are used, then we simply average
over the marginal probabilities from each scanline to arrive
at an overall marginal probability.

P(di]S) =

2.4. Model 2

Model 2 has the same structure as Model 1. The most
important difference, however, is that we allow edge loca-
tions X to assume any values on a pixel lattice rather than
restricting ourselves to local peaks in e(x) = dI/dx. This
was done because in noisy images the true location of an
edge may not be associated with a local peak, i.e. we do not
assume that we are able to detect every barcode edge. We
define a pixel quantization on each scanline such that the
estimated fundamental width corresponds to approximately
5 pixels, and estimate e(z) on this lattice using linear inter-
polation.

Since we are no longer restricting ourselves to locations
of peak values in dI/dx, we also use the second deriva-
tive ex(z) = d*I/dz? to reward locations that are close
to local maxima or minima. (This is normalized in the



Figure 3. Factor graph used in Model 1 and 2. Variables are drawn as circles and factors (interactions
among variables) as boxes. Factors enforcing geometric constraints are drawn in red and factors
incorporating scanline edge information are drawn in green.

same way that e(z) is normalized.) Then we define the
likelihood for an edge as L;(x;,S) = —vylog(le(x)|(1 —
lea(x)])H (e(z;)(—1)%), which rewards edge strength as
well as proximity to a peak in edge magnitude (since e ()
attains 0 at a local maximum or minimum). (Here 7y is a pos-
itive constant.) Again, the H (.) factor forces the gradient at
x; to have the correct polarity.

The second difference with Model 1 is that Model 2
uses factor graph belief propagation (BP) [14] to estimate
marginal probabilities of each digit, instead of greedily es-
timating the most likely edge locations and then estimating
digits based on these locations. The factors in Model 2 are
defined by exponentiating the energy functions in Sec. 2.2,
and so BP estimates the marginal probabilities of each vari-
able in the model, including P(d;|S).

2.5. Using the checksum

The digits in the barcode digit sequence are not indepen-
dent but are constrained to obey the following parity equa-
tion:

[SZdH— Zdi] mod 10 = 0 ®)

7 odd 7 even

Thus the first eleven digits are chosen independently and
the twelth digit is a parity check digit chosen to satisfy the
above constraint. This mechanism allows for verification of
the barcode by the reader.

In order to find the most likely digit sequence that is con-
sistent with the data and satisfies the parity constraint, we
create a new random variable sequence ¢; € {0,...,9}
where ¢ = 1,...,12, corresponding to a running parity
digit. Let

3d; mod 10, ifi=1
ci =1 (3d; +¢;—1) mod 10, ifiisodd 9)
(d;i +¢;—1) mod 10, ifiiseven

Observe that

‘P(Cl7 Coy. .. 7012) = P(Cl)P(CQ‘Cl) L P(012|011) (10)

Here we are using the marginal probabilities P(d;|S)
(Eq. 7) to define the associated probabilities on the ¢; vari-
ables (where we omit the conditioning on one or more
scanlines for brevity). (For instance, since c¢; and co
jointly determine the value of do, P(ca|c1) is determined
by P(dz2|S).) Since the sequence ci,cs,...,c1o forms a
Markov chain, we can use Viterbi (after taking a log to
transform to the energy domain) to find the most likely se-
quence of ¢;, and therefore the most likely sequence of d;.
In addition, a multipath Viterbi algorithm is also used to
calculate the second most likely sequence, which is used to
evaluate the confidence of the top estimate (see next sec-
tion).

2.6. Model selection

In our experiments we have found that Model 1 is better
for clean images and Model 2 is better for noisier images.
We have not yet investigated the possibility of a Bayesian
model selection procedure, but have instead devised a sim-
ple algorithm to decide which model is appropriate for a
given barcode image.

Our algorithm is the following. Model 1 is first run using
a single scanline. A confidence criterion (described below)
is calculated, and if it is too low then another scanline is
used (up to a total of 15 scanlines). If one or more scan-
lines have been used, then the overall probabilities for each
barcode digit are calculated by simply averaging over the
scanlines.



If the confidence criterion is satisfied using Model 1 then
the algorithm is done. Otherwise we proceed to run Model
2, again starting with one scanline. More scanlines are eval-
uated as needed (up to a total of 15 scanlines considered
individually, i.e. without aggregating multiple scanlines or
averaging digit probabilities), and if the confidence crite-
rion is satisfied for any scanline then the algorithm is done.
Otherwise the algorithm reports failure.

The confidence criterion assesses how much more likely
the top estimated digit sequence is than other sequences.
Specifically, the confidence criterion is fulfilled only if two
tests are satisfied. In the first test, the top two digit sequence
estimates from the checksum procedure are compared, and
if the ratio of the probability of the top sequence divided
by the probability of the second most likely sequence is too
small then the test fails. (This test assesses the margin of
confidence in the top solution.) If this first test succeeds,
then a second test is performed. An alternative digit se-
quence is calculated in which each digit is chosen to be the
one that maximizes the marginal digit probability from the
checksum procedure. If the alternative digit sequence dif-
fers from the most likely sequence by at most one digit, then
the second test succeeds and the overall confidence criterion
is satisfied.

3. Experimental Results

Models 1 and 2 were implemented in unoptimized Mat-
lab code, taking on the order of a few tens of seconds
(Model 1) to many tens of seconds (Model 2) to execute per
image. We note that a single slice with Model 1 achieves
a performance close to the best performance of the joint
model, but at higher speed.

We acquired 79 images of UPC-A product barcodes,
some photographed using the Nokia N95 camera phone,
others using the Nikon Coolpix 4300 camera, and others
taken from the internet. All images were saved as jpegs. For
each image, the barcode was manually segmented (and ori-
ented roughly horizontally). We first divided our database
subjectively into two classes that we dubbed clean (see
Fig. 4) and hard (see Fig. 5) with the expectation that the
performance on the clean set should be very good. (We
chose this subjective criterion in the absence of any ob-
jective criteria in the literature on reading barcodes.) The
clean set consisted of 44 images of varying resolutions, dis-
tortions and contrast, but otherwise seemed recognizable.
The hard set consisted of 35 images that were blurry or dis-
torted, and hence were likely candidates for failure. We
have posted our ground truth-annotated database on our
website [15], and we will add to it as the project progresses.

From the clean set, we randomly chose 17 images that
we used as a training set. Appropriate values of Model 1 and
Model 2 parameters (o, 3y, 3, and y) were estimated by ex-

haustive search, in which the error rate of the algorithm was
evaluated for each combination of parameter values, and we
chose the parameters with highest confidence margins that
resulted in all 17 barcodes being read correctly.

We then used our models to try to read the whole set
of 79 images. We also compared our algorithm with two
commercial barcode readers, Barcode Decoding Software
from DataSymbol [16] and bcTester Barcode Recognition
from QualitySoft [17], on the same set of images. Our re-
sults are summmarized in Table 1, and detailed results are
tagged in [15]. We stress that when comparing our results to
the commercial software, we adjusted the options to make
sure that the software was only trying to recognize a UPC-A
barcode so as to increase the accuracy (and to permit a fair
comparison with our algorithm, which at this time assumes
the UPC-A structure). (Both commercial algorithms auto-
matically segment the barcode from the image, whereas our
algorithm assumes the barcode has already been roughly
segmented; the identical segmented images were given to
all three algorithms.) Our algorithm succeeded on all im-
ages that were correctly read by the commercial readers,
and it also succeeded on other images. Like the commercial
readers, our algorithm always reported failure when it was
unable to estimate the bar code correctly.

Some examples of clean images are shown in Fig. 4,
and of hard images in Fig. 5. Note that, while most of the
edges in the clean images are easy to extract, some edges
are fuzzy, and localization noise means that it is sometimes
difficult to estimate bar widths correctly. In the hard im-
ages, many of the edges are very difficult to resolve (often
because of low contrast and motion blur), and in some cases
(top of Fig. 5) the modulus is quite narrow, approximately
2 pixels wide. The examples in Fig. 5 give an idea of the
limits of our current algorithm.

While Model 2 is better able to cope with faint or missing
edges than Model 1, its ability to choose edges that don’t lie
on image gradient peaks adds uncertainty that sometimes
compromises its ability to infer the correct digit sequence.
Thus, we have found that Model 1 performance is superior
to that of Model 2 on cleaner images, but that Model 2 is
necessary for hard images (for which Model 1 may have
difficulty finding good edges even if they are all visible).
By adding additional cues, and tuning the model parameters
more carefully (and on a larger training set), we hope that
in the future Model 2 will improve to the point where it
will completely replace Model 1. We discuss some possible
improvements in the next section.

4. Discussion

We have described a novel Bayesian algorithm for read-
ing 1D barcodes in noisy images. The algorithm is based
on a deformable template that is robust to geometric de-
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Figure 4. Examples of clean images from our
dataset. Top: read correctly by our algorithm
and both commercial readers; middle: read
correctly by our algorithm and Barcode De-
coding Software; bottom: read correctly only
by our algorithm.

formations as well as image noise, and uses the checksum
digit both to improve its chances of estimating the correct
digit sequence and to rule out impossible sequences. An
important feature of our framework is that it doesn’t require
that every barcode edge be detected in the image. Exper-
iments on a publicly available dataset of barcode images
explore the range of images that are readable, and compar-

\ Our Model \ BarcodeDecoding \ bcTester

Learn | 17/17 17/17 4/17
Clean | 42/44 39/44 13/44
Hard | 2/35 0/35 0/35

Table 1. Number of barcodes correctly read.

Figure 5. Examples of hard images from our
dataset. Top: read correctly only by our algo-
rithm (with modulus less than 2 pixels); mid-
dle and bottom: read correctly by no algo-
rithm.

isons with two commercial readers demonstrate the superior
performance of our algorithm.

In the future we plan to improve the performance of the
algorithm by using a more principled learning procedure
from a larger training set, such as conditional random fields
(CRFs) [18], and to test its performance on a substantially
larger test set. Such a procedure will also allow us to incor-
porate multiple cues, such as the scarcity of edges inside the
bars, in addition to the presence of edges at the bar bound-
aries. We hope to integrate the entire model into a single
factor graph that seamlessly combines multiple scan lines
and the checksum information. We are currently investigat-
ing the possibility of explicitly modeling image blur (due to
poor focus and camera motion), which is a major source of
image degradation. It may also be possible to augment the
barcode model with a simple OCR digit module that reads
the digits printed below the barcode.

Finally, we will extend our model to read other com-
mon barcode patterns (e.g. UPC-E and EAN-13), and use a
simple model selection procedure to decide which barcode



model is appropriate for each image. Then we will imple-
ment a barcode localization algorithm to automatically find
the barcode boundaries in a cluttered image, and write a fast
version of the entire algorithm in C++. Ultimately we hope
to port the algorithm to the camera phone platform in a form
that blind and visually impaired persons can use to identify
packaged goods.
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