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Abstract

The 1D barcode is a ubiquitous labeling technology, with

symbologies such as UPC used to label approximately 99%

of all packaged goods in the US. It would be very conve-

nient for consumers to be able to read these barcodes using

portable cameras (e.g. mobile phones), but the limited qual-

ity and resolution of images taken by these cameras often

make it difficult to read the barcodes accurately. We pro-

pose a Bayesian framework for reading 1D barcodes that

models the shape and appearance of barcodes, allowing for

geometric distortions and image noise, and exploiting the

redundant information contained in the parity digit. An im-

portant feature of our framework is that it doesn’t require

that every barcode edge be detected in the image. Exper-

iments on a publicly available dataset of barcode images

explore the range of images that are readable, and compar-

isons with two commercial readers demonstrate the supe-

rior performance of our algorithm.

1. Introduction

The 1D barcode was developed as a package label that

could be swiftly and accurately read by a laser scanner.

It has become ubiquitous, with symbologies such as UPC

used to label approximately 99% of all packaged goods in

the US [1]. There is a strong demand for systems to read 1D

barcodes from images acquired by portable cameras (such

as on cell phones), but the 1D patterns are often poorly re-

solved by these cameras because of motion blur and an in-

ability to focus sufficiently close. A variety of 2D barcodes

have been designed that are much better suited for camera

acquisition [2, 3], but for the next several years 1D barcodes

will remain the dominant type of label for most packaged

goods.

There has been a variety of research done on algorithms

for reading 1D barcodes, which we survey briefly here.

Most past work has dealt with scanline data (typically ac-

quired by a laser scanner), using waveform analysis, deblur-

ring and other signal processing techniques to detect edges

[4, 5, 6]. The approach in [7] is similar to ours in its use

of probabilistic HMM modeling, but it assumes that every

edge in the barcode is detected in the scanline data, which

is an assumption that we remove in our algorithm. (The

HMM approach assigns edge transition states to the entire

sequence of observed edges in a scanline, whereas our ap-

proach is a deformable template that uses hidden variables

to model the locations of each barcode edge, regardless of

which edges are visible.) Another difference is that our

approach jointly performs decoding and error correction.

There has also been work on reading 1D barcodes from im-

ages rather than laser scanner data, some of which uses 2D

analysis such as the Hough transform to detect edges [8].

Some recent work reports impressive accuracy [9, 10],

but the image datasets on which the algorithm were tested

are not yet available ([10] states that the data will be avail-

able to the public but this is not the case at the time of writ-

ing). However, we emphasize that the readability of a bar-

code image varies greatly depending on the image quality;

under some conditions (e.g. using a camera phone, which

has limited resolution and ability to focus close-up) many

images are blurry even when the photographer takes the im-

ages carefully. For instance, in [9] the barcodes are pho-

tographed at a resolution such that the module (width of

the narrowest bar) is about 4.5 pixels wide, which may be

too high a resolution to achieve consistently with a camera

phone. Therefore, it is crucial that the images used to evalu-

ate a barcode reading algorithm be made publicly available.

Our contribution is a Bayesian deformable template

model for reading barcodes that is robust to noise due to

non-uniform lighting, geometric and perspective distortion

and to missing edges and low resolution images. We have

posted our dataset online for public use, and plan to add to

the dataset as the project continues.

We have not yet tackled the problem of localizing bar-

codes in cluttered images, but there is work on this problem

[11, 9] that we will draw on in the future.



2. Bayesian Model

We have devised a Bayesian deformable template [12]

model of the barcode that combines prior knowledge of

barcode geometry, including the allowed configuration of

bars and allowing for geometric distortions, with evidence

for edges based on intensity gradients. Our model is also

strengthened by exploiting the checksum information em-

bedded in the barcode, which constrains the values of the

encoded digits, thereby allowing us to detect and correct

single-digit errors. In this paper we specialize to a particu-

lar symbology that is commonly used in North America, the

UPC-A, but we emphasize that our approach will generalize

straightforwardly to any 1D barcode pattern.

2.1. Barcode Structure

The UPC-A barcode (see Fig. 1) encodes a string of

twelve decimal digits (each digit is an integer from 0

through 9), where the last digit is a checksum that is a func-

tion of the previous eleven. The barcode pattern consists of

a sequence of black bars and white gaps between the bars

(we will refer to both as bars). There are 29 white and 30

black bars, giving a total of N = 60 edges. The edges

have alternating polarity, and from left to right the polarity

of edge i (where i = 1, . . . , N ) is (−1)i. Each bar has one

of four possible widths: ∆, 2∆, 3∆ or 4∆, where ∆ is the

modulus or fundamental width of the barcode.

0 12345 67890 5

Figure 1. UPC-A barcode, encoding 12 digits.

Each digit value is encoded by a sequence of four bars

(with total width 7∆). In addition to the twelve digit re-

gions, there are three ’guard’ regions in the barcode: the

start region (two black bars separated by a white bar) on

the left, the middle region separating the sixth and seventh

digits (three white bars separated by two black bars), and

the end region on the right (the same pattern as the start re-

gion). See Fig. 2 for an illustration of these regions. The

total width of the barcode is 95∆.

The 60 edges in the barcode are classified into two cate-

gories, fixed and variable. Fixed edges are those associated

with the guard bands (also shown in Fig. 2), whose location

is independent of the encoded digits. Variable edges are the

edges in the digit regions whose locations define the digit

encoding.
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Figure 2. Fixed edges of UPC-A barcode
shown as dashed red lines. Labels on bot-
tom denote the guard regions and the 12 digit

regions between the fixed edges.

2.2. Model Basics

In this paper we assume that the bar code has been seg-

mented from the image, and that we know the approximate

orientation, which allows us to construct several scanlines

across the barcode. We first describe the model for a single

scanline cutting from left to right across the barcode; later

we will extend the model to multiple scanlines. In addition,

in later sections we will describe two variants of the basic

model, Model 1 and 2.

The scanline defines an x coordinate system, and the

intensity along the scanline is denoted I(x). The edge

strength e(x) is defined as the intensity derivative dI/dx.

Local maxima and minima of e(x) define the edge locations

in the scanline, and the first and last observed edge locations

spanning the entire barcode (of width 95∆) are used to es-

timate ∆ for the scanline. We denote all the information in

the scanline by S.

The locations of all N = 60 edges are denoted by the

sequence X = (x1, x2, . . . , xN ). We denote the fixed edges

in X by Xf , and the variable edges by Xv , so that with a

slight abuse of notation we can write X = (Xf ,Xv).
The unknown digits are denoted by the sequence D =

(d1, d2, . . . , d12), where di ∈ {0, 1, . . . , 9}.

The basic model, P (X,D|S), can be described as a fac-

tor graph (see Fig. 3) of the following form:

P (X,D|S) =
1

Z
e−L(X,S)−G(X,D) (1)

where L(X,S) is the (log) likelihood term that rewards

edge locations lying on high-gradient parts of the scanline,

and G(X,D) is the geometric term that enforces the spa-

tial relationships among different edges given the digit se-

quence.



First we describe the likelihood term L(X,S) in more

detail. It is defined as:

L(X,S) =

N
∑

i=1

Li(xi, S) (2)

where the precise form of Li differs between Model 1 and

Model 2 (see details in the next subsections). In both cases

it enforces the polarity constraint that edge xi must have

polarity (−1)i, i.e. Li(xi, S) = ∞ if dI/dx(xi) has the

wrong sign.

Note that we can rewrite L(X,S) as two terms, one con-

taining fixed edges and the other containing variable edges:

L(X,S) = Lf (Xf , S) + Lv(Xv, S) (3)

Next we describe the geometric prior term G(X,D):

G(X,D) = Gf (Xf ) + Gv(Xf ,Xv,D) (4)

The first term, Gf (Xf ), enforces the appropriate spacing

between fixed edges: for instance, we expect that x2−x1 ≈
∆. This expected separation distance is expressed with

a quadratic energy term G1
f (x1, x2) = βf (x2 − x1 −

∆)2H(x2 − x1) for the first two edges, and similarly for

all other consecutive fixed edges. Here H(x) is a function

that equals one for positive values of x and ∞ otherwise,

which enforces the fact that consecutive edges are ordered

from left to right instead of right to left; βf is a positive

constant. In addition, since each digit region encompasses

a width of 7∆, we enforce this property with the following

energy term: G4
f (x4, x8) = βf (x8−x4−7∆)2H(x8−x4)

for the first digit, and similarly for the other digits.

The second term, Gv(Xf ,Xv,D), enforces the

appropriate spacing between variable edge locations

that encode digit values. Each digit value (0-9) cor-

responds to a sequence of four widths. In order

from 0 through 9, the associated width sequences are:

(3, 2, 1, 1), (2, 2, 2, 1), (2, 1, 2, 2), (1, 4, 1, 1), (1, 1, 3, 2),
(1, 2, 3, 1), (1, 1, 1, 4), (1, 3, 1, 2), (1, 2, 1, 3), (3, 1, 1, 2).
These spacings are enforced by energy functions such as

G1,1
v (x4, x5, d1) = βv(x5 − x4 − w1(d1))

2H(x5 − x4),
where w1(d1) is the first width corresponding to digit d1

(and βv is a positive constant).

The next two subsections describe two variants of this

model that we have implemented.

2.3. Model 1

Model 1 is the simpler of the two models. In this model,

we first normalize e(x) = dI/dx by rescaling it so that its

absolute value has a maximum equal to one. We then extract

edges as the local minima and maxima of e(x), and denote

the sequence as Y = (y1, y2, . . . yM ). The locations yi are

estimated to sub-pixel accuracy by modeling the value of

e(x) as locally quadratic. This sequence defines the set of

allowed edges (M ≥ N , meaning that we have observed at

least as many edges as needed in the barcode), i.e. allowed

values of the xi. We then define the evidence for each edge

as Li(xi, S) = α|e(xi)|H(e(xi)(−1)i), which enforces the

need for xi to have the correct polarity.

In Model 1 we estimate the edge locations using the fol-

lowing procedure. First we use the Viterbi algorithm [13]

to calculate the fixed edge locations:

X∗

f = arg min
Xf

Lf (Xf , S) + Gf (Xf ) (5)

Then using this result, Viterbi is used again to calcuate

the variable edge locations:

X∗

v = arg min
Xv

Lv(Xv, S) + Gv(X∗

f ,Xv,D) (6)

We now have estimated all edge locations X∗ before esti-

mating the digit values. (Model 2 marginalizes over edge

locations instead, which confers certain advantages and dis-

advantages relative to Model 1.)

To estimate the marginal probability of any given digit

we use the following expression:

P (di|S) =
1

Z ′
e−Ei(X

∗,D,S) (7)

where D on the RHS has the value of di specified on the

LHS, and i specifies which digit in the string is to be esti-

mated. Here Ei(X,D, S) comprises all terms in L(X,S)
and G(X,D) that depend on the edge locations defining di.

If multiple scanlines are used, then we simply average

over the marginal probabilities from each scanline to arrive

at an overall marginal probability.

2.4. Model 2

Model 2 has the same structure as Model 1. The most

important difference, however, is that we allow edge loca-

tions X to assume any values on a pixel lattice rather than

restricting ourselves to local peaks in e(x) = dI/dx. This

was done because in noisy images the true location of an

edge may not be associated with a local peak, i.e. we do not

assume that we are able to detect every barcode edge. We

define a pixel quantization on each scanline such that the

estimated fundamental width corresponds to approximately

5 pixels, and estimate e(x) on this lattice using linear inter-

polation.

Since we are no longer restricting ourselves to locations

of peak values in dI/dx, we also use the second deriva-

tive e2(x) = d2I/dx2 to reward locations that are close

to local maxima or minima. (This is normalized in the
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Figure 3. Factor graph used in Model 1 and 2. Variables are drawn as circles and factors (interactions

among variables) as boxes. Factors enforcing geometric constraints are drawn in red and factors
incorporating scanline edge information are drawn in green.

same way that e(x) is normalized.) Then we define the

likelihood for an edge as Li(xi, S) = −γ log(|e(x)|(1 −
|e2(x)|)H(e(xi)(−1)i), which rewards edge strength as

well as proximity to a peak in edge magnitude (since e2(x)
attains 0 at a local maximum or minimum). (Here γ is a pos-

itive constant.) Again, the H(.) factor forces the gradient at

xi to have the correct polarity.

The second difference with Model 1 is that Model 2

uses factor graph belief propagation (BP) [14] to estimate

marginal probabilities of each digit, instead of greedily es-

timating the most likely edge locations and then estimating

digits based on these locations. The factors in Model 2 are

defined by exponentiating the energy functions in Sec. 2.2,

and so BP estimates the marginal probabilities of each vari-

able in the model, including P (di|S).

2.5. Using the checksum

The digits in the barcode digit sequence are not indepen-

dent but are constrained to obey the following parity equa-

tion:

[

3
∑

i odd

di +
∑

i even

di

]

mod 10 = 0 (8)

Thus the first eleven digits are chosen independently and

the twelth digit is a parity check digit chosen to satisfy the

above constraint. This mechanism allows for verification of

the barcode by the reader.

In order to find the most likely digit sequence that is con-

sistent with the data and satisfies the parity constraint, we

create a new random variable sequence ci ∈ {0, . . . , 9}
where i = 1, . . . , 12, corresponding to a running parity

digit. Let

ci =











3d1 mod 10, if i = 1

(3di + ci−1) mod 10, if i is odd

(di + ci−1) mod 10, if i is even

(9)

Observe that

P (c1, c2, . . . , c12) = P (c1)P (c2|c1) · · ·P (c12|c11) (10)

Here we are using the marginal probabilities P (di|S)
(Eq. 7) to define the associated probabilities on the ci vari-

ables (where we omit the conditioning on one or more

scanlines for brevity). (For instance, since c1 and c2

jointly determine the value of d2, P (c2|c1) is determined

by P (d2|S).) Since the sequence c1, c2, . . . , c12 forms a

Markov chain, we can use Viterbi (after taking a log to

transform to the energy domain) to find the most likely se-

quence of ci, and therefore the most likely sequence of di.

In addition, a multipath Viterbi algorithm is also used to

calculate the second most likely sequence, which is used to

evaluate the confidence of the top estimate (see next sec-

tion).

2.6. Model selection

In our experiments we have found that Model 1 is better

for clean images and Model 2 is better for noisier images.

We have not yet investigated the possibility of a Bayesian

model selection procedure, but have instead devised a sim-

ple algorithm to decide which model is appropriate for a

given barcode image.

Our algorithm is the following. Model 1 is first run using

a single scanline. A confidence criterion (described below)

is calculated, and if it is too low then another scanline is

used (up to a total of 15 scanlines). If one or more scan-

lines have been used, then the overall probabilities for each

barcode digit are calculated by simply averaging over the

scanlines.



If the confidence criterion is satisfied using Model 1 then

the algorithm is done. Otherwise we proceed to run Model

2, again starting with one scanline. More scanlines are eval-

uated as needed (up to a total of 15 scanlines considered

individually, i.e. without aggregating multiple scanlines or

averaging digit probabilities), and if the confidence crite-

rion is satisfied for any scanline then the algorithm is done.

Otherwise the algorithm reports failure.

The confidence criterion assesses how much more likely

the top estimated digit sequence is than other sequences.

Specifically, the confidence criterion is fulfilled only if two

tests are satisfied. In the first test, the top two digit sequence

estimates from the checksum procedure are compared, and

if the ratio of the probability of the top sequence divided

by the probability of the second most likely sequence is too

small then the test fails. (This test assesses the margin of

confidence in the top solution.) If this first test succeeds,

then a second test is performed. An alternative digit se-

quence is calculated in which each digit is chosen to be the

one that maximizes the marginal digit probability from the

checksum procedure. If the alternative digit sequence dif-

fers from the most likely sequence by at most one digit, then

the second test succeeds and the overall confidence criterion

is satisfied.

3. Experimental Results

Models 1 and 2 were implemented in unoptimized Mat-

lab code, taking on the order of a few tens of seconds

(Model 1) to many tens of seconds (Model 2) to execute per

image. We note that a single slice with Model 1 achieves

a performance close to the best performance of the joint

model, but at higher speed.

We acquired 79 images of UPC-A product barcodes,

some photographed using the Nokia N95 camera phone,

others using the Nikon Coolpix 4300 camera, and others

taken from the internet. All images were saved as jpegs. For

each image, the barcode was manually segmented (and ori-

ented roughly horizontally). We first divided our database

subjectively into two classes that we dubbed clean (see

Fig. 4) and hard (see Fig. 5) with the expectation that the

performance on the clean set should be very good. (We

chose this subjective criterion in the absence of any ob-

jective criteria in the literature on reading barcodes.) The

clean set consisted of 44 images of varying resolutions, dis-

tortions and contrast, but otherwise seemed recognizable.

The hard set consisted of 35 images that were blurry or dis-

torted, and hence were likely candidates for failure. We

have posted our ground truth-annotated database on our

website [15], and we will add to it as the project progresses.

From the clean set, we randomly chose 17 images that

we used as a training set. Appropriate values of Model 1 and

Model 2 parameters (α, βf , βv and γ) were estimated by ex-

haustive search, in which the error rate of the algorithm was

evaluated for each combination of parameter values, and we

chose the parameters with highest confidence margins that

resulted in all 17 barcodes being read correctly.

We then used our models to try to read the whole set

of 79 images. We also compared our algorithm with two

commercial barcode readers, Barcode Decoding Software

from DataSymbol [16] and bcTester Barcode Recognition

from QualitySoft [17], on the same set of images. Our re-

sults are summmarized in Table 1, and detailed results are

tagged in [15]. We stress that when comparing our results to

the commercial software, we adjusted the options to make

sure that the software was only trying to recognize a UPC-A

barcode so as to increase the accuracy (and to permit a fair

comparison with our algorithm, which at this time assumes

the UPC-A structure). (Both commercial algorithms auto-

matically segment the barcode from the image, whereas our

algorithm assumes the barcode has already been roughly

segmented; the identical segmented images were given to

all three algorithms.) Our algorithm succeeded on all im-

ages that were correctly read by the commercial readers,

and it also succeeded on other images. Like the commercial

readers, our algorithm always reported failure when it was

unable to estimate the bar code correctly.

Some examples of clean images are shown in Fig. 4,

and of hard images in Fig. 5. Note that, while most of the

edges in the clean images are easy to extract, some edges

are fuzzy, and localization noise means that it is sometimes

difficult to estimate bar widths correctly. In the hard im-

ages, many of the edges are very difficult to resolve (often

because of low contrast and motion blur), and in some cases

(top of Fig. 5) the modulus is quite narrow, approximately

2 pixels wide. The examples in Fig. 5 give an idea of the

limits of our current algorithm.

While Model 2 is better able to cope with faint or missing

edges than Model 1, its ability to choose edges that don’t lie

on image gradient peaks adds uncertainty that sometimes

compromises its ability to infer the correct digit sequence.

Thus, we have found that Model 1 performance is superior

to that of Model 2 on cleaner images, but that Model 2 is

necessary for hard images (for which Model 1 may have

difficulty finding good edges even if they are all visible).

By adding additional cues, and tuning the model parameters

more carefully (and on a larger training set), we hope that

in the future Model 2 will improve to the point where it

will completely replace Model 1. We discuss some possible

improvements in the next section.

4. Discussion

We have described a novel Bayesian algorithm for read-

ing 1D barcodes in noisy images. The algorithm is based

on a deformable template that is robust to geometric de-



Figure 4. Examples of clean images from our
dataset. Top: read correctly by our algorithm
and both commercial readers; middle: read

correctly by our algorithm and Barcode De-
coding Software; bottom: read correctly only
by our algorithm.

formations as well as image noise, and uses the checksum

digit both to improve its chances of estimating the correct

digit sequence and to rule out impossible sequences. An

important feature of our framework is that it doesn’t require

that every barcode edge be detected in the image. Exper-

iments on a publicly available dataset of barcode images

explore the range of images that are readable, and compar-

Our Model BarcodeDecoding bcTester

Learn 17/17 17/17 4/17

Clean 42/44 39/44 13/44

Hard 2/35 0/35 0/35

Table 1. Number of barcodes correctly read.

Figure 5. Examples of hard images from our

dataset. Top: read correctly only by our algo-
rithm (with modulus less than 2 pixels); mid-
dle and bottom: read correctly by no algo-

rithm.

isons with two commercial readers demonstrate the superior

performance of our algorithm.

In the future we plan to improve the performance of the

algorithm by using a more principled learning procedure

from a larger training set, such as conditional random fields

(CRFs) [18], and to test its performance on a substantially

larger test set. Such a procedure will also allow us to incor-

porate multiple cues, such as the scarcity of edges inside the

bars, in addition to the presence of edges at the bar bound-

aries. We hope to integrate the entire model into a single

factor graph that seamlessly combines multiple scan lines

and the checksum information. We are currently investigat-

ing the possibility of explicitly modeling image blur (due to

poor focus and camera motion), which is a major source of

image degradation. It may also be possible to augment the

barcode model with a simple OCR digit module that reads

the digits printed below the barcode.

Finally, we will extend our model to read other com-

mon barcode patterns (e.g. UPC-E and EAN-13), and use a

simple model selection procedure to decide which barcode



model is appropriate for each image. Then we will imple-

ment a barcode localization algorithm to automatically find

the barcode boundaries in a cluttered image, and write a fast

version of the entire algorithm in C++. Ultimately we hope

to port the algorithm to the camera phone platform in a form

that blind and visually impaired persons can use to identify

packaged goods.
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