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Chapter 1

Mechanisms for Propagating Surface
Information in Three-Dimensional
Reconstruction

Abstract  Bayesian and other related statistical techniques have emerged
as a dominant paradigm in computer vision for estimating 3-D surfaces in the
presence of noisy and sparse depth cues. In particular, for 3-D reconstruction
problems these techniques have been implemented using Markov random fields
(MRF's), which are probabilistic models that express how variables arranged in
a spatial structure jointly vary, such as a rectangular grid of disparity variables
aligned to a pixel lattice in a stereo model. Such MRF models incorporate
powerful priors on surface geometry, which allow 3-D estimates to combine
evidence from depth cues with prior knowledge of smoothness constraints.
They embody a natural mechanism for propagating surface information from
regions with highly informative depth cues to neighboring regions with un-
reliable or missing depth cues, without crossing over depth discontinuities.
Recent advances in inference algorithms have enlarged the range of statistical
models that are tractable for computer implementation, enabling the use of
increasingly realistic and expressive models and leading to some of the most
robust and accurate 3-D estimation algorithms to date. Finally, a “belief
propagation” framework allows these models to be implemented on a mas-
sively parallel computer architecture, raising the possibility that they may be
realized in a biologically plausible form.

1.1 Introduction

Three-dimensional reconstruction is a major theme in computer vision, with
techniques for estimating shape from a variety of cues, including shading
[1], texture [2] and multi-view stereo [3]. A fundamental challenge of 3-D
reconstruction is estimating depth information everywhere in a scene despite
the fact that depth cues are noisy and sparse. These properties of depth cues
mean that depth information must be propagated from regions of greater
certainty to regions of lesser certainty.
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The 3-D reconstruction problem that is perhaps the most mature in com-
puter vision is stereo using two or more calibrated cameras with known epipo-
lar geometry. The most successful stereo algorithms use Markov random fields
(MRFs) [4], which are probabilistic models that express the joint distribution
of variables arranged in a network structure, with the state of any variable
exerting a direct influence on the states of its neighbors. In the case of stereo
(in this paper the discussion is restricted to two-view stereo), a basic MRF
model consists of a lattice (grid) of disparity variables, one for each pixel
in the image. For any disparity hypothesized at a given pixel there is (usu-
ally ambiguous) evidence from the corresponding match between the left and
right images that this disparity implies. Nearest-neighbor connections en-
force a prior smoothness constraint on disparities, which equates to a related
smoothness constraint on depths in the scene. Inference is performed using
a global optimization method such as graph cuts [5] or belief propagation
[6], which determines a near-optimal assignment of disparities to each pixel
given the image data. The MRF framework embodies a natural mechanism
for propagating surface information in the presence of noisy and sparse data.

This paper is intended to present the basic principles of this framework
(which generalize to any 3-D reconstruction problem, not just two-frame
stereo) to an audience of vision researchers who are not computer vision spe-
cialists. I discuss recent extensions incorporating more realistic modeling of
surface geometry, and point to recent work suggesting the possibility that be-
lief propagation (or something close to it) may be realized in a biologically
plausible form. Finally, possible directions for future research are explored.

1.2 Markov Random Fields for Stereo

In this section I outline a simple MRF (Markov random field) formulation
of stereo, described using a Bayesian model. (Other statistical variants such
as conditional random fields [7, 8], mentioned below, are popular alternatives
that are very similar.) Two grayscale images L and R (left and right) are
taken of the scene, which are assumed rectified so that a pixel in one image is
guaranteed to match a pixel in the same row in the other image. The unknown
disparity field is represented by D, with D, representing the disparity at pixel
location r. A particular disparity value D,., where r = (x,y) specifies the
pixel coordinates, has the following interpretation: (z + D,,y) in the left
image corresponds to (z,y) in the right image.

The prior on the disparity field D enforces smoothness as follows:

1
P(D) = Ee—ﬂWD) (1.1)

where Z is a normalizing constant ensuring that P(D) sums to 1 over all
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possible values of D, ( is a positive constant that controls the peakedness of
the probability distribution (which in turn determines the importance of the
prior relative to the likelihood, discussed below), and

V(D)= Y f(D,,D) (1.2)
<rs>

where the sum is over all neighboring pairs of pixels r and s. Here f(D,., D;)
is an energy function that penalizes differences between disparities in neigh-
boring pixels, with higher energy values corresponding to more severe penal-
ties. (In other words, non-zero values of the first derivative of the disparity
field in the x and y directions are penalized.) One possible choice for the
function is f(D,, Ds) = |D, — Ds|. A popular variation [9] is f(D,,Ds) =
min(| D, — Ds|, 7), which ensures that the penalty can be no larger than 7; this
is appropriate in scenes with depth discontinuities, where a large difference
between disparities on either side of a depth edge may be no less probable
than a moderate difference.

Note that a prior of this form enforces a bias towards fronto-parallel sur-
faces, over which the disparity is constant; I will discuss ways of relaxing this
bias later.

Next I define a likelihood function, which defines how the left and right
images provide evidence supporting particular disparity values:

where the product is over all pixels in the image, and m is the matching error
across the entire image. Specifically, m,(D,) is the matching error between
the left and right images assuming disparity D.,., defined as m,.(D,) = |L(z +
D,,y) — R(z,y)| (again r = (z,y)). (The product form assumes that the
matching errors are conditionally independent given the disparity field.) A
simple model for the matching error is given by:

P(m.(D,)|Dy) = i€ ume (D) (1.4)

which assigns a higher penalty (lower probability) to higher matching errors.
The Bayesian formulation defines a posterior distribution of disparities
given both images, given by Bayes theorem:

P(D|m) = P(D)P(m|D)/P(m) (15)

To perform inference with the model, one typically finds the MAP (max-
imum a posterior) estimate of the disparity field, i.e. the value of D that
maximizes the posterior. Note that, since P(m) is independent of D, one can
write the MAP estimate of D, denoted D*, as:

D* = argmgxP(D)P(m|D) (1.6)
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Since maximizing any function is equivalent to maximizing the log of the
function, the MAP estimate can be re-expressed as:

D* = argmax{—{ > f(Dr. D)=y me(Dy)} (1.7)

<rs> T
where constants independent of D have been removed. This is equivalent to:
D* = arngm{<;> f(D,, Dy) + yz:mr(pr)} (1.8)

where v = u/8 expresses the relative weight of the prior and likelihood ener-
gies.
Methods for estimating the MAP are discussed in the next section.

1.2.1 Model improvements and refinements

This MRF is a particularly simple model of stereo, and many improvements
and refinements are commonly added, such as the following.

(1.) Considerable performance improvements have been attained by ex-
ploiting the tendency for disparity discontinuities to be accompanied by in-
tensity edges [10, 8]. To accomplish this, the disparity smoothness function
is modulated by a measure of the image gradient, so that large disparity dif-
ferences between neighboring pixels are penalized less severely when there
is a strong intensity difference between the pixels. (Alternatively, a general-
purpose monocular segmentation algorithm may be run to determine the likely
locations of edges between regions of different intensity or color, instead of
relying on a purely local measure of the image gradient.) Thus, surface in-
formation is naturally propagated from regions with highly informative depth
cues to neighboring regions with unreliable or missing depth cues, without
crossing over depth discontinuities.

(2.) The matching function used in the likelihood model can be based on
comparisons of image properties that are richer than grayscale intensity — for
example, color, intensity gradient (magnitude and direction) or higher-level
descriptors incorporating neighboring image structure (such as DAISY [11]).

(3) MRF models may be multi-scale [12], with a pyramid structure coupling
the original disparity lattice with sub-sampled (coarsened) versions of it.

(4.) The conditional independence assumption in Eq. 1.3 can be relaxed
with the use of conditional random fields [7, 8], resulting in a more realistic
posterior distribution.

1.2.2 How MRFs propagate information

This section briefly explains how the MRF model propagates noisy and
sparse disparity cues throughout the image. The general principle behind
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this process is that the prior and likelihood distributions compete for vari-
ous disparity hypotheses, and the relative strength of these two sources of
information automatically varies across the image according to which source
is more reliable.

Fig. 1.1 shows a simple example of a scene consisting only of a flat surface
oriented fronto-parallel to the cameras. In this figure, only the right image
of a stereo image pair is shown, and the fronto-parallel orientation of the
scene implies that the correct disparity field is uniform across the image,
with value dy. The entire surface contains a highly textured, non-periodic
pattern, except for a central region which is textureless. Everywhere in the
textured part of the image, the likelihood model provides strong evidence for
the correct disparity dy and very low evidence for anything but dy (in practice
the likelihood model will be less discriminating, but we assume near-perfect
disparity discrimination for the sake of argument). By contrast, in the central
region there will be no direct evidence favoring one disparity over another.

Any attempt to perform inference using the likelihood without the prior
will obviously fail in the central region. However, by incorporating the prior
with the likelihood, it is easy to see that a disparity field that has a uniform
value of dy over the entire image will have a higher posterior probability than
any other possible disparity field, because any disparity field that deviates
from dy will be less smooth than the correct disparity field (while having the
same support from the likelihood model).

More realistic examples can be analyzed exhibiting similar behavior, in

which the MRF prior model propagates surface information even when the
disparity cues are noisy or non-existent.

1.3 Tractable Inference with MRF's

A significant challenge posed by the stereo MRF model (and many other
Bayesian models) is the difficulty in estimating the MAP, which is equivalent
to minimizing the energy function in Eq. 1.8. There are no techniques that
are guaranteed to find the exact MAP in general cases, aside from exhaus-
tive search, which is impractical (e.g. S¥ possible disparity fields must be
evaluated, where typical values are S = 50 for the number of possible dispar-
ities and N = 10000 for the number of pixels in the image). Typical energy
minimization techniques such as gradient descent [13] work well only when
the energy function has one dominant, global minimum, or when the gradient
descent procedure can be initialized sufficiently close to a suitable local min-
imum. However, the type of energy function defined by Eq. 1.8 has a much
more irregularly shaped energy landscape, with many local minima, and gra-
dient descent-type techniques will typically converge to a local minimum that
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FIGURE 1.1: Idealized example of how disparity information is propa-
gated across an image. Top: image of a fronto-parallel surface (stone wall),
with x-axis slice superimposed on image. Bottom: support for different dis-
parities D, for all possible values of x, with brightness proportional to degree
of support. In textured parts of slice, the disparity value dy = 10 is strongly
supported; in the textureless part of slice towards the center, all disparity val-
ues have approximately equal support. See text for explanation of how MRF
model propagates dy = 10 solution across the untextured region.
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is far from the global minimum.

A variety of approximation techniques are available for estimating the MAP.
Until fairly recently, one of the best available techniques was simulated an-
nealing [13], which is essentially a form of a gradient descent perturbed by
stochastic noise. While simulated annealing can succeed in locating a “good”
local minimum (if not the global minimum), it is an extremely slow technique.
In fact, its slowness meant that most MRF models in computer vision were
extremely difficult to use, and as a result progress in MRF model development
was hindered.

However, approximately ten years ago, two efficient energy minimization
techniques were introduced to computer vision (imported from other fields),
graph cuts [5] and belief propagation [6]. Both energy minimization techniques
find approximate solutions in general, only attaining exact solutions in certain
special cases. While both techniques are popular in a variety of computer
vision MRF models, I will only discuss belief propagation (BP), which is more
intuitive than graph cuts (and perhaps more related to biologically plausible
mechanisms), and will provide additional insight into how MRFs propagate
information. (The techniques perform minimization of energy functions with
discrete variables, which means that the disparity values must be quantized
into a finite set of values, e.g. integer pixel values or sub-pixel values within
a finite range.)

BP is a fast iterative procedure for estimating the minimum energy (maxi-
mum probability) joint configuration of all the variables in an MRF, i.e. the
joint estimate of the most likely states of all the variables. (It is also used to
solve the related problem of estimating marginal probabilities of individual
variables, which specify the probabilities of all possible states for each vari-
able.) The main idea behind BP is that neighboring variables “talk” to each
other at each iteration, with each variable passing messages to its neighbors
with their estimates of the neighbors’ likely states. After enough iterations,
this series of “conversations” is likely to converge to a consensus specifying
which state is most likely for each variable.

The messages exchanged between variables in BP pass information through-
out the MRF. Information can only be passed from variables to their immedi-
ate neighbors in one iteration of BP, but after enough iterations it is possible
for information to be passed between all variables. At the start of BP messages
express no preference for one state over another, but after enough iterations
the messages become more “opinionated,” expressing strong preferences for
certain states.

Finally, it is important to note that stereo inference using BP (or graph
cuts) is still slow relative to simpler (but less accurate) stereo algorithms,
requiring on the order of seconds (or even minutes) for each pair of images.
However, ongoing work on boosting the efficiency of these algorithms, as well
as steadily improving computer hardware, is continually increasing execution
speed (see, for instance, work on a real-time stereo BP implementation using
a graphics processing unit [14]).
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1.4 Learning MRF parameters

The MRF model in Sec. 1.2 has a number of free parameters (such as 3, 7
and p) that must be set correctly for the model to be realistic and accurate
enough to make good inferences. There are well-established procedures [8] for
learning MRF parameters from “labeled” data samples, in this case left/right
image pairs and true (“ground truth”) disparities. However, until recently
few datasets included ground truth disparity fields, which made it difficult to
learn the MRF parameters. Fortunately this obstacle is being removed now
that there are an increasing number of datasets that include ground truth,
which is determined using tools such as laser range finders (used to measure
the precise depth, and hence disparity, of nearly every pixel in a scene). In
addition, more advanced techniques have been developed [9] which allow MRF
parameters to be estimated directly from left/right image pairs, without the
need for ground truth disparity data.

1.5 More Realistic Priors

An important limitation of the MRF prior in Eq. 1.1 is that it penalizes
disparity differences in neighboring pixels, which implies a bias in favor of
fronto-parallel surfaces. Such a bias is inappropriate for many real-world
scenes with slanted surfaces. Even the toy example considered in Sec. 1.2.2 is
likely to fail if the surface is slanted: the prior may have trouble propagating
the linearly changing disparity beyond the textured region of the image. In
such cases, while the first x and y derivatives of disparity may be non-zero, the
second derivatives are zero. (Any planar surface has an associated disparity
field D, = ax + by + ¢, where r = (z,y), i.e. the disparity is linear in the x
and y image coordinates.)

Ongoing research in my laboratory seeks to overcome this fronto-parallel
bias in the context of a specific application: terrain analysis for visually im-
paired wheelchair users. In this application [15], a stereo camera is pointed at
the ground, such that the optical axis makes an angle of approximately 45°
with the ground surface. The goal is to detect terrain irregularities such as
obstacles, holes in the ground and curbs, and to convey this information to
the wheelchair user.

My colleagues and I have designed a real-time algorithm for detecting and
reporting terrain irregularities using a fast, commercially available stereo al-
gorithm that is integrated with the stereo camera hardware. The stereo al-
gorithm is based on simple window correlation rather than an MRF model
and is therefore very fast, processing many frames per second. The disadvan-
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tage of using such a fast algorithm is that it produces sparse, noisy disparity
estimates, and smooths over depth discontinuities. However, the quality of
the disparity estimates suffices for detecting large terrain irregularities such
as trees and other obstacles. When the algorithm fails to detect any signifi-
cant deviations from the dominant ground plane (e.g. sidewalk surface) in the
scene, it seems sensible to apply a more sophisticated stereo algorithm such as
an MRF model to examine the scene in more detail. A second algorithm such
as this may reveal the presence of a curb or other subtle depth discontinuity
that was missed by the first algorithm.

The slant of the ground plane means that the disparity of the ground
changes appreciably from one image row to the next, violating the fronto-
parallel assumption. One possible solution to this problem, originally pro-
posed in [16], is to warp one of the images so as to remove the disparity
corresponding to the ground plane. Thus, only scene points that lie off the
ground plane will have non-zero disparity, and planes parallel to the ground
plane (e.g. the road bordering the sidewalk) will have roughly uniform dis-
parities. In this way the image data is transformed so that the fronto-parallel
bias is appropriate.

Such a transformation may prove valuable for our application, but a more
general solution is to impose a prior that assumes that locally planar surfaces
with arbitrary slant and tilt are common. One way to enforce such a prior
is to penalize deviations of the second derivatives of the disparity field from
zero. At a minimum, such a prior must evaluate the relationship among three
consecutive pixel disparities, since a second derivative requires three consec-
utive samples to be estimated. (A second derivative of zero implies that the
three points are collinear in 3-D.) This measure is beyond the capability of the
pairwise MRF presented in this paper, and a straightforward implementation
using a more powerful MRF with ternary (triplet) interactions would be ex-
tremely computationally demanding. Recent work [17] replaces BP for such
an implementation with another energy minimization algorithm that is much
more efficient for this problem. The result is a tractable stereo algorithm with
superior performance, particularly in its ability to propagate surface informa-
tion on non-fronto-parallel surfaces.

1.6 Biological Plausibility

Several neuroscientists and psychophysicists have asked me if MRF models
such as the ones described in this paper have anything to do with biological
vision systems. While I am not an expert on biological vision, I would like
to point to work by others arguing that the MRF-BP framework (perhaps
extended to incorporate multiple depth cues) may be biologically plausible.
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From a biological perspective, perhaps the most important property of mod-
els cast in this framework is that they are fully parallelizable: one can im-
plement BP in a parallel hardware system with one computing node for each
variable in the MRF, with directed connections between neighboring variables
to represent BP messages. In each iteration of BP, messages flow along these
connections from each variable node to neighboring nodes. Lee and Mumford
[18] have argued that BP may be a model for how information is passed top-
down and bottom-up in the brain. Recent research [19] has established that
BP for MRFs with binary-valued variables (i.e. each variable can assume only
two possible states) can be formulated with continuous time updates (rather
than discrete time updates), resulting in behavior that closely matches the
dynamics of a Hopfield network. Other work [20] relaxes the assumption of
binary-valued variables and relates BP to a spiking network model.

1.7 Discussion

In this paper I have described a standard MRF framework for propagating
surface information in 3-D reconstruction in the presence of noisy and sparse
depth cues. In addition to automatically weighing prior and likelihood in-
formation according to their reliability, the framework is the basis for many
of the top-performing stereo algorithms in computer vision (see [10] and the
website associated with it, vision.middlebury.edu/stereo, which maintains up-
to-date performance rankings of state-of-the-art stereo algorithms). While the
standard prior used in MRF stereo algorithms imposes an unnatural fronto-
parallel bias, promising recent work demonstrates the value of using a more
realistic prior that accommodates the frequent occurrence of locally planar
surfaces with arbitrary slant and tilt.

Although 3-D reconstruction algorithms have improved a lot in recent years,
much work remains. Despite the recent emphasis on learning model param-
eters from training data, the images used for training and testing often con-
tain more highly textured, colorful objects than commonly occur in real-world
scenes, which casts doubt on the ability of even the top-performing algorithms
to generalize to the real-world domain. Additional performance measures may
need to be developed to reward algorithms that minimize the kinds of catas-
trophic inference errors that are all too common at present, in which the
disparities of some points are estimated incorrectly by tens of pixels.

More realistic priors will be also needed for algorithms to improve further.
Such priors will be higher-level than the ones described here, and may need
to represent coherent surfaces, such as planar and cylindrical patches with
explicit boundaries, rather than pixel-based depth or disparity fields.

Another avenue for improvement will be to integrate multiple depth cues,
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including monocular cues such as shading and texture, in addition to standard
disparity cues. (Indeed, impressive work by Saxena et al [21] estimates a depth
field from a single color image using such cues.) It will also be important to
integrate information over time (i.e. multiple video frames).

Finally, it is worth pointing out that improvements in optimization tech-
niques such as BP will be required to realize many of the proposed extensions
above, and may well influence the direction of future research.
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