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Energy functions

Energy (objective, cost, fitness, etc.) functions 

very useful in computer vision!

Allow you to formulate an inference problem in 

terms of prior constraints (hard or soft) and 

multiple forms of evidence

Natural connection with Bayesian statistics



Energy functions

Let x = unknown variables to be inferred, d = 

measured data (e.g. from image pixels)

E(x) = U(x) + L(x,d)

U(x) encodes prior constraints: what you know 

even before you see the image!

L(x,d) encodes information contained in data



Energy functions: performing 

inference

Given data d, the most likely interpretation, x*, 

of the data is obtained by minimizing E(x):

Since E(x) is the sum of U(x) and L(x,d), 

minimizing E(x) is a compromise between 

minimizing U(x) and minimizing L(x,d).

x¤ = arg min
x

E(x)



Sample application: energy function 

for image restoration
d is a noisy grayscale pixel map taken from a 

camera (plus added corruption), and x is the 

ideal pixel map that would result if there were 

no noise. 



Energy function for image restoration

Prior constraint: U(x) says that ideal pixel maps tend 
to be smooth (like a cartoon)

Evidence (likelihood) from image: L(x,d) says that 
the measured pixel intensity equals the ideal 
intensity corrupted by some error value (usually a 
small error). 

In other words, U(x) is low when x is a smooth pixel 
map and high otherwise. Similarly, L(x,d) is low 
when the maps x and d are similar to each other 
and high if they are too different.



Energy function for image restoration

Notation:

xi = ideal image intensity at pixel i

= measured image (data) intensity at pixel i

x = entire ideal image

= entire measured image

Ii

E(x) = U(x) + L(x; I)

I



Energy function for image restoration

Prior:

where

Likelihood:

where 

Here              and            are constants; sum over <ij>
refers to sum over all neighboring pixels i and j.

U(x) = ®
P

<ij> Bij(xi; xj)

Bij(xi; xj) = jxi ¡ xjj

L(x; I) = ¯
P

i Li(xi; Ii)

Li(xi; Ii) = jxi ¡ Iij

® > 0 ¯ > 0



Energy function for stereo
Stereo – given left and right images, estimate unknown 
disparity field (see animated gif)

Left Right Ground truth disp.

Prior constraint: disparity field tends to be smooth

Evidence from image: given a pixel in left image, only some 
pixels in right image (along same row of pixels, i.e. epipolar
constraint) have similar intensity

(Recall that disparity is inversely proportional to depth when 
two camera views are parallel and images are rectified.)



Energy function for stereo

Notation:

x = unknown disparity map, where xi = disparity 

at pixel i.

The pixel coordinates of pixel i are (ri, ci).

Left and right images: IL(r,c) and IR(r,c).



Energy function for stereo

What does a disparity value xi at pixel i mean? 

� (ri, ci) in right (reference) image matches with 

(ri, ci+xi) in left image.

Given this match, we expect similar intensities at 

corresponding locations:

IR(ri; ci) ¼ IL(ri; ci + xi)



Energy function for stereo

Unary term (likelihood) at one pixel penalizes 
intensity difference between right pixel and 
corresponding left pixel predicted by disparity:

Binary term (prior) between neighboring pixels i
and j penalizes disparity differences:

This prior imposes a bias towards fronto-parallel
surfaces.

Li(xi; IL; IR) = jIR(ri; ci)¡ IL(ri; ci + xi)j

Bij(xi; xj) = jxi ¡ xjj



Energy function for stereo

Putting it all together:   E(x) = U(x) + L(x,IL,IR)

where 

and 

and               are positive constants; sum 

over <ij> refers to sum over all neighboring 

pixels i and j.

L(x; IL; IR) = ¯
P

i Li(xi; IL; IR)

U(x) = ®
P

<ij> Bij(xi; xj)

® > 0 ¯ > 0



How to minimize energy function?

Generic method: gradient (steepest) descent

Given a value of x at iteration k,        , pick new value         
as follows:

where k is a small positive constant. In other words, 
follow E(x) downhill!

Problem: gets trapped in local minima unless the initial 
condition is close to the correct solution!

x(k+1) = x(k) ¡ krE(x(k))

x(k) x(k+1)



Steepest descent: getting stuck in local 

minima



Steepest descent: getting stuck in local 

minima



Markov random field (MRF)

Notice: stereo energy function is a sum of local 
terms, each of which involves just the disparity at 
one pixel (unary terms) or the disparities at two 
neighboring pixels (binary interaction terms)

This is an example of a Markov random field.

Defining feature of MRF: total energy is a sum of 
terms; only a few variables interact in each term 
(locality property)



MRF optimization

Luckily, there are several optimization techniques 
that work well for MRFs. These techniques exploit 
locality property of energy function.

Even if the techniques aren’t guaranteed to find the 
very best minimum energy, they usually find a good 
approximation.

Today we will talk about two such techniques:

simulated annealing and belief propagation.



Simulated annealing (SA)

SA is a stochastic approach to minimizing energy functions, either of 
continuous or discrete variables. (Not restricted to MRFs, but much 
more practical for MRFs in general.)

Basic idea:

- Steepest descent would work if there were a way to get unstuck out 
of local minima. 

- To get unstuck, SA adds random perturbations to steepest descent 
(like going downhill in a wind storm).

- Over time, reduce the strength of the random perturbations (like 
“cooling” the system over time) so that you don’t inadvertently get 
knocked out of a good local (or even global) minimum towards the 
end.



SA algorithm
To minimize energy function E(x):

1.) Pick an initial guess for x, and choose a starting 
“temperature” T.

2.) Propose a new state, called x’, which is a small 
perturbation of x. This proposal is obtained by making some 
sort of random, small change (a “move”) to x.

3.) If E(x’)<E(x), i.e. the proposal improves the energy, then let 
x’ be the new state (accept the proposal); otherwise, only 
accept x’ as the new state with probability:

4.) Lower the temperature T slightly (e.g. reduce it by a factor 
such as 0.9999). This defines the “annealing schedule.”

5.) Go to step 2; repeat many times, until you are happy 
enough with the energy obtained.

P = e(E(x)¡E(x0))=T



SA: comments

For an MRF, a single proposal typically only changes one (or a few) 
variables. The corresponding energy change is thus quick and easy to 
compute – this is the key to SA’s speed/effectiveness for MRFs.

Notice that proposals that “follow the gradient” are more likely to be 
accepted than those that don’t.

means that even a proposal that makes energy 
worse can be accepted; acceptance is more likely if energy isn’t too 
much worse and if T is high.

Physics connection: annealing. To get a material (e.g. a metal) in a low 
energy state, start at high temperature and slowly decrease 
temperature over time.

P = e(E(x)¡E(x0))=T



SA: example

Traveling Salesman Problem (TSP)

Given N cities on a 2D map, find a 
closed path that takes a salesman 
through all the cities (starting at 
any arbitrary city A, hitting all the 
other cities exactly once, then 
returning to A), such that the total 
distance traveled is minimized.



TSP notation

N cities with coordinates   where i = 1, 2, 3, …, N. 

Distance between city i and city j is denoted by  D(i,j), 
which is a symmetric matrix with zeros along the 
diagonal.

Definitions: a path p is a vector 

where all pi take integer values from 1 through N.

A path is valid if               only when i=j, i.e. each city is hit 
exactly once and no cities are omitted along path.

(xi; yi)

p = (p1; p2; : : : ; pN)

pi = pj



TSP energy function

Note that indices “wrap around,” so that

is the same variable as 

Technical aside: the TSP energy function isn’t 
exactly an MRF, just because of the global (non-
local) constraint that the path p must be valid. But it 
has the flavor of an MRF and is still a nice example 
for demonstrating SA. 

E(p) =
PN

i=1 D(pi; pi+1)

pN+1
p1



TSP background

TSP is an NP-complete problem, which means it is 
impractical to find the globally minimum path when 
N is large enough. SA is a reasonable approach for 
finding a good (if sub-optimal) solution, but there is 
lots of work on better techniques for TSP.

Why is TSP so hard? There are N! possible paths to 
consider, of which (N-1)!/2 them correspond to 
distinct physical paths. For instance, if N=100, then 
there are more than 10155 distinct paths.



SA for TSP

Start with any valid path.

Proposal: pick two distinct cities at random, and 
propose switching them. 

In other words: pick i and j at random, so that                    

, and swap values of pi and pj

In this way the path explored by SA will always
remain valid.

i 6= j



SA for TSP: interactive demo

http://www.heatonresearch.com/articles/64/page1.html



Belief propagation (BP)

SA is general purpose but can be prohibitively slow.

For a variety of problems, BP is much faster (and in 
some cases it even gives exact solutions in a finite 
number of iterations).

(Standard BP only works when variables are 
discrete, though some extensions to continuous 
variables have been devised.)



BP overview

BP is an iterative, deterministic algorithm in 

which neighboring variables “talk” to each other, 

passing messages such as:

“I (variable x3) think that you (variable x2) belong 

in these states with various likelihoods…”



BP convention

Usually we want to minimize E(x)

For BP discussion, let’s assume the opposite:

we want to maximize E(x)



BP overview (con’t)

After enough iterations, this series of conversations 

is likely to converge to a consensus that determines 

the value of x that maximizes the energy function 

E(x).

For each variable xi, a score for all possible states is 

calculated called the belief function.

BP algorithm summary: (a) update messages until 

convergence; (b) calculate beliefs; (c) for each 

variable, choose the state with maximum belief. 



BP overview (con’t)

Property: if MRF has no loops in connectivity, then BP 
messages are guaranteed to converge in a finite number 
of steps, and the resulting beliefs will indicate the precise 
state x that maximizes E(x).

(BP was invented for use with MRFs with tree structure, 
i.e. no loops.)

But empirically it also works well even when there are 
loops, even though message convergence is no longer 
guaranteed and the resulting beliefs are approximate.



BP: loopy or not?



BP notation

Here we restrict ourselves to pairwise MRFs – MRFs 
in which all interactions involve pairs of variables 
(no triplets or higher):

(For simplicity we don’t mention data variables 
explicitly, though they appear implicitly.)

BP can be extended to higher-order interactions, 
but the speed/memory requirements scale 
exponentially with the interaction order.

E(x) =
P

i fi(xi) +
P

<ij> gij(xi; xj)



BP messages

Message from node i to node j:

mij(xj)

High value of mij(xj)

means that node i “believes”

that node j is likely to be in state xj

Usually initialize all message 
values to zeros, or else random 
values



BP message updates

To update message from i to j, consider all 

messages flowing into i (except for message 

from j itself):



BP message update equation

Messiest equation in entire talk:

Here hi(xi) is a function of xi that includes local 

evidence for xi plus all messages flowing into xi

(excluding message from xj to xi).

mnew
ij (xj) = maxxi

gij(xi; xj) + fi(xi) +
P

k2Nbd(i)nj mold
ki (xi)

hi(xi)



BP message update schedule

Synchronous: update all messages in parallel

Asynchronous: update one message at a time

With luck, messages will converge after enough updates.

Which schedule to choose?

For MRF with chain structure, asynchronous is most 
efficient for a serial computer (up and down chain once 
guarantees convergence). Similar procedure for a tree.

For a grid (e.g. stereo on pixel lattice), people often 
sweep in an “up-down-left-right” fashion.

Choosing a good schedule requires experimentation.



BP belief read-out

Once message updates have converged, use belief 
read-out equation:

The x that maximizes E(x), x*, is then given by:

(Caveat: problems arise if two or more states tie for 
maximum energy.)

bi(xi) = fi(xi) +
P

k2Nbd(i) mki(xi)

x¤i = arg maxxi
bi(xi)



BP computational complexity

The main cost is the message updates.

If each variable xi can have one of S states, and 
there are N variables in the MRF…

then each message update (across entire MRF) has 
O(NS2) complexity.

For comparison, brute-force exhaustive search 
would have O(SN) complexity.



BP applied to stereo

Message update schedule: “left-right-up-down”

“Left” means an entire sweep that updates 

messages from all pixels to their left neighbors, 

etc.

One iteration consists of a sweep left, then right, 

then up, then down.



BP applied to stereo

Winning disparities shown by grayscale levels 

(lighter pixels have higher estimated disparity)

Before BP (i.e. disparities estimated solely by 

pixel-wise evidence):



BP applied to stereo

First iteration: disparities shown after
left,                                       right,                              up,                           down sweeps

Noticeable “streaking” after left and right sweeps, 

mostly erased by up sweep.



BP applied to stereo
Subsequent iterations:

Note:

Little change after first few iterations.

Model can be improved to give better results -- this is 
just a simple example to illustrate BP.

Ground truth

disparity



Improving BP stereo

Problem: to find subtle deviations from a ground 
plane (e.g., a curb viewed from a distance), which 
could be obscured by noisy 3D stereo 
reconstruction.

Approach: use the most appropriate prior 
(smoothness) constraint for the application.

Standard smoothness constraint penalizes any 
change in disparity between neighboring pixels. 
(Fronto-parallel bias.)



Improving BP stereo

But, if camera is at an angle w.r.t. ground, even a 

perfectly flat ground plane will not be perfectly 

“smooth,” since disparity varies over ground.



Improving BP stereo
Solution: re-formulate smoothness prior to fit problem 
domain.

The quantity that is perfectly smooth for a perfectly flat 
ground plane is the elevation (above the ground) at each 
pixel.

Convert disparity to elevation. (Given a pixel location and an 
elevation value, the corresponding disparity is easily 
calculated given knowledge of dominant ground plane.) 

Stereo MRF variables to infer are then elevation variables, and 
smoothness is imposed on elevation instead of on disparity. 



Improving BP stereo

Red rect. =

region of 

interest

Disparity smoothness               Elevation smoothness



Aside: energy functions and Bayesian 

inference

Bayes theorem: P(x|d) = P(x) P(d|x)/P(d)

This is just a re-statement of conditional 

probability, since for any variables a, b we define

P(a|b) = P(a,b)/P(b)



Aside: energy functions and Bayesian 

inference
Terms:

P(x) is the “prior” on x

P(d|x) is the “likelihood” function

P(x|d) is the “posterior” function

Maximum a posterior (MAP) estimate of x is the value that maximizes 
P(x|d) given d: the most likely interpretation given the data. The MAP 
value is the same as the value that maximizes P(x) P(d|x).

Connection with energy function:

MAP can also be obtained by maximizing E(x) = U(x) + L(x,d)

where U(x) =  log(P(x)) and L(x,d) = log(P(d|x))



Aside: energy functions and Bayesian 

inference
Advantages of Bayesian framework: 

- Prior and likelihood can be learned from training data, rather than just guessing 
functions U(x) and L(x,d)

- If prior and likelihood are correctly learned (exactly), the Bayesian model is optimal: 
it can be proved that there is no better way to do inference!

- Provides probabilistic answers, such as “how often does image intensity difference 
between neighboring pixels in image exceed the value 10?”

Disadvantages: 

- Given finite amount of training data, you still have to guess the form of the prior and 
likelihood functions, even if the function parameters are learned from data

- If training data is insufficient, Bayesian model may lead to worse inferences than 
other techniques

- Calculations may be too burdensome in practice even if they are straightforward on 
paper



Summary

Energy functions: powerful, but can be hard to 
optimize and/or slow.

MRFs strike a good balance between power and 
ease of optimization.

Optimization techniques are constantly 
improving, and faster hardware (e.g. GPUs) is 
making them increasingly practical.


