Markov random fields and
techniques for performing inference
with them

UCSC CMPE 264 guest lecture
Mar. 13, 2012

James M. Coughlan, Ph.D.

THE SMITH-KETTLEWELL
EYE RESEARCH INSTITUTE

Energy functions

Energy (objective, cost, fitness, etc.) functions
very useful in computer vision!

Allow you to formulate an inference problem in
terms of prior constraints (hard or soft) and
multiple forms of evidence

Natural connection with Bayesian statistics

Energy functions

Let x = unknown variables to be inferred, d =
measured data (e.g. from image pixels)

E(x) = U(x) + L(x,d)

U(x) encodes prior constraints: what you know
even before you see the image!

L(x,d) encodes information contained in data

Energy functions: performing
inference

Given data d, the most likely interpretation, x~,
of the data is obtained by minimizing E(x):

r™ = argmin F(x)
X

Since E(x) is the sum of U(x) and L(x,d),
minimizing E(x) is a compromise between
minimizing U(x) and minimizing L(x,d).

Sample application: energy function

for image restoration

d is a noisy grayscale pixel map taken from a
camera (plus added corruption), and x is the

ideal pixel map that would result if there were
nNo noise.

Corrupted Restoration

Energy function for image restoration

Prior constraint: U(x) says that ideal pixel maps tend
to be smooth (like a cartoon)

Evidence (likelihood) from image: L(x,d) says that
the measured pixel intensity equals the ideal
intensity corrupted by some error value (usually a
small error).

In other words, U(x) is low when x is a smooth pixel
map and high otherwise. Similarly, L(x,d) is low
when the maps x and d are similar to each other
and high if they are too different.

Energy function for image restoration

Notation:

x; = ideal image intensity at pixel i
I; = measured image (data) intensity at pixel i
x = entire ideal image

I = entire measured image

E(z)=U(x)+ L(z,I)

Energy function for image restoration
Prior: U(z) =a3 ;. Bij(ai, ;)
where Bjj(zi, z;) = |z; — 2]
Likelihood: L(z,I)=p8Y, Li(z, I)
where L;(z;, ;) = |x; — 1]

Here o >0 and >0 are constants; sum over <ijj>
refers to sum over all neighboring pixels i and .

Energy function for stereo

Stereo — given left and right images, estimate unknown
disparity field (see animated gif)

Left nght Ground truth disp.

Prior constraint: disparity field tends to be smooth

Evidence from image: given a pixel in left image, only some
pixels in right image (along same row of pixels, i.e. epipolar
constraint) have similar intensity

(Recall that disparity is inversely proportional to depth when
two camera views are parallel and images are rectified.)

Energy function for stereo

Notation:

x = unknown disparity map, where x; = disparity
at pixel J.

The pixel coordinates of pixel i are (r, c,).
Left and right images: I,(r,c) and I(r,c).

Energy function for stereo

What does a disparity value x; at pixel i mean?
- (r, c¢;) in right (reference) image matches with
(r, c+x;) in left image.

Given this match, we expect similar intensities at
corresponding locations:

IR(TZ'? Ci) ~ IL(Tia Ci 1 IZ)

Energy function for stereo

Unary term (likelihood) at one pixel penalizes
intensity difference between right pixel and
corresponding left pixel predicted by disparity:

Li(zi, I, Ir) = |Ir(ri,c;) — I(rs, ¢ + ;)|

Binary term (prior) between neighboring pixels i
and j penalizes disparity differences:

Bij(wi, xj) = |v; — x|

This prior imposes a bias towards fronto-parallel
surfaces.

Energy function for stereo

Putting it all together: E(x) = U(x) + L(x,1,1;)
where
U(r) = a Z<z’j> Bij(i, z;)

ana L(CC,IL,IR) :621 Li(xialLalR)

a > (0 and 3 > () are positive constants; sum
over <ij> refers to sum over all neighboring
pixels i and .

How to minimize energy function?

Generic method: gradient (steepest) descent

Given a value of x at iteration k, z(*), pick new value)

as follows:

g FH) =) _ kv E(20)

where k is a small positive constant. In other words,
follow E(x) downhill!

Problem: gets trapped in local minima unless the initial
condition is close to the correct solution!

Steepest descent: getting stuck in local
minima

A\/\/\
&/\/\
~SN\

Steepest descent: getting stuck in local
minima

&/\/\
&/\//\
&/\/\

Markov random field (MRF)

Notice: stereo energy function is a sum of local
terms, each of which involves just the disparity at
one pixel (unary terms) or the disparities at two
neighboring pixels (binary interaction terms)

This is an example of a Markov random field.

Defining feature of MRF: total energy is a sum of
terms; only a few variables interact in each term
(locality property)

MRF optimization

Luckily, there are several optimization techniques
that work well for MRFs. These techniques exploit
locality property of energy function.

Even if the techniques aren’t guaranteed to find the
very best minimum energy, they usually find a good
approximation.

Today we will talk about two such techniques:
simulated annealing and belief propagation.

Simulated annealing (SA)

SA is a stochastic approach to minimizing energy functions, either of
continuous or discrete variables. (Not restricted to MRFs, but much
more practical for MRFs in general.)

Basic idea:

- Steepest descent would work if there were a way to get unstuck out
of local minima.

- To get unstuck, SA adds random perturbations to steepest descent
(like going downhill in a wind storm).

- Over time, reduce the strength of the random perturbations (like
“cooling” the system over time) so that you don’t inadvertently get
knocked out of a good local (or even global) minimum towards the
end.

SA algorithm

To minimize energy function E(x):

1.) Pick an initial guess for x, and choose a starting
“temperature” T.

2.) Propose a new state, called x’, which is a small
perturbation of x. This proposal is obtained by making some
sort of random, small change (a “move”) to x.

3.) If E(x’)<E(x), i.e. the proposal improves the energy, then let
x’ be the new state (accept the proposal); otherwise, only
accept x’ as the new state with probability: P = ¢(F@)-EE)/T

4.) Lower the temperature T slightly (e.g. reduce it by a factor
such as 0.9999). This defines the “annealing schedule.”

5.) Go to step 2; repeat many times, until you are happy
enough with the energy obtained.

SA: comments

For an MREF, a single proposal typically only changes one (or a few)
variables. The corresponding energy change is thus quick and easy to
compute — this is the key to SA’s speed/effectiveness for MRFs.

Notice that proposals that “follow the gradient” are more likely to be
accepted than those that don’t.

P = ¢(E(@)—-E@))/T means that even a proposal that makes energy
worse can be accepted; acceptance is more likely if energy isn’t too
much worse and if T is high.

Physics connection: annealing. To get a material (e.g. a metal) in a low
energy state, start at high temperature and slowly decrease
temperature over time.

SA: example

Traveling Salesman Problem (TSP)

Given N cities on a 2D map, find a
closed path that takes a salesman
through all the cities (starting at
any arbitrary city A, hitting all the
other cities exactly once, then

returning to A), such that the total | _

distance traveled is minimized.

CZECH
REPUBLIC

TSP notation

N cities with coordinates (z;,y;) wherei=1, 2, 3, ..., N.

Distance between city i and city j is denoted by D(i,j),
which is a symmetric matrix with zeros along the
diagonal.

Definitions: a path p is a vector p = (p1,p2,...,0N)
where all p; take integer values from 1 through N.

A pathis valid if »: =p; only when i=j, i.e. each city is hit
exactly once and no cities are omitted along path.

TSP energy function

E(p) = fo\; D(p;, pi+1)

Note that indices “wrap around,” so that py
is the same variable as Pq

Technical aside: the TSP energy function isn’t
exactly an MREF, just because of the global (non-
local) constraint that the path p must be valid. But it
has the flavor of an MRF and is still a nice example

for demonstrating SA.

TSP background

TSP is an NP-complete problem, which means it is
impractical to find the globally minimum path when
N is large enough. SA is a reasonable approach for
finding a good (if sub-optimal) solution, but there is
lots of work on better techniques for TSP.

Why is TSP so hard? There are N! possible paths to
consider, of which (N-1)!/2 them correspond to
distinct physical paths. For instance, if N=100, then
there are more than 10%>> distinct paths.

SA for TSP

Start with any valid path.

Proposal: pick two distinct cities at random, and
propose switching them.

In other words: pick i and j at random, so that
1 # j, and swap values of p; and p;

In this way the path explored by SA will always
remain valid.

SA for TSP: interactive demo

http://www.heatonresearch.com/articles/64/pagel.html

Simulated Annealing

Instructions

1. Enter the number of dities the salesman much cross through.

2. Enter a number for the starting temperature. The
temperature is an arbitrary number and does not refer to
Celsius or Fahrenheit. 10 is a good enough starting
temperature.

3. Enter a delta value, this is the amount by which the
temperature wil fall each cycle. This value is a ratio-percent,
for example .99 wil cause the temperature to be 99% of what
is was before, which means to decrease by 1% each time.

4. Click Start, and watch simulated annealing try and find the
optimal path.

Solution found after 180 cycles.

Start | # Cities: 100 Temp: 10 Delta: 099

Belief propagation (BP)
SA is general purpose but can be prohibitively slow.

For a variety of problems, BP is much faster (and in
some cases it even gives exact solutions in a finite
number of iterations).

(Standard BP only works when variables are
discrete, though some extensions to continuous
variables have been devised.)

BP overview

BP is an iterative, deterministic algorithm in
which neighboring variables “talk” to each other,
passing messages such as:

“I (variable x;) think that you (variable x,) belong
in these states with various likelihoods...”

BP convention

Usually we want to minimize E(x)

For BP discussion, let’s assume the opposite:

we want to maximize E(x)

BP overview (con’t)

After enough iterations, this series of conversations
is likely to converge to a consensus that determines

the value of x that maximizes the energy function
E(x).

For each variable x; a score for all possible states is
calculated called the belief function.

BP algorithm summary: (a) update messages until
convergence; (b) calculate beliefs; (c) for each
variable, choose the state with maximum belief.

BP overview (con’t)

Property: if MRF has no loops in connectivity, then BP
messages are guaranteed to converge in a finite number
of steps, and the resulting beliefs will indicate the precise
state x that maximizes E(x).

(BP was invented for use with MRFs with tree structure,
i.e. no loops.)

But empirically it also works well even when there are
loops, even though message convergence is no longer
guaranteed and the resulting beliefs are approximate.

BP: loopy or not?

O & & ¢

A

BP notation

Here we restrict ourselves to pairwise MRFs — MRFs
in which all interactions involve pairs of variables
(no triplets or higher):

E(x) =)_; filzi) + Z<ij> 9ij(Ti, Tj)

(For simplicity we don’t mention data variables
explicitly, though they appear implicitly.)
BP can be extended to higher-order interactions,

but the speed/memory requirements scale
exponentially with the interaction order.

BP messages

Message from node j to node j:
m;{x;)

High value of m;(x))
means that node i “believes” .
that node j is likely to be in state x; EEBEEEE

Usually initialize all message
values to zeros, or else random
values

BP message updates

To update message from i to j, consider all
messages flowing into i (except for message

from j itself):
{m’dpi(xi)
node/ —> nodej

Aﬂmqi(x i)

node p

node q

BP message update equation

Messiest equation in entire talk:

new old

miy " (x;) = maxe,; gij (i, ©5) + fi(%i) + D peNpa@)\; Mei (Li)
_ /
e

hi(z;)

Here h(x;) is a function of x; that includes local
evidence for x; plus all messages flowing into x;
(excluding message from x; to x,).

BP message update schedule

Synchronous: update all messages in parallel
Asynchronous: update one message at a time
With luck, messages will converge after enough updates.

Which schedule to choose?

For MRF with chain structure, asynchronous is most
efficient for a serial computer (up and down chain once
guarantees convergence). Similar procedure for a tree.

For a grid (e.g. stereo on pixel lattice), people often
sweep in an “up-down-left-right” fashion.

Choosing a good schedule requires experimentation.

BP belief read-out

Once message updates have converged, use belief
read-out equation:

bi(xi) = fi(i) + XpeNbag) Mki(2i)
The x that maximizes E(x), x*, is then given by:

T} = arg maxy, b;(x;)

(Caveat: problems arise if two or more states tie for
maximum energy.)

BP computational complexity

The main cost is the message updates.

If each variable x; can have one of § states, and
there are N variables in the MRF...

then each message update (across entire MRF) has
O(NS?) complexity.

For comparison, brute-force exhaustive search
would have O(S") complexity.

BP applied to stereo

Left Right

Message update schedule: “left-right-up-down”

“Left” means an entire sweep that updates
messages from all pixels to their left neighbors,

etc.

One iteration consists of a sweep left, then right,
then up, then down.

BP applied to stereo

Winning disparities shown by grayscale levels
(lighter pixels have higher estimated disparity)

Before BP (i.e. disparities estimated solely by
pixel-wise evidence):

I."'.
N
3

BP applied to stereo

First iteration: disparities shown after

left, right, down sweeps

Noticeable “streaking” after left and right sweeps,
mostly erased by up sweep.

BP applied to stereo

Subsequent iterations:
2

. 3 4 5

.. 20

Ground truth
disparity

Note:
Little change after first few iterations.

Model can be improved to give better results -- this is
just a simple example to illustrate BP.

Improving BP stereo

Problem: to find subtle deviations from a ground
plane (e.g., a curb viewed from a distance), which
could be obscured by noisy 3D stereo
reconstruction.

Approach: use the most appropriate prior
(smoothness) constraint for the application.

Standard smoothness constraint penalizes any
change in disparity between neighboring pixels.
(Fronto-parallel bias.)

Improving BP stereo

But, if camera is at an angle w.r.t. ground, even a
perfectly flat ground plane will not be perfectly
“smooth,” since disparity varies over ground.

Cameras

Improving BP stereo

Solution: re-formulate smoothness prior to fit problem
domain.

The quantity that is perfectly smooth for a perfectly flat
ground plane is the elevation (above the ground) at each
pixel.

Convert disparity to elevation. (Given a pixel location and an
elevation value, the corresponding disparity is easily
calculated given knowledge of dominant ground plane.)

Stereo MRF variables to infer are then elevation variables, and
smoothness is imposed on elevation instead of on disparity.

Improving BP stereo

Red rect. =
region of
Interest

Disparity smoothness Elevation smoothness

Aside: energy functions and Bayesian
inference

Bayes theorem: P(x/d) = P(x) P(d[x)/P(d)

This is just a re-statement of conditional
probability, since for any variables a, b we define

P(a|b) = P(a,b)/P(b)

Aside: energy functions and Bayesian
inference

Terms:

P(x) is the “prior” on x
P(d[x) is the “likelihood” function
P(x[d) is the “posterior” function

Maximum a posterior (MAP) estimate of x is the value that maximizes
P(x[d) given d: the most likely interpretation given the data. The MAP
value is the same as the value that maximizes P(x) P(d [x).

Connection with energy function:

MAP can also be obtained by maximizing E(x) = U(x) + L(x,d)
where U(x) = log(P(x)) and L(x,d) = log(P(d[x))

Aside: energy functions and Bayesian
inference

Advantages of Bayesian framework:

Prior and likelihood can be learned from training data, rather than just guessing
functions U(x) and L(x,d)

If prior and likelihood are correctly learned (exactly), the Bayesian model is optimal:
it can be proved that there is no better way to do inference!

Provides probabilistic answers, such as “how often does image intensity difference
between neighboring pixels in image exceed the value 10?”

Disadvantages:

Given finite amount of training data, you still have to guess the form of the prior and
likelihood functions, even if the function parameters are learned from data

If training data is insufficient, Bayesian model may lead to worse inferences than
other techniques

Calculations may be too burdensome in practice even if they are straightforward on
paper

Summary

Energy functions: powerful, but can be hard to
optimize and/or slow.

MRFs strike a good balance between power and
ease of optimization.

Optimization techniques are constantly
improving, and faster hardware (e.g. GPUs) is
making them increasingly practical.

