Detecting and Locating Crosswalks using a Camera Phone

Volodymyr Ivanchenko, James Coughlan and Huiying Shen
The Smith-Kettlewell Eye Research Institute
San Francisco, CA 94115

vivanchenko@ski.org

Abstract

Urban intersections are the most dangerous parts of
a blind or visually impaired person’s travel. To address
this problem, this paper describes the novel “Crosswatch”
system, which uses computer vision to provide informa-
tion about the location and orientation of crosswalks to a
blind or visually impaired pedestrian holding a camera cell
phone. A prototype of the system runs on an off-the-shelf
Nokia N95 camera phone in real time, which automatically
takes a few images per second, analyzes each image in a
fraction of a second and sounds an audio tone when it de-
tects a crosswalk. Real-time performance on the cell phone,
whose computational resources are limited compared to the
type of desktop platform usually used in computer vision, is
made possible by coding in Symbian C++. Tests with blind
subjects demonstrate the feasibility of the system.

1. Introduction

Urban intersections are among the most dangerous parts
of a blind person’s travel. While most blind pedestrians
have little difficulty walking to intersections using standard
orientation and mobility skills, it is very difficult for them
to align themselves precisely with the crosswalk. Proper
alignment is necessary for them to enter the crosswalk in
the right direction and avoid the danger of straying outside
the crosswalk.

We have improved and simplified the algorithm we de-
scribed in [2] for detecting and localizing zebra (striped)
crosswalks in images so that it now runs in real-time on the
cell phone platform. The new algorithm uses factor graphs
(see Sec. 3.2 below) with higher-order interactions than the
pairwise Markov random fields used in the previous algo-
rithm, with interactions that have been learned from training
data (rather than being chosen by trial and error), and it has
been optimized for real-time performance on the Symbian
cell phone platform running Symbian C++.

The limited memory and CPU power of an embedded
system such as the cell phone platform limits the amount

Figure 1. Left, camera cell phone held by blind user. Right,
schematic diagram shows aerial view of zebra crosswalk and two
users holding cell phone system: cell phone on left is aligned with
crosswalk and makes an audio tone; cell phone on right is not
aligned and makes no sound.

of processing that can be performed by a real-time com-
puter vision algorithm, and has constrained the design and
implementation of our algorithm. We have implemented
a prototype of the algorithm in Symbian C++ on an off-
the-shelf Nokia N95 cell phone that functions within these
constraints. The algorithm processes approximately three
frames per second, and an audio tone is sounded in any
frame in which a crosswalk is detected. By panning the cell
phone left and right, the user can determine if any cross-
walk is visible and if so, align him/herself to it (see Fig. 1).
Tests demonstrate that blind subjects are able to hold the
cell phone steady enough to take usable pictures [3] and that
the system is effective in helping them to determine whether
or not a crosswalk is visible, and if so to orient themselves
to it.

This is the first portable system we are aware of that
provides real-time orientation information at traffic inter-
sections based on visual cues — i.e. the existing crosswalk
patterns already used by sighted pedestrians. The system
has several advantages that make it a promising assistive
technology tool. First, no added infrastructure is needed, as
with systems such as Audible Pedestrian Signals (audio sig-
nals, located at some crosswalks, that sound when it is safe
to cross) or other guidance systems requiring on-site instal-
lation (such as Bluetooth-based beaconing [1]). Second, the

system runs on standard off-the-shelf cell phone technology
— which is inexpensive, portable, multipurpose, and becom-
ing nearly ubiquitous. Finally, the cell phone platform is a
mainstream consumer product which raises none of the cos-
metic concerns that might arise with other assistive technol-
ogy requiring custom hardware.

2. Related work

Only a small amount of work has been done on algo-
rithms for detecting zebra crosswalks for the blind and vi-
sually impaired [10, 6, 7, 9]. Past algorithms have been
tested on fairly simple images in which the Hough trans-
form is sufficient for extracting the borders of the cross-
walk stripes. However, in real-world conditions in which an
image of crosswalk stripes contains clutter, shadows, sat-
uration effects, slightly curved stripes and occlusions, the
Hough transform often fails to extract the desired lines. In-
stead of relying on a tool for grouping structures globally
such as the Hough transform, we use a more flexible, lo-
cal grouping process based on figure-ground segmentation
using graphical models, drawing on past work [2] on cross-
walk detection.

Our algorithm extracts straight-line segments from the
image and applies simple grouping criteria such as paral-
lelism, edge polarity and color consistency to construct can-
didate groupings of segments into the figure. The problem
of assigning each segment to figure or ground is formulated
using a factor graph, which is a graphical model (Markov
random field) that expresses interactions among sets of two
or more variables. In this case the factor graph consists of
variable nodes, one for each straight-line segment extracted
from the image, and interactions among neighboring sets
of two to four nodes. Each node has one of two possible
unknown states, figure or ground; the most likely combina-
tion of states for each node in the graph is inferred using
factor BP (belief propagation), which is a generalization of
standard BP (typically used on graphs with pairwise inter-
actions).

Figure-ground segmentation has been successfully ap-
plied [12, 5] to the detection and segmentation of spe-
cific objects or structures of interest from the background.
Standard techniques such as deformable templates [13] are
poorly suited to finding some targets, such as printed text,
stripe patterns, vegetation or buildings, particularly when
the targets are regular or texture-like structures with widely
varying extent, shape and scale. The cost of making the de-
formable template flexible enough to handle such variations
in structure and size is the need to estimate many template
parameters, which imposes a heavy computational burden.
In these cases it seems more appropriate to group target fea-
tures into a common foreground class, rather than seek a
detailed correspondence between a prototype and the target
in the image, as is typically done with deformable template

and shape matching techniques.

We formulate our approach in a general figure-ground
segmentation framework and apply it to the problem of
finding zebra crosswalks in urban scenes. Future research
will focus on extending the approach to find two-stripe
crosswalks, which are another common type of crosswalk.
(These crosswalk patterns consist of two narrow white
stripes bordering the crosswalk, perpendicular to the stripes
in a zebra crosswalk; the small number of features makes
the two-stripe crosswalk much more challenging to detect.)

3. Algorithm

Our algorithm consists of two main stages: feature ex-
traction, in which straight-line edge segments are extracted
from the image, and figure-ground segmentation, which as-
signs a figure or ground label to each feature. Figure-ground
segmentation is performed as follows. First, a factor graph
is constructed, in which one variable with unknown state
(figure or ground) corresponds to each segment. Second,
factor graph belief propagation (BP) is performed to infer
the most likely unknown states in the factor graph. Fea-
tures that BP classifies as figure are the ones the algorithm
believes to lie on a crosswalk, and all other features are as-
signed to the background. If enough features of sufficient
length are classified as figure, then the algorithm decides
that a crosswalk is present in the image, and sounds a tone
to communicate its presence to the user.

3.1. Feature Extraction

The first stage of our algorithm is the extraction of
straight-line segment features from the image. Straight-line
edge segments were chosen as useful features to extract be-
cause they appear many times in a typical crosswalk and
form a compact representation of the borders of the painted
zebra crosswalk pattern.

Segment extraction is done in several stages that in-
clude blurring the image, edge extraction and edge pixel
grouping. The original color image (photographed by the
Nokia N95 cell phone) has resolution 320 x 240 pixels. A
grayscale version of the original color image is created and
then slightly blurred with a [1, 2, 1] kernel in horizontal
and then vertical directions. Horizontal and vertical edge
maps are then computed by applying horizontal and verti-
cal derivative filters with kernels [-1, 0, 1] and then taking
the absolute value of the derivatives. Non-maximal suppres-
sion for each of the two edge maps is performed by setting
all values of the edge map to 0 except at local maxima of
the horizontal/vertical derivatives; additionally, any values
from the resulting map less than a certain threshold are also
set to 0. A single edge map is computed as the pixel-wise
maximum of the horizontal and vertical edge maps. The re-
sulting map is grayscale and sparse (i.e. many pixel values

are 0).

In order to extract line segments we perform a simple
edge pixel grouping procedure that tracks non-zero edge
points in a roughly horizontal direction (within £45° of hor-
izontal) from left to right, and groups connected sets of non-
zero edge pixels that form a sufficiently straight line in this
direction. (Note that our edge grouping procedure is not de-
signed to detect line segments that are within £45° of ver-
tical; restricting our search to near-horizontal segments suf-
fices for typical viewing conditions, in which the camera is
held roughly horizontal, and reduces the amount of compu-
tation.) Next we attempt to close gaps between neighboring
sets of grouped pixels when the gaps are sufficiently small
(up to 5 pixels) and the pixel groups are roughly collinear.

The resulting set of segment candidates (an example is
shown in Fig. 2) is pruned to discard any segment with
length less than 20 pixels; usually we obtain up to 100 seg-
ments in a 320x240 image. Each segment is represented by
the pixel coordinates of its two endpoints.

Figure 2. Left, picture of zebra crosswalk. Right, straight-line seg-
ment features extracted from image (superimposed in white).

3.2. Grouping of Features Using Factor Graphs

Once straight-line segments have been extracted from
the image, we use a factor graph model to group them
into figure and ground, representing crosswalk and back-
ground, respectively. In this framework, cues describing
relationships among neighboring segments are used to pro-
vide evidence about whether the segments are likely to be-
long to figure or ground. Such evidence is formulated statis-
tically based on the empirical differences between segments
belonging to crosswalks and those belonging to the back-
ground. For instance, neighboring segments on the cross-
walk tend to be nearly parallel in the image — more parallel,
on average, than similar segment pairs drawn from the back-
ground. The differential properties of such cues are learned
from training data in which all segments have been man-
ually labeled as figure or ground. The evidence from all
the cues is combined in a factor graph, which is a graphical
model (i.e. Markov random field, or MRF) that expresses
the joint distribution of the figure/ground labels of each seg-
ment in the image given the evidence from all the cues.

We now describe the factor graph mathematically. We
are given n segments that we have extracted from the image.
The unknown states we want to infer are x1,xs,...,ZTn,
where z; = 0 or x; = 1 mean that segment ¢ has
state 0 (ground) or 1 (figure), respectively; the global
state assignments of all segments are denoted by X =
(x1,29,...,2,). A simple i.i.d. prior is defined on X:
P(X) = [I-, Pi(z;) where Pi(z; = 0) = po and
Pi(x; = 1) = 1 — pg. From labeled training data we esti-
mate that py = 0.65 since most segments belong to ground.

Next we describe the likelihood function for the spe-
cial case of a binary cue, which is a measurement that ex-
presses a grouping relationship between two segments; it
is straightforward to generalize to multiple cues with ar-
bitrary arities (i.e. the number of segments grouped in
a single cue measurement). A simple example of a bi-
nary cue used in our crosswalk algorithm is the absolute
value of the orientation difference between two neighbor-
ing segments, which we denote C;; for segments ¢ and
7. As mentioned above, segment pairs on the same cross-
walk tend to nearly parallel, whereas segment pairs else-
where in the image are less likely to be parallel. This ten-
dency is expressed in terms of the conditional distribution
P(Cij|.1‘i,l‘j). We define Pon(Cij) = P(C’ij\xixj = 1)
and P,;;(C;i;) = P(Cyjlzix; = 0); note that the prod-
uct z;x; = 1 implies that both segments ¢ and j belong to
figure, and z;x; = 0 implies that one or both segments be-
long to ground. Both distributions have been learned from
labeled training data, and are shown in Fig. 3. Differences
between the distributions P,,,(.) and P,s(.) provide evi-
dence for a pair of segments belonging to figure or ground,
which is reflected in log[Py, (C;;)/ Pos ¢ (Cij)], also shown
in Fig. 3.

0Pl Por)

as| N

Figure 3. Top two panels: P,n(.) and P,sf(.) distributions
for the parallelism cue, which measures the absolute value
of the orientation difference between two segments. Bottom,
log Por(.)/Poys(.). In all three panels, the horizontal axis is the
orientation difference in degrees.

If we assume that the cues are conditionally independent
across the image (and also that multiple cues are condition-

ally independent in the general case), then we can express
the posterior distribution P(X|C), where C' denotes the set
of cue values C;; for all neighboring segments 7 and j, as
follows:

P(X|C) x P(X HP Cijlwi, ;) (1)

where the product over (ij) denotes all pairs of
neighboring segments, and the constant of propor-
tionality depends only on C. It is straightforward to
show that []; P(Cijlzi,z;) can be re-expressed as
[Ti) Pors(CiII L jiasm;=1 Fon(Cis)/ Poss(Cij)l,
where the restriction x;2; = 1 in the product ensures that
only those segment pairs whose nodes both belong to figure
are included. Since the term [[, ; P, (C};) is independent
of X, the MAP (maximum a posterior) can be determined
by maximizing the following expression:

RXIC)=P(X) [Pon(Cij)/Poss(Cij) ()

(ij):wsw;=1

Taking logarithms, an equivalent way of estimating the
MAP is to maximize the following function:

(071])
1(Cij)

3)
where the product z;x; ensures that the sum is taken only
over those segment pairs whose nodes both belong to figure.
We will use factor graph BP to estimate the MAP of this
function, as described in Sec. 3.4.

log R(X|C) = ZlogP T —i—lex] logP

3.3. Multiple Cues in Factor Graph

The previous section described the factor graph frame-
work for just one cue, parallelism, which is an arity-2 (i.e.
binary) cue. In this section we describe seven other cues that
are used, as well as an outline of how the factors are con-
structed from the extracted segments. All eight cues were
explored and refined by evaluating a set of candidate cues:
for each candidate, P,,(.) and P,s¢(.) distributions were
learned from training data and an ROC curve was calcu-
lated to determine the cue’s power to discriminate between
on- and off-crosswalk distributions.

Note that for a cue C of any arity m, P,,,(C) is the distri-
bution of the cue conditioned on all m segments contained
within it belonging to figure, and P, ;(C) is the distribution
conditioned on one or more segments belonging to ground.
Also note that Eq. 3 should be augmented by one term for

each additional cue, for instance a ternary cue Cj;, requires

an additional term), .y z;2 2 log P";((i(é?’;))
ij

In our resulting algorithm, two arity-1 (unitary) cues are
used, length and edge gradient magnitude. The length cue
exploits the fact that segments that lie on the crosswalk
stripe edges tend to be longer than those from the back-
ground. The edge gradient magnitude measures the aver-
age magnitude of the intensity difference on both sides of
the segment; segments on crosswalks tend to have stronger
edge gradients than those off the crosswalk.

Three other arity-2 (binary) cues are used in addition to
parallelism: horizontal overlap and two color consistency
cues. In all cases the binary cues are applied only to seg-
ments of opposite edge polarity, i.e. segments for which
the intensity gradients point in opposite directions, which is
appropriate for segments bordering both sides of a painted
stripe (or a gap between stripes). Horizontal overlap refers
to the number of pixel columns shared by a pair of seg-
ments; under typical viewing conditions, segment pairs in-
side a crosswalk have a high degree of horizontal overlap.

The color consistency cues are designed to capture
the consistency of color among pixels inside and outside
stripes. Unlike absolute RGB color cues, color consistency
is robust to variable lighting conditions and to the unknown
intrinsic color of the crosswalk stripes (either yellow or
white). Both cues are computed using RGB samples taken
just above and just below the segment.

Half of the RGB samples are “paint” pixels (correspond-
ing to white or yellow crosswalk paint) and the other half
are “pavement” pixels (corresponding to the dark pavement
area between stripes) — the polarity of the segment deter-
mines which is which, since paint is always brighter than
pavement. The first color consistency cue measures the
RGB consistency of pixels within each region; the second
cue measures the consistency of RGB gradient values (i.e.
RGB differences across both sides of a segment) at points
along both segments.

One arity-3 (ternary) cue is used, which we call “stripe
width monotonicity.” This cue exploits the fact that under
typical viewing conditions, the width of stripes (and gaps
between stripes) decreases towards the top of the image,
where the crosswalk is farther from the camera. The cor-
responding cue is calculated as the difference between the
upper and lower vertical widths among the three segments
in the factor.

Following the work of [9], one arity-4 cue is used,
the cross ratio, which is a geometric quantity invariant to
viewing perspective. This cue exploits our knowledge that
stripes (and gaps between stripes) have equal width in three
dimensions, which allows us to compute an ideal cross ra-
tio. Specifically, consider a line drawn along the crosswalk
plane that intersects any two adjacent stripes (or gaps); this
line will intersect the stripe edges in four collinear points
(see Fig. 4(a)), resulting in a cross ratio value of 1/4. A
similar cross ratio should be obtained for any line in the im-

age plane that intersects the crosswalk; the absolute value
of the difference between the calculated cross ratio and the
predicted value of 1/4 is the arity-4 cue that we use.

Figure 4. Left, illustration of cross ratio cue, computed with re-
spect to a line that intersects four crosswalk stripe edges. Right,
results of running full algorithm for the image shown in Fig. 2.
Segments correctly classified as figure are shown in green; dashed
blue indicates segments incorrectly classified as ground.

For both the arity-3 and arity-4 factors, we note that con-
secutive segments are constrained to have alternating polar-
ities, which generalizes the opposite polarity requirement
described for the arity-2 cues.

Next we describe how all the factors for each cue are
constructed. First, all pairs of neighboring segments with
opposite polarities are considered; only pairs with suffi-
cient degrees of parallelism and overlap are chosen as can-
didate factors. For each candidate pair so obtained, can-
didate arity-3 factors are generated by choosing additional
segments that satisfy the alternating polarity constraint and
don’t grossly violate the stripe width monotonicity con-
straint.

Each candidate arity-3 factor is subjected to an “anti-
jump” test that maximizes the probability that the three seg-
ments are consecutive. This test samples RGB values in the
two regions between the upper and lower segment pairs; if
the RGB values are clustered tightly enough about a cen-
troid in each region and there is minimal overlap between
the two clusters, then the factor passes the test. Without
such a test, too many factors with non-consecutive segments
would be chosen (i.e. segments that could be separated by
several stripes), which would contaminate some cues (such
as the cross ratio) whose values become meaningless if the
segments they are derived from are not consecutive.

Finally, the surviving arity-3 factors are combined with
additional segments to form candidate arity-4 factors. For
each candidate arity-4 factor (with segments ¢, j, k and [),
both triplets (i, j, k) and (7, k, [) must survive the anti-jump
test, and in addition the four segments must have a cross
ratio sufficiently close to 1/4, in order for the candidate to
be accepted as a factor.

Note that all P,,,(.) and P,s¢(.) distributions are mea-
sured using factors constructed from the above procedure,
obtained from a set of training images. Thus the form of

P,,(.) and P,s(.) depend not only on the training images
but also on the exact procedure for constructing factors, and
this procedure affects the range of training cue values that
are represented in P,,,(.) and P, s(.). Naturally, the same
factor selection procedure is used for performing inference
on images.

3.4. Factor Graph BP

The MAP estimate is the value of X that maximizes the
log posterior, given in Eq. 3. We use factor BP [4], which is
a generalization of standard BP [11] (typically formulated
for graphical models with pairwise interactions, i.e. arity-2
factors) for use with factor graphs. The MAP is estimated
by performing the max-product (max-sum in the log domain
of Eq. 3) version of factor BP. A serial (asynchronous) mes-
sage update schedule is used, with several sweeps of the
entire factor graph to attain convergence.

The messages in max-sum factor BP determine the “be-
lief” functions, which estimate the state (figure or ground)
that is more likely for each segment in the graph. (These
beliefs are not direct estimates of marginal probabilities,
which would be provided by sum-product BP.) Fig. 4(b)
shows the result of running factor BP, with segments cor-
rectly estimated to belong to figure shown in green. We ob-
tained better results by ignoring the beliefs of any segments
that were not part of any arity-4 factors, and classifying such
segments as ground. The rationale for this simplification is
that arity-1, -2 and -3 factors are much less reliable than
arity-4 factors. (Even when a segment is “discarded” in this
way, the lower arity factors still participate in BP.)

3.5. Experimental Results

Our algorithm was implemented in Matlab (the cell
phone implementation is described in the next section). The
dataset of training images consisted of 25 images of urban
scenes containing crosswalks (whose segments were man-
ually labeled as figure or ground using a mouse) and 25
images of urban scenes containing no crosswalk (all seg-
ments in these images were labeled as ground). Each image
was photographed by the N95 cell phone and had resolution
320x240. Some sample results are shown in Fig. 5, includ-
ing one result for a white crosswalk.

The algorithm was tested on a set of 90 images not con-
tained in the training set, 30 of which contained crosswalks
and 60 of which did not (this proportion is typical of images
obtained by a subject searching for a crosswalk). Some of
the images were photographed by blind subjects and some
by sighted users. We evaluated the performance of the al-
gorithm in two ways.

The first was to measure the true positive and false posi-
tive rates, which are computed in terms of the segments ex-
tracted from each image, and which were determined to be
72% and 0.5%, respectively. (In this measure, each segment

in the entire image test set has equal weight regardless of
length.) Note that imperfect extraction of segments means
that some segments that should be extracted are missing;
our true positive and false positive rates do not reflect this
problem.

Naturally, with a different choice of belief threshold we
could increase the true positive rate at the expense of also in-
creasing the false positive rate; however, for the purposes of
finding a crosswalk it is important to avoid false positives,
especially since the cell phone user will be taking many im-
ages of each crosswalk. Conversely, a less-than-perfect true
positive rate is acceptable when multiple images are taken
of a crosswalk, since the crosswalk is likely to be detected
in at least several of these images.

Figure 5. Results of running algorithm: input images on left, re-
sults on right. Segments correctly classified as figure are shown
in green; dashed blue indicates segments incorrectly classified as
ground. Note that one crosswalk is white and the other are yellow.

Next, we implemented the following rule to decide
whether or not a crosswalk was present in each image. Each
segment (if any) classified by factor BP as figure contributes
a number equal to the length of the segment multiplied by
an estimate of the probability that the segment is in the fig-
ure state. (This estimate, which would ordinarily be directly

calculated by the beliefs calculated in sum-product BP, is
an approximation derived from the non-probabilistic beliefs
produced by the max-product version of BP that we are us-
ing.) The numbers are totaled to arrive at a final score, and
a decision that a crosswalk is present is issued if and only
if the score is larger than some (empirically chosen) thresh-
old. Note that a crosswalk can be detected in this way even
when many segments are missed by the algorithm (either
because the factors containing them were noisy or because
they were not extracted as features from the image).

Given the test set of 90 images, only one image was mis-
classified (the crosswalk was not detected in one of the 30
images containing crosswalks), shown in Fig 6(a). Fig 6(b)
shows the only image in the test set without a crosswalk that
generated any false positive segments. This performance
measure is more subjective than the previous one since it is
unclear how an image containing only a very small amount
of visible crosswalk should be classified. Nevertheless, this
measure more directly measures the success of the algo-
rithm in the context of guiding a user to a crosswalk, and
helping align him/her to the crosswalk.

]
——
=

Figure 6. Left, the only image in the test set that was misclassified
as not containing a crosswalk. Right, the only image in the test
set without a crosswalk that generated any false positive segments
(but too few for the entire image to be misclassified), shown in red.

Both performance measures can be improved in the fu-
ture by implementing a high-level model verification stage.
Such a process would fit the detected segments to a global
model of a crosswalk that explicitly expresses the camera
viewing angle (and perhaps metric properties such as dis-
tances if we assume known crosswalk dimensions) relative
to the crosswalk. This would compensate for false posi-
tive and false negative segments to arrive at a more reliable
crosswalk/no-crosswalk classification. The model could
also estimate the location of the border(s) of the crosswalk
(if visible) and give the user quantitative orientation infor-
mation (e.g. “the crosswalk is at 11 o’clock”).

4. Cell Phone Implementation

A prototype version of our algorithm was implemented
in Symbian C++ on the Nokia N95 cell phone (see Fig. 7),
which we call “Crosswatch.” The camera is run in video

mode at 320 x 240 resolution, and approximately three
frames are processed by the algorithm per second. A brief
audio tone is sounded for each frame in which a crosswalk is
detected. A simplified version of factor BP was used that is
approximately equivalent to doing one sweep of BP; as our
experimental results (described below) with blind subjects
demonstrate, the system worked successfully even with this
simplification.

Figure 7. Photograph of Nokia N95 cell phone running crosswalk
detection algorithm. The green and red lines superimposed on the
crosswalk stripe edges in the cell phone display denote segments
classified as figure and ground, respectively.

4.1. Choice of Cell Phone Platform

Our past experience with blind people shows that they
can hold a cell phone camera roughly horizontal and still
enough to avoid motion blur, so that satisfactory images can
be taken without the need for a tripod or other mounting.

We have chosen to use cell phones using the Symbian
operating system for several reasons. First, Symbian cell
phones (most produced by Nokia) have the biggest market
share. Second, Symbian C++ is the fastest language avail-
able for Symbian cell phones, whereas slower languages
such as Java would be too inefficient for running computer
vision algorithms on the cell phone. Third, the Symbian
operating system and C++ compiler are open and well doc-
umented, so that anyone can develop software for Symbian
OS. In the future we plan to allow open access to our source
code, which will allow other researchers and developers to
modify or improve our software. Finally, the camera API is
an integrated part of the OS, which allows straightforward
control of the image acquisition process.

We note that the cell phone platform allows us to by-
pass the need for manufacturing and distributing a physi-
cal product altogether (which is necessary even for custom
hardware assembled using off-the-shelf components). Our
final product will ultimately be an executable file that can be
downloaded from our website and installed on any Symbian
camera phone.

The N95 is a powerful Nokia cell phone model that of-
fers several advantages, including high camera quality and
a large amount of RAM, making it a natural choice for our

Crosswatch system.

4.2. Implementation Details

The computational resources of the cell phone platform
are limited compared to that of the typical desktop com-
puter used in computer vision. The cell phone we used, the
Nokia N95, has a dual ARM 11 CPU (only one of which
is used by our algorithms), with a CPU clock rate of 332
MHz, and a total of approximately 81 MB free executable
RAM memory. Symbian C++ is the language of choice for
our algorithms since it is much faster than Java or Python
(two popular languages that are supported on the Symbian
platform).

In our experience, integer arithmetic calculations are
approximately one order of magnitude slower on the cell
phone (running Symbian C++). Floating-point calculations
are even slower since they are performed in software rather
than using an FPU. In some computationally intensive por-
tions of our code we avoided floating-point calculations
where possible in favor of integer operations; in future work
we plan to make similar improvements throughout the code.

Another important software design strategy was to avoid
repetitive calculations that dynamically allocate memory, as
naturally occurs when growing and shrinking dynamic lists.
A more efficient alternative was to substitute static arrays,
pre-dimensioned at compile time to be large enough under
all runtime conditions.

We note that Symbian C++ is challenging to pro-
gram in because it is a non-standard dialect of C++.
Newcomers to Symbian C++ are advised to consult
a standard Symbian book [8], and a helpful wiki is
at http://wiki.research.nokia.com/index.
php/N93HackingPages.

4.3. Experiments with Blind Subjects

We performed two tests with blind subjects, which we
briefly summarize (see [3] for a full report of the experi-
ments). The outcome of the experiments proves the feasi-
bility of the system, and shows that the system is sufficiently
reliable to help a blind person detect and orient him/herself
to a crosswalk. Both experiments were performed after a
brief training session with the subjects.

The first experiment was designed to test the usability of
the system and to test the ability of a subject to determine
whether or not there was a crosswalk visible at a given traf-
fic intersection. 15 different traffic intersections were cho-
sen in advance, such that there was a 50% chance that a ze-
bra crosswalk was present at each intersection. Intersections
without a zebra crosswalk either had no crosswalks or had
one or more non-zebra (i.e. two-stripe) crosswalks. The ex-
periment was designed so that there were no cues available
to the blind subject (e.g. ambient environmental sounds or
tactile cues from the user’s white cane) about the presence

or absence of a crosswalk except for those furnished by the
cell phone system. The subject answered correctly whether
a zebra crosswalk was present or absent at all 15 intersec-
tions.

The purpose of the second experiment was to test the
ability of another blind subject to align him/herself with a
zebra crosswalk. We led the subject near a traffic intersec-
tion and told him/her to approach the crosswalk, try to ori-
ent properly to it and press a button on the cell phone to
take a picture of the crosswalk. In half the trials, the au-
dio feedback from the Crosswatch system was turned off,
and in the other half the feedback was turned on as usual.
This procedure was repeated at all four corners of two sep-
arate crosswalks. The images captured during the experi-
ment demonstrated that the subject was better able to align
him/herself using the feedback from the system (though we
emphasize that this measure is qualitative).

5. Conclusion

Crosswatch is a novel camera phone-based system for
helping blind and visually impaired pedestrians find cross-
walks and align themselves properly to them before cross-
ing. A prototype system has been implemented on the
Nokia N95 camera phone, which searches for crosswalk
stripes a few times per second and provides audio feedback
whenever a crosswalk is detected. We have conducted pre-
liminary experiments with blind volunteers to test the sys-
tem, demonstrating its feasibility.

In the future we will improve the robustness of our sys-
tem by adding a high-level model verification stage to re-
ject false positives and provide detailed geometric informa-
tion about the user’s orientation relative to the crosswalk.
We will also optimize our code to increase the number of
frames per second that can be processed. Ultimately we
will expand the capabilities of the Crosswatch system to
include detecting and reading traffic signal lights (such as
“Walk” signals) and detecting and locating two-stripe cross-
walks. We will also investigate the possibility of extending
the functionality of the system to evening/low-light condi-
tions, if possible.

Naturally, many more experiments will have to be con-
ducted, and many improvements made to the functionality
and user interface, before the Crosswatch system can be-
come a commercial product. Government safety standards
will be needed to establish appropriate performance pa-
rameters (such as acceptable maximum system error rates),
and to determine appropriate training procedures for users.
Most important, the blind and visually impaired community
must be consulted at all phases of Crosswatch research and
development to ensure that the system is useful, safe and
easy to use.

6. Acknowledgments

The authors were supported by The National Institute
on Disability and Rehabilitation Research (NIDRR) grant
H133G030080, The National Institute of Health grants 1
R21 EY015187-01A2 and 1 RO1 EY018345-01, and the
Claire Giannini Fund.

References

[1] S. Bohonos, A. Lee, A. Malik, C. Thai, and R. Manduchi.
Cellphone accessible information via bluetooth beaconing
for the visually impaired. In /1th International Conference
on Computers Helping People with Special Needs (ICCHP
’08), Linz, Austria, July 2008.

[2] J. Coughlan and H. Shen. A fast algorithm for finding cross-
walks using figure-ground segmentation. In Proc. 2nd Work-
shop on Applications of Computer Vision, in conjunction
with ECCV 2006, 2006.

[3] V. Ivanchenko, J. Coughlan, and H. Shen. Crosswatch: a
camera phone system for orienting visually impaired pedes-
trians at traffic intersections. In I1th International Confer-
ence on Computers Helping People with Special Needs (IC-
CHP ’08), Linz, Austria, July 2008.

[4] Kschischang, Frey, and Loeliger. Factor graphs and the sum-
product algorithm. [EEETIT: IEEE Transactions on Infor-
mation Theory, 47, 2001.

[5] S. Kumar and M. Hebert. Man-made structure detection in
natural images using a causal multiscale random field.

[6] S. Se. Zebra-crossing detection for the partially sighted. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion CVPR 2000 Volume 2, pages 211-217, South Carolina,
June 2000.

[7] S. Se and M. Brady. Road feature detection and estimation.
Machine Vision and Applications Journal, 14(3):157-165,
2003.

[8] J. Stichbury. Symbian OS Explained: Effective C++ Pro-
gramming for Smartphones. Wiley, 2005.

[9] M. S. Uddin and T. Shioyama. Bipolarity- and projective
invariant-based zebra-crossing detection for the visually im-
paired. In Ist IEEE Workshop on Computer Vision Applica-
tions for the Visually Impaired, San Diego, June 2005.

[10] S. Utcke. Grouping based on projective geometry constraints
and uncertainty. In International Conference on Computer
Vision (ICCR), 1998.

[11] J. Yedidia, W. Freeman, and Y. Weiss. Bethe free energies,
kikuchi approximations, and belief propagation algorithms.
MERL Cambridge Research Technical Report, 2001.

[12] S. X. Yu and J. Shi. Object-specific figure-ground segrega-
tion. In Computer Vision and Pattern Recognition (CVPR),
2003.

[13] A. Yuille. Deformable templates for face recognition. Jour-
nal of Cognitive Neuroscience, 3(1), 1991.

