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Abstract—There is growing interest among smartphone users
in the ability to determine their precise location in their
environment for a variety of applications related to wayfind-
ing, travel and shopping. While GPS provides valuable self-
localization estimates, its accuracy is limited to approximately
10 meters in most urban locations. This paper focuses on the
self-localization needs of blind or visually impaired travelers,
who are faced with the challenge of negotiating street inter-
sections. These travelers need more precise self-localization to
help them align themselves properly to crosswalks, signal lights
and other features such as walk light pushbuttons.

We demonstrate a novel computer vision-based localization
approach that is tailored to the street intersection domain.
Unlike most work on computer vision-based localization tech-
niques, which typically assume the presence of detailed, high-
quality 3D models of urban environments, our technique
harnesses the availability of simple, ubiquitous satellite imagery
(e.g., Google Maps) to create simple maps of each intersection.
Not only does this technique scale naturally to the great major-
ity of street intersections in urban areas, but it has the added
advantage of incorporating the specific metric information
that blind or visually impaired travelers need, namely, the
locations of intersection features such as crosswalks. Key to
our approach is the integration of IMU (inertial measurement
unit) information with geometric information obtained from
image panorama stitchings. Finally, we evaluate the localization
performance of our algorithm on a dataset of intersection
panoramas, demonstrating the feasibility of our approach.

Keywords-self-localization; image stitching; IMU (inertial
measurement unit); assistive technology; blindness and low
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I. INTRODUCTION

There is growing interest among smartphone users in the
ability to determine their precise location in their environ-
ment, for a variety of applications related to wayfinding,
travel and shopping. While GPS (often integrated with other
sensor-based localization information such as Wi-Fi and
cell tower triangulation) provides valuable self-localization
estimates, its accuracy is limited to approximately 10 meters
in most urban locations [1].

Some tasks require better localization accuracy than what
GPS-based methods can provide, including a variety of
tasks performed by blind and visually impaired persons.
One such task, which we focus on in this paper, is the
task of negotiating street intersections. Specifically, this task
requires the traveler to align him/herself properly to the
crosswalk and other intersection features, which demands

localization accuracy that is at least an order of magnitude
more precise than what GPS provides. (In some cases GPS
may not even be able to ascertain which corner of an
intersection a traveler is standing at, let alone whether he/she
is properly aligned to the crosswalk corridor [1].) Accurate
localization is useful not only for finding, and approaching,
important features such as pedestrian crossing buttons, but
can also enable the detection and recognition of traffic
signals such as walk lights.

To achieve superior localization accuracy, we have devised
a novel computer vision-based localization approach that
is tailored to the street intersection domain, building on
our past work on the “Crosswatch” system to provide
guidance to blind and visually impaired pedestrians at street
intersections [2]. Unlike most work on computer vision-
based localization techniques, which typically assume the
presence of detailed, high-quality 3D models of urban en-
vironments [3], [4], our technique harnesses the availability
of simple, ubiquitous satellite imagery (e.g., Google Maps)
to create simple maps of each intersection. Not only does
this technique scale naturally to the great majority of street
intersections in urban areas, but it has the added advantage
of incorporating the specific metric information that blind
or visually impaired travelers need, namely, the locations of
intersection features such as crosswalks.

A key contribution of our approach is the integration of
IMU (inertial measurement unit) information with geometric
information obtained from image panorama stitchings. Such
integration is necessary to combine the information that the
IMU contains about the absolute directions in the world (up,
north and east) with the precise relative geometric informa-
tion provided by the image panorama (i.e., rotations between
different camera views of the scene, which are necessary for
seamless integration of imagery). Finally, we evaluate the
localization performance of our algorithm on a dataset of
intersection panoramas, demonstrating the feasibility of our
approach, and its superiority over GPS-based localization.

II. RELATED WORK

There is a large amount of work on image-based self-
localization, but here we mention only a few key examples of
this work that have also been implemented on smartphones.
Like our approach, [3] combines GPS with localization evi-
dence based on panoramic images, demonstrating impressive



localization results in large-scale environments; [5] builds
on this work, incorporating IMU (inertial measurement unit)
sensor data to improve localization results. Work on a related
approach [4] focuses on the development of a publicly
available test dataset. These works rely on the use of very
accurate and detailed 3D models of the urban environment,
in some cases requiring the use of expensive 3D scanners.

In a different vein, there have been several papers focusing
on the detection of important street intersection features
for blind and visually impaired travelers, such as work on
detecting traffic lights [6] and the Zebralocalize project [7]
for locating zebra crosswalks. Differently from most past
work, we view the problem of determining one’s position
and orientation and alignment relative to crosswalks as a
2D localization problem.

One of the challenges posed by computer vision appli-
cations intended for blind and visually impaired persons
is the difficulty of taking usable pictures without the abil-
ity to examine the camera viewfinder. To facilitate these
kinds of applications, camera-based feedback is essential;
for example, a saliency-based measure is used in [8] to
help blind users know where to aim the camera. Work on
the “Crosswatch” project for orienting blind and visually
impaired pedestrians to traffic intersections [2] shows that
an appropriate user interface enables a blind person to take
a usable panorama image of an intersection scene (see
Sec. III-B).

Our approach builds on [9]. Relative to that work, we
have devised a simple and novel scheme to integrate IMU
readings over multiple images, using detailed information
from stitching. While there is a large body of work in
robotics on fusing image and IMU data (for one example, see
[10]), we are unaware of other work that specifically exploits
the geometric relationships among multiple images output
by an image stitching algorithm to reconcile orientation
estimates from the IMU and from the images. Finally, we
have evaluated our algorithm quantitatively on an image
dataset, and have shown that our algorithm performs better
than GPS.

III. APPROACH

This section describes our approach to self-localization,
beginning with an overview and continuing with details in
subsequent subsections. Fig. 1 depicts a high-level pipeline
of the proposed system.

A. Overview

Our approach to self-localization is based on a simple
geometric model of each street intersection of interest, called
an intersection femplate, which contains crosswalk stripe
segmentations. There is a separate template (see Fig. 5(d))
for each intersection, derived from satellite imagery and
having known orientation (i.e., the bearing of each stripe
relative to north) and known scale (i.e., pixels per meter).
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Figure 1. Pipeline of the proposed system. Note that GPS is only used by
the system to determine which intersection the user is standing at; it is not
used for any other aspect of the localization process. Details can be found
in Section III.

This model assumes that the intersection is flat (which
is approximately true, even if the streets adjoining it are
sloped). We assume that the camera is held at a known height
from the ground (which is measured for each user and is
fairly uniform over time), and that the camera focal length
is known. We also assume that the user is standing near an
intersection and that GPS accuracy is sufficient to identify
the correct intersection. (In our experiments, see Sec. IV,
GPS accuracy was always sufficient to identify the correct
intersection that the user was standing at, but not necessarily
the specific corner of the intersection.) Note that GPS is only
used by the system to determine which intersection the user
is standing at; it is not used for any other aspect of the
localization process.

Using a simple smartphone app that we programmed, the
user stands in one place and acquires multiple images while
turning from left to right and holding the camera roughly
horizontal. The IMU rotation matrix and GPS readings are
recorded for each image.

These images are stitched into a rotational panorama, and
an aerial image of the intersection is computed. The aerial
image is computed such that the scale (pixels per meter)
matches that of the template, and the IMU data is used to
normalize the bearing of the aerial image (so that the image
columns are roughly aligned to north).



Stripes in the aerial image are then detected by combining
two procedures. First, a Haar-type filter is used to enhance
stripe-like features. Second, a modified Hough transform,
which is tailored to the known width of the stripes, is
used in conjunction with the Haar-based map to find the
likely stripe locations, encoded as a binary map. Next,
the segmented image is cross-correlated with the template,
with the peak correlation indicating the optimal translation
between template and aerial image and thereby determining
the user’s location.

The following subsections cover the algorithm in detail
and are prefaced by a subsection describing how blind
persons can use the system.

B. Use of system by blind persons

The Crosswatch system was specifically developed for use
by blind and visually impaired persons. Many persons with
visual impairments find it challenging to take pictures with
a camera because it is difficult to aim properly without a
clear view of the viewfinder, which most sighted persons
use to help compose pictures. However, user interfaces can
be devised to provide real-time guidance to help blind and
visually impaired persons take usable pictures, as in [8],
which uses a saliency-based measure to suggest locations of
likely interest in the scene to photograph.

For Crosswatch, we developed a simple user interface [2],
[9] to aid blind users in holding the camera properly, using
the smartphone accelerometer to issue a vibration warning
whenever the camera is pitched too far from the horizon or
rolled too far from horizontal. We note that this interface
does not require any analysis of the scene, since a usable
360° panorama requires only that the camera is oriented
properly as it is moved from left to right. Experiments show
[2] that blind users are able to use this interface to acquire
usable panoramas, after a brief training session.

While the panoramas in the experiments reported in this
paper were acquired by a sighted user, ongoing work (to
be reported in later publications) on Crosswatch is based
on panoramas successfully acquired by blind users. We are
currently investigating the feasibility of narrower (e.g., 180°)
panoramas, which require the user to aim the camera in the
general direction of the intersection.

C. Template

We constructed a template of each intersection by down-
loading satellite images from Google Maps, cropping the
intersection region and manually segmenting the crosswalk
stripes (see Fig. 5(d) for an example). Note that the scale
(pixels per meter) is known and that the image is normalized
so that the up direction in the image points to geographic
north. While the process of constructing a template takes
approximately 5-10 minutes per intersection, in the future it
will be possible to create templates for a very large number
of intersections using crowdsourcing techniques such as

those available through CrowdFlower (http://crowdflower.
com/), a service that is well suited to complicated labeling
tasks. We hope to make templates freely available online in
the future, perhaps in conjunction with the OpenStreetMap
(http://www.openstreetmap.org/) database.

D. Panorama

The smartphone app that we programmed automatically
acquired images for a panorama as the user turned from left
to right. The IMU was used to estimate the user’s bearing
relative to magnetic north, and a new image was acquired
roughly every 20° of bearing. Each image was saved to flash
memory, along with all current IMU and GPS information
for that image.

We used OpenCV to stitch together the images offline into
a rotational panorama [11], see Fig. 5(a) for an example. The
primary purpose of assembling a panorama is to facilitate the
construction of an aerial image. However, the panorama also
has two important benefits. First, it removes some moving
objects (e.g., pedestrians and vehicles) from the scene, which
would otherwise occlude some of the intersection features.
Second, the relative pose geometry estimated in the creation
of the panorama (i.e., how the camera is rotated between
views) is useful for the estimation of the bearing of the
aerial image.

E. Aerial image

The aerial image is a reconstruction of an aerial view
of the intersection, viewed from a camera pointed straight
down (perpendicular to the ground plane), in which the scale
(pixels per meter) is known. (See Fig. 5(b) for an example.)
The aerial view is created, and its bearing is normalized (so
that the up direction in the aerial image points to magnetic
north), to permit matching with a template of the intersection
to estimate the (z,y) location of the camera. Note that the
aerial image calculations assume that all points in the scene
lie on the ground plane, which means that objects not lying
on the ground plane appear distorted; however, enough of the
scene points of interest lie on the ground plane to make the
aerial image usable. Also note that an aerial view is based
on scene points lying within a limited distance from the
camera, and thus typically emcompasses only a small portion
of the entire intersection (e.g., two crosswalks meeting at one
corner of the intersection).

Since the panorama stitching algorithm has no access to
inertial information such as the direction of up (defined by
gravity), which is required for the creation of the aerial
image, we had to combine inertial information with stitching
information to create the aerial image. We developed three
variants of the same approach to creating the aerial image,
which we call Scheme 0, 1 and 2, described as follows.
See Fig. 2 for an overview of this approach for creating
reconciled orientation estimates for each image, used to
create the aerial image.
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Figure 2.

Schematic illustrating our novel algorithm for correcting IMU orientation estimates with rotational information from image stitching (Scheme

2). The IMU estimates an orientation matrix O; for each image ¢ that goes into the panorama, and each O; provides an orientation estimate relative to
absolute world coordinates (defined by magnetic north and gravity), but with too much noise to be solely relied upon to create an aerial view. The image
panorama algorithm independently furnishes rotation estimates R; for each image, but these are not calibrated with res;l)ect to absolute world coordinates.

However, the rotation estimates can be combined to create highly accurate rotations between image pairs, so that R; R;

transforms quantities from image

4 to image j. These inter-image rotations are combined with the IMU data to produce reconciled orientation estimates (see text).

Scheme 0 is too simple to be of practical use but helps mo-
tivate the descriptions of the Schemes 1 and 2, which are of
practical use. To create the aerial image using Scheme 0, we
simply use the orientation matrix O;, estimated by the IMU
for each image ¢ (ranging from 1 through IV, where V is the
total number of images in the panorama) to unwarp image %
into the aerial image. Note that the orientation matrix defines
how the camera is rotated relative to a world coordinate
system that is defined by three orthogonal axes: up (in terms
of gravity), magnetic north (specifically, the direction of the
earth’s magnetic field projected onto the horizontal plane),
and magnetic east (defined to be perpendicular to the other
two axes). Specifically, the orientation matrix O; can be
interpreted as follows: the third row equals @, which is the
up direction (in camera-centered coordinates); the second
row equals n, which is the magnetic north direction; and
the first row equals é, which is the magnetic east direction.

The unwarping from image 7 to the aerial image uses
O;, the height of the camera above the ground, and the
camera focal length, resulting in an image that is normalized
so that the up direction in the image points to magnetic
north and the scale is known (pixels per meter). If more
than one image contributes to a given pixel in the aerial
view, the median of all contributing intensities is taken

as the final pixel value. Finally, the resulting image is
rotated by the magnetic declination so that the final aerial
image is aligned to geographic (rather than magnetic) north,
to achieve consistency with the intersection template. The
problem with Scheme 0 is that the orientation matrices O;
are not estimated exactly, and inconsistencies between them
result in a very muddled aerial image, with multiple copies
of single edges, etc. To solve this problem, we devised
Scheme 1, which uses rotation matrices R; estimated in the
OpenCV stitching algorithm to achieve consistency among
different images. In Scheme 1, IMU information is used
from just one image, say O;, and the rotation matrices R;
are used to transform O; into predicted orientations O, for
i > 1. (Note that the matrix R;R; ' transforms quantities
from image ¢ to image j, as described in [12].) The resulting
aerial image (based on O1, 02, 03, RN On) is far superior
to that obtained using Scheme 0 in that there are almost no
inconsistencies among different images.

However, the main flaw of Scheme 1 is that it draws on
IMU information only from the first image, which is clearly
sub-optimal. Scheme 2 was devised to incorporate IMU
information from all images, without sacrificing inter-image
consistency. It achieves this goal by normalizing the IMU
measurements O;, for all ¢ > 1, to the first image, resulting



Figure 3. Example of composite aerial view using Scheme 0 (top) and
Scheme 2 (bottom). Notice how multiple versions of the same stripe features
appear using Scheme 0, which makes the image difficult to intrepret.
Scheme 2 results in an aerial view that is much better stitched.

in predicted orientations O(i), which are the value of O; that
would be predicted based on measured value O; and the
transformation Ry R; . Then we can average together the
O? matrices over all ¢ to produce a more robust estimate of
O based on all available IMU data. Since the average of two
or more rotation matrices is not guaranteed to be a rotation
matrix itself, we then perform a procedure to determine the
closest valid rotation matrix, which we then transform (as
in Scheme 1) into improved orientation estimates for all
1, which we refer to as “reconciled” orientation estimates.
These reconciled orientation estimates are consistent across

images and integrate IMU data from all images, resulting in
a more seamless aerial image (see Fig. 3).

We present quantitative data comparing the performance
of Schemes 1 and 2 in Sec. IV. Qualitatively, it is worth
noting that distortion in the aerial view (which is due to
several factors, including IMU noise and curvature of the
ground surface) is less of a problem with Scheme 2, whereas
in Scheme 1 parallel stripes often appear non-parallel in the
aerial view.

Finally, we point out that the bearing normalization (to
make the up direction in the aerial image point north) is
only approximate, because of IMU noise (mostly due to the
magnetometer, which can be distorted by extraneous metal
objects such as cars and poles near the camera). (See Sec.
V for discussion.)

E. Stripe detection

For the current version of our algorithm we are special-
izing to crosswalks with narrow stripes, as illustrated in
Fig. 5(a). These stripes appear in the majority of crosswalks,
and it will be straightforward to apply our approach to
other crosswalk patterns such as zebra stripes. To detect
crosswalk stripes, we combine a modified Hough transform
with a Haar filtering method. The main idea of the modified
Hough transform is as follows: instead of using the standard
two-dimensional Hough space, (d, ), which represents all
possible lines, we use a three-dimensional space, (d,6,w),
where w is the width (in pixels) of the stripe we are looking
for. The triple (d,0,w) specifies two parallel lines, with
edges of opposite polarity, spaced a distance w apart. (Note
that w is given by the template, but in practice we search
over a small range of possible w values.)

Voting in the modified Hough space is done using edge
pixels determined by a Canny edge map. Given a candidate
pixel a, a search for a “mate” pixel b is conducted by
following the image gradient direction at a (this direction
is appropriate for a bright stripe against a dark background)
along a distance w. If a suitable mate pixel is found that lies
on an edge and has an appropriate image gradient direction,
then a candidate pair of mates is declared.

Next the pixel location mid-way between the mates is
examined to ensure that it is located in a sufficiently bright
local image patch. This is verified by a Haar filtering
method, in which a Haar filter is defined to reward a bright
region of pixels (with width corresponding to the expected
value of w) surrounded on both sides by darker pixels.
The filter kernel (see Fig. 4(top)) is tuned to a specific
orientation, so multiple kernel orientations are evaluated at
each pixel, with the maximum response over orientations
recorded at each pixel (Fig. 4(bottom)). The resulting map
is used to verify that a candidate pair of mates is suitable
for Hough voting. Any candidate that passes this test casts
a vote in the (d,0,w) space. Peaks are located in Hough



Figure 4. (Top) Haar filter kernel used as intensity-based evidence for
stripes in modified Hough transform. (Bottom) Result of the correlation of
Haar-like filters with image in Fig. 3 (bottom): stripe features are enhanced
(in red).

space, and the pixels that voted for each pixel are identified,
thereby determining a binary stripe edge map (see Fig. 5(c)).

G. Matching aerial image to template

The binary stripe edge map is translated against a Canny
edge map of the template, and the correlation is evaluated at
each possible translation. This procedure identifies the most
likely translation, which equates to the localization estimate.

Since the bearing estimate is only approximate, we repeat
this procedure over a range of bearings (the estimate +15°,
in increments of 1°), and at each pixel take the maximum
over all possible bearings.

IV. EXPERIMENTS

In this section we describe our experimental procedure
and evaluate the results of our algorithm on a dataset of
intersection images.

A. Procedure

We used an unlocked Android Samsung Galaxy 4 smart-
phone in our experiments. One of the authors served as
photographer, using our image acquisition app to acquire
a total of 19 panoramas, each in a distinct location. The
locations were distributed among 3 intersections, two of
which were four-way intersections and one of which was a
T-junction intersection. Another experimenter estimated the
photographer’s location for each panorama, making refer-
ence to curbs, crosswalk stripes and other features visible
in satellite imagery. (See discussion of this ground truth
procedure below.) 17 of the panoramas were constructed
from 9 images acquired over a range of roughly 180°, and
the remaining 2 were each constructed from 18 images
acquired over a range of roughly 360°.

All image analysis was performed offline.

Figure 5. From top to bottom: (a) Sample panorama. (b) Corresponding
aerial view (white space in center corresponds to points below the camera’s
field of view); (c) Binary stripe edge map showing estimated locations of
stripe edge pixels. (d) Final result superimposed on template of intersection:
green circle shows ground truth location, and red square shows location
estimated by our algorithm.
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Figure 6. Scatter plot of localization error (in meters), with the localization
error for GPS on the x-axis and for our proposed method on the y-axis.
Note that our method outperforms GPS for all but one case.

B. Analysis

One of the challenges of this analysis is that it is difficult
to obtain precise ground truth localization measurements.
We estimated ground truth by combining knowledge of
intersection features obtained from satellite imagery with
visual inspection of the photographer’s location relative to
these features. For instance, most locations were constrained
to lie on the curb (since this is a likely location for a blind
person to stand when approaching an intersection, and which
can be verified using a white cane), which is visible in
satellite imagery. We also estimated locations relative to the
crosswalk corridor, often using units of corridor width.

While this procedure is far from perfect, we estimate that
our ground truth estimates are off by no more than 1 to 2
meters from the true locations. Therefore, in evaluating the
performance of an algorithm or sensor, we claim that errors
of 1 to 2 meters may not be significant, whereas errors of 5
meters or more are significant.

Fig. 6 shows a scatter plot of localization error (in meters),
with the localization error for GPS on the x-axis and for our
proposed method on the y-axis. Points below the dashed
(z = y) line are points for which GPS localization error is
worse than the error for our method. Note that our method
outperforms GPS for all but one case. In addition, we found
that our method was able to determine the correct corner that
the user is standing at in all but two cases. The two gross
error cases (error around 16 meters) for our method resulted
from either a severely distorted magnetometer reading or
poor segmentation of the aerial image.

Finally, to compare the effectiveness of Scheme 1 and 2,
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Figure 7. Histograms of the absolute value of bearing estimation error,
shown for Scheme 1 (top) and Scheme 2 (bottom). Note that the error is
lower for Scheme 2 than for Scheme 1.

we manually estimated the bearing error (how mis-aligned
to north the aerial image was) for both schemes, as shown
in Fig. 7. The histograms demonstrate that the bearing error
is lower for Scheme 2, but that the error is still large (over
20°) in several cases.

V. DISCUSSION

One of the biggest challenges we encountered in our work
is the collection of reliable ground truth. We plan to devise a
systematic approach to obtaining more precise ground truth
in order to perform a quantitative analysis on a larger number
of intersections.

We also observe that large localization errors in our
experiments are usually associated with either a distorted
magnetometer reading (e.g., due to a large metal object
near the smartphone) or a segmentation error (e.g., a false
positive or false negative crosswalk stripe segmentation).
However, since collecting the data for our experiments, we
subsequently discovered that we are now able to consistently
avoid gross magnetometer distortions by simply launching
the Crosswatch smartphone app well before the panoramas
are acquired, on the sidewalk in a location far from the curb
(where metal objects are likely to appear).

We hypothesize that this improvement arises for the
following reason: The IMU orientation estimates fuse in-
formation from the magnetometer, accelerometer and gyro-
scope and integrate them over time, so that the orientation



estimates are more robust against momentary distortions of
any component sensor. This integration requires sufficient
time to produce reliable orientation estimates, which can be
facilitated by letting the Crosswatch app run for a longer
time.

We also tried using GPS as an additional form of location
information, which would augment the computer vision-
based localization information. However, we found that
significant GPS errors often occurred (and the magnitude
of the error was not necessarily well correlated with the
GPS uncertainty reported by the GPS sensor). The GPS
errors were never great enough to mis-identify the current
intersection, but were large enough to prevent the GPS
information from improving the estimates based on our
computer vision algorithm. In the future we will experiment
with the use of other location evidence in addition to GPS,
including Wi-Fi/cell tower triangulation, etc.

In the future we will focus on improving the crosswalk
stripe detection algorithm, to reduce the incidence of false
positive and false negative detections. Empirically, most of
the false positives we encounter are objects such as fire
hydrants, poles and other vertical objects (even the pants leg
of a pedestrian), which violate the ground plane assumption
used to create the aerial view image, and which appear
roughly stripe-like in the aerial view. We will experiment
with a stripe hypothesis verification stage that analyzes each
stripe hypothesis in the original image (or panorama) in
which it appears, where it should be straightforward to
distinguish a crosswalk stripe from most false positives.

VI. CONCLUSION

We have demonstrated a novel image-based self-
localization technique for use in the “Crosswatch” project
previously conceived by the authors, for providing guidance
to blind and visually impaired pedestrians at street inter-
sections. We have quantitatively evaluated our algorithm’s
performance on a dataset of image panoramas and have
found that our method performs significantly better than
GPS.

In future work, we plan to adapt our approach to other
types of crosswalks, including zebra crosswalks, and to test
our system extensively with blind and visually impaired
users. We will explore the possibility of incorporating other
localization information such as Wi-Fi/cell tower triangu-
lation. It might be useful to incorporate features (e.g.,
SIFT) from Google Streetview imagery; while this imagery
is limited in the kind of 3D information it provides (for
instance, parallax information is severely limited by the fact
that the imagery is only acquired by a camera mounted on
a car traveling in the street), it might add some useful 3D
information. Finally, we will implement the system as an
app running entirely on the smartphone, perhaps offloading
some calculations to a remote server.
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