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The Last Meter: Blind Visual Guidance to a Target

Roberto Manduchi
Computer Engineering Dept.
University of California, Santa Cruz,
manduchi@soe.ucsc.edu

ABSTRACT

Smartphone apps can use object recognition software to
provide information to blind or low vision users about
objects in the visual environment. A crucial challenge for
these users is aiming the camera properly to take a well-
framed picture of the desired target object. We investigate
the effects of two fundamental constraints of object
recognition — frame rate and camera field of view — on a
blind person’s ability to use an object recognition
smartphone app. The app was used by 18 blind participants
to find visual targets beyond arm’s reach and approach
them to within 30 cm. While we expected that a faster
frame rate or wider camera field of view should always
improve search performance, our experimental results show
that in many cases increasing the field of view does not
help, and may even hurt, performance. These results have
important implications for the design of object recognition
systems for blind users.

Author Keywords
Assistive technology; Blindness; Wayfinding; Camera-
based access to information.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
Interfaces-- Input devices and strategies, Interaction styles

INTRODUCTION

A growing number of smartphone apps are now available
that use the smartphone camera to provide information to a
blind or low vision user about objects in his or her visual
environment. Such apps use a combination of computer
vision-based object recognition algorithms or crowd-
sourcing techniques to perform tasks such as identifying
grocery products, determining the denominations of paper
currency, reading a sign posted on the wall or reading a
printed document such as a restaurant menu. However, this
technology poses a fundamental challenge: how can a user
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Fig. 1. Experimental set-up showing two visually impaired
participants using an object recognition smartphone app to
locate and approach a specific target. Note that the
participant shown in the lower picture is using the fisheye
lens attachment.

with little or no vision take a well-framed picture of the
desired target object? This process entails both exploration
in search of a target, and, once the target has been detected,
guidance to the target using feedback from the system. Our
work concentrates specifically on the guidance phase,
which is a crucial bottleneck in the overall search process
but which has received little attention in past research.

Recent research [18,17] has explored various real-time
guidance mechanisms that help a blind or low vision take
well-framed pictures. Indeed, in our previous work on our
smartphone based color marker detection system [7,4,13],
we explored and tested a variety of user interface (UI)
options before arriving at the UI used in our current system
(see the “Apparatus” Section). Given such a mechanism
(which is fixed in our current study), we explore the effects
that fundamental constraints imposed by the object
recognition technology itself have on the user’s
performance in acquiring well-framed pictures. Among the



most important of these constraints are the video frame rate
(the rate at which video frames are processed by
recognition algorithms) and the camera field of view (FOV,
which is determined by the camera optics). In many
circumstances it is possible to trade off one constraint
against another in the design of the object recognition
system; however, little is known about the practical
consequences of these trade-offs for visual search and
framing by a blind or visually impaired person. For
instance, frame rate can often be increased by down-
sampling the video frames, but at the expense of limiting
the maximum range at which the target can be resolved.
Similarly, expanding the FOV (e.g., with a wide-angle or
fisheye lens) has the potential to speed up the initial search
for a target, but it also reduces the image resolution, and (as
we show in this paper) may make it more difficult to
localize the target from close-up.

We investigate the effects of these constraints using a fast
and extremely reliable computer vision-based object
recognition smartphone app, developed in-house, which
was used by a total of 18 blind participants to find visual
targets beyond arm’s reach and to approach them to within
a distance of approximately 30 cm, using continuous audio
feedback from the app. Compared with the authors’ initial
supposition that either a faster frame rate or wider camera
field of view should always improve search performance,
the results of our statistical analysis of the experiment are
more nuanced, showing that in many cases increasing the
field of view does not help, and may even hurt,
performance.

While our study used a specific type of visual target in a
particular search task, we argue that the results of the study
generalize to nearly any object recognition-based visual
search task performed by a blind user. Specifically, any
mobile object recognition task requiring the target to be
sufficiently well resolved and fully contained within the
camera’s field of view will be subject to two fundamental
system constraints, the frame rate and FOV. Thus, the main
contribution of our work is to explore the effects that the
fundamental constraints of object recognition technology
have on search performance for blind users.

RELATED WORK

A number of technologies to support independent
orientation and mobility for persons with visual impairment
have been proposed and investigated by the research
community [14]. Much less attention has been devoted to
the topic considered in this contribution, that is, precise
guidance to a target through continuous visual-based
tracking. Document access via mobile OCR (such as the
KNFB Mobile reader [1] and Blindsight’s Text Detective
[3]) presents similar problems: the user needs to take a
close-up, well-framed picture of the document. Beyond
OCR, other applications of visual information access
include barcode reading. A camera-based system for
barcode access, equipped with a guidance mechanism that

suggests how to move the camera in order to precisely
center a detected barcode, was developed by Tekin and
Coughlan [17]. Preliminary experiments with a guidance
system using similar color markers as in the present study
were reported in [13]. The study in [13] was mostly
qualitative in nature; it highlighted the difference between
exploration in search of a target, and, once the target has
been detected, guidance to the target using feedback from
the system. The present work concentrates on the second
component (guidance).

Assisting a blind person while taking pictures, whether for
leisure [10], to document environmental features [18], or
for remote assistance by sighted helpers [6,11,2], also
requires some form of guidance to ensure that a good
picture of a target from a close distance is produced. For
example, EasySnap [10] is a mobile application that gives
feedback to a blind photographer about the scene light, or
about the presence and localization in the picture of an
object or of a person. Locatelt [5] uses simple computer
vision techniques along with crowdsourcing to help a blind
user point the camera correctly to an object (for example, to
better identify it or get closer to it). The system developed
by Vézquez and Steinfeld [18] uses a general-purpose
saliency map to select a region of interest. Feedback to the
user is provided through audio tones or synthetic speech; it
was noted that visually impaired users slightly preferred
speech feedback over audio tones, consistent with earlier
findings from other research groups [9].

We note that similar guidance mechanisms, whereby the
blind user receives feedback about the correct pointing of a
hand-held device, were studied in the context of other
navigational technology. For example, Talking Signs [8]
uses beacons transmitting modulated infrared light. A user
carrying a hand-held receiver in the proximity of the
beacons hears audio (typically, informational speech) from
the demodulated received light only when the receiver is
aimed towards the beacon. Similar interface mechanisms
(using audio and/or vibration) were studied in wayfinding
systems using GPS [15] or digital compass [12].

ASSESSING VISUAL-BASED GUIDANCE

Overview and Rationale

Using a camera system for guidance towards a target can be
challenging without sight. The characteristics of the image
acquisition and processing and of the user interface both
play a role in the user’s experience with such a system. In
this work, we concentrate on the characteristics of the
vision system, assuming a simple user interface modality,
described later in this section. Important system
specifications include: the camera’s resolution (number of
pixels); its field of view (FOV); the speed of the
acquisition/processing system (in terms of frames processed
per second, FPS); and the quality of the target detection
system, which can be expressed, for example, in terms of
false negative and false positive rates. It is clear that these
characteristics are interrelated. For example, a system with



higher resolution may take longer time to process, resulting
in lower FPS. The FOV and resolution, combined with the
characteristics of the detection algorithm, determine the
distance at which a target of a certain size can be detected.

Two characteristics (FOV and FPS) are considered in this
work. Specifically, we study how execution of a given
guidance task is affected by the camera FOV as it is
switched from narrow to wide, and by the FPS as it is
switched between fast and slow. These two system
specifications are both important for the design of a visual
guidance system. The camera FOV can be modified
(changing the lens, using a zoom lens, or using an add-on
lens). Intuitively, a wide FOV ensures that the target is seen
from a wider span of camera orientations, but also reduces
the apparent size of the target, which affects the ability of
the computer vision algorithm to recognize it. A wide FOV
also affects the ability of a blind user to determine the
target’s precise location. As for the FPS, our goal is to
understand whether algorithms characterized by low frame
rate (due e.g. to heavy computational load or the need to
access a remote server) are still usable for the purpose of
blind guidance, or result in excessive user frustration.

We would like to emphasize that we have deliberately
chosen to use an object recognition system with near-
perfect performance in order to simplify our experimental
study. Our system is almost entirely unaffected by the kinds
of issues prevalent in real-world object recognition systems,
such as false and positive negative detections and confusion
with clutter. We felt that it would be difficult to model the
occurrence of false positive/negative detections in a
realistic way that would generalize to real-world tasks,
since these detections are heavily influenced by the nature
and quantity of occlusions and clutter in the scene.
However, all object recognition systems (whether real or
ideal) are subject to the FOV and FPS constraints, which
we feel are the most fundamental constraints in the search
process; by using our object recognition system we were
able to design a tractable study that focuses on these two
variables, thereby minimizing possible confounds with
other search variables.

Participants

The experiments were conducted in two different locations.
We recruited a total of 20 participants, 10 at each location.
The oldest participant (age 86) was unable to hold the
smartphone steady, even after training, and was therefore
unable to perform the search task, so this person was
excluded from the study. Another participant had to
terminate the study early, so her data was also excluded
from the study. As a result, our study includes a total of
N=18 participants (six females and 12 males), with ages
ranging from 18 to 71 years, with median value 48.5 years.
Nine participants had no light perception and the rest had
very limited light perception (insufficient to see the color
markers in the experiment). Five participants have had their
current degree of vision impairment since birth.

Apparatus

Detection Software

For our experiments we employed a system that uses
specially designed fiducials (“markers”) in the form of a
color pie with four sectors (see Fig. 2). The detection
software uses the algorithm described in [4], which returns
the position (in the image) of four equi-spaced keypoints on
the marker’s circumference as well as on the marker’s
center. Given the known size of the marker (16 c¢cm in
diameter) and the optical/imaging characteristics of the
camera, the camera’s pose (position and orientation) can be
estimated from these five keypoints. The detection
algorithm assumes that the camera is kept approximately
vertical, with a roll angle (around the optical axis) between
-45° and 45°. If the user inadvertently rotates the phone by
more than the allowed roll angle, a short warning vibration
is produced. The algorithm is sensitive to the order of the
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Fig. 2. Top row: the color marker used in our experiments,
seen at a distance of 57 cm with narrow FOV (left) and at
30 cm with wide FOV. Second row: the marker seen at a
large slant angle (left) and off-axis angle (right) is still
detected by our system. The red dots are the detected
keypoints and the yellow pixels indicate the detected color
sectors in the marker. Bottom row: the placement of
markers on the wall for our experiments.



colors in the sectors, which enables us to define a variety of
different color markers by permuting the same four colors.
Each color permutation is assigned an ID, and the system
can be set to detect only markers with a specified ID.

The marker detection algorithm was implemented on an
iPhone 4. At VGA resolution (640 by 480 pixels), the
achievable frame rate varies from 9 frames per second
(FPS) when no marker is visible, to 3 FPS when the marker
is detected. The frame rate can also be artificially decreased
to 0.5 FPS, to achieve the low frame rate modality used in
our experiments. We chose this value of FPS as it can be
reasonably expected that most standard computer vision
algorithms for target detection would take no longer than 2
seconds per frame to execute on an iPhone.

In some experimental settings, we increased the camera’s
FOV (normally approx. 48° by 61°) by means of a fisheye
lens from Photojojo.com that snaps on and off the iPhone
with a magnetic attachment. With this lens, the FOV
increases to approximately 87° by 130°. This lens
introduces very noticeable radial distortion which, however,
does not affect marker detection, even from very large slant
angles (see Fig. 2). The distance to the marker can also be
computed accurately even with the fisheye lens on, except
in situations with large horizontal and vertical off-axis
angles. (The off-axis angle is the angle between the optical
axis and the ray pointing from the camera center to the
center of the marker, which is 0° when the marker center
appears in the center of the image. It can be decomposed
into horizontal and vertical components, which we refer to
as the horizontal and vertical off-axis angles.) Marker
detection in the conditions considered in our experiments,
from a maximum distance of about 1.5m, under controlled
illumination, and with solid white background, is extremely
accurate and reliable, with virtually no false positives or
missed detections. The application logs time-stamped data
relative to acquired frame and detection results.

User Interface

The system has the following acoustic Ul. When no marker
is detected, the system is silent. When a marker is detected
at a vertical or horizontal off-axis angle of more than 10°, a
recorded sentence is uttered, giving directions to the user
about how to rotate (pivot) the camera in order to reduce
the off-axis angle. These sentences take the form of “Turn
right”, “Turn up”, “Turn left and down”, etc. When the
marker is “well centered” (meaning that both vertical and
horizontal off-axis angles are less than 10°), the system
beeps periodically. Beeps are repeated at a rate of 2
beeps/sec. when the marker is at a distance of more than 50
cm, and of about 5 beeps/sec. at lower distance. When the
frame rate is artificially reduced to 0.5 FPS, one beep is
emitted for each processed frame when the distance to the
marker is 50 cm or more, and a sequence of three short
beeps is emitted for each processed frame at shorter
distances.

Procedure

The experimental set-up consisted of eight color markers
(each with a distinct permutation of colors), affixed to a
wall as shown in Fig. 2. The markers were arranged in three
rows ranging in height (measured from the floor to the
center of the target) from 112 cm to 162 cm, and the
horizontal spacing between adjacent markers in each row
was 45 cm (measured between the marker centers).

For each participant who volunteered for the experiment,
the experimenters first obtained his or her consent to
participate in accordance with an IRB protocol. The
participant was then given a training and practice session to
acquaint him/her with the purpose of the study and the
operation of the iPhone app, including the proper way to
hold and move the smartphone, and was asked to try out the
system a few times to find and approach one or more
markers.

The experiment consisted of four sessions of 12 trials each,
for a total of 48 trials for each participant in the experiment.
In each trial, the participant was asked to find and approach
the target, starting from a point 150 cm from the wall
(centered relative to the set of targets), and ending when the
system announced the target was successfully localized in
the camera’s FOV from a distance of approximately 30 cm.
Specifically, the following termination criteria were
implemented: (1) the target is 30 cm or closer to the camera
(distance constraint); (2) the magnitudes of the horizontal
and vertical off-axis angles are both 10° or less (angular
constraint); and (3) the entire target is contained in the
image (visibility constraint). This last constraint is dictated
by the fact that our system can compute the distance to the
target only when the target is fully visible. In practice, this
constrains the distance to the target to be larger than a
certain amount (approximately 20 cm) for successful
termination. We refer to these combined termination criteria
as Scenario 0; in the next section, we will introduce four
additional “Derived Scenarios,” called Scenarios 1, 2, 3 and
4, based on modified criteria (defined ex post facto) that are
less stringent than the criteria defining Scenario 0.

When the Scenario 0 termination criteria are met, the
system declares success by uttering, “You have reached the
target. Congratulations!” Note that, for a given lens setting
(FOV), compliance with the termination criteria is
determined solely by the pose (3-D location and
orientation) of the camera. (Note that the camera orientation
is specified by three angles, roll, yaw and pitch.) We will
say that a pose is compliant if it satisfies the termination
criteria. For a certain FOV, we define the compliant pose
set C(FOV), which contains all poses that are compliant for
that specific FOV.

At the start of each trial, the participant was asked to face
away from the wall at the starting position, and to turn to
face the wall and begin searching for the target when the
experimenter told him/her to begin. If success was not
attained within 180 sec. from the time the experimenter told



the participant to begin, or within 180 sec. from the first
feedback produced by the system, a “time-out” was
declared for the trial. In each trial the target was chosen
uniformly randomly from the set of eight targets on the
wall.

Two factors, the FOV and frame rate (together these factor
levels are jointly referred to as the experimental “settings”),
were fixed for each entire session of 12 trials. The FOV had
two possible levels: normal, using the standard iPhone
camera lens, and wide, using the fisheye lens. The frame
rate also had two possible levels: fast (several FPS), and
slow (0.5 FPS). We will use the following notation for these
factors: FOV = N or W denotes the narrow (normal) or
wide-angle lens, and FPS = F or S denotes the fast or slow
frame rate. The two factors imply a total of four possible
settings: NF, NS, WF, and WS. Each of the four settings
was applied to exactly one of the four sessions in the entire
experiment. For each participant, the order in which the
settings were assigned to the sessions was chosen at random
in advance of the experiment. This randomization was done
to minimize the confound between experimental settings
and learning effects. The participant was informed of the
FOV and FPS settings at the start of each session. The first
two trials of each session were timed practice trials during
which the experimenter was free to help out the participant,
and the participant was free to ask for help; the purpose of
these trials was to acquaint the participant with each setting,
so these trials were not used in the data analysis. The next
ten trials of the session were recorded and analyzed for a
total of 40 trials recorded for each participant.

After the four sessions were completed, a brief
questionnaire was administered to the participant, and the
experimenter solicited feedback about the system and the
experiment. Participants were also asked to report the
perceived difficulty of completing the tasks for each one of
the four settings on a scale between 0 and 5.

Derived Scenarios

In order to draw meaningful conclusions on how the
experimental settings affect search performance, fair
comparisons need to be drawn between the FOV =N vs. W
levels. This need arises since the two FOV levels have
different camera resolutions, which implies that a target can
be satisfactorily resolved from a greater maximum distance
with FOV = N than with FOV = W. Thus, it may be
necessary to bring the camera closer to the target with FOV
= W than with FOV = N for successful recognition.
Moreover, even for Scenario 0 (the actual scenario used in
the experiment, in which the termination distance of 30 cm
was used for both N and W), different angular
considerations apply for N vs. W: at 30 cm, in the narrow
FOV case the marker had to be seen at an off-axis angle no
larger than approximately 6° for the marker to be entirely
contained in the image (visibility constraint). By contrast,
this was not an issue for the wide FOV.

As a result, although all the tests were conducted under the
same Scenario 0 termination criteria (see the “Procedure”
section), for ex post facto data analysis we considered
other, less restrictive derived scenarios to take into account
various practical consequences of different FOV settings.
Each derived scenario (see Fig. 3) corresponds to a specific
set of search criteria and fulfills the following property: if a
trial meets the Scenario 0 termination criteria, then for each
Scenario 1, 2, 3 and 4 there must exist some contiguous
subset of the time series for the trial (formed by omitting
some data points at the beginning and/or at the end of the
original trial) that also fulfills all the criteria for that
scenario. Thus, each “successful” trial satisfying Scenario 0
can be analyzed under Scenarios 1 through 4, and analysis
under these derived scenarios permits meaningful
conclusions on how to compare the search process across
different settings. We note that using these derived
scenarios, these conclusions can be drawn solely from
Scenario 0 trials, without having the participants perform
multiple versions of the experimental trials (up to four
versions would be necessary, corresponding to Scenarios 1
through 4).

For example, one could look at the collected time series and
artificially terminate it at the first occurrence of target
detection at a distance of Dy,>30 cm, with both visibility
and angular constraint satisfied. This is equivalent to
changing the distance constraint to a higher value Dy, of
distance. Conversely, one may find the first occurrence of a
target seen at distance larger than or equal to a certain value
Dsuar, and remove all data points in the time series before
that. This would effectively modify the starting location of
the participant. Or, one could artificially terminate the time

Same distance - No angular constraint Same distance - Angular constraint
T — \

/
/

Woe A W: NC N
N:C
w:C

Same resolution - No angular constraint Same resolution - Angular constraint

i = i "X"”P/_ ]
N: NC 4 NI =7
w:c A w-oed 77
B - h C\J/
W:NC W: NC

Fig. 3. Examples of compliant and non-compliant camera poses
under all derived scenarios. The edges of the narrow (wide)
FOV are shown by green (blue) lines. The compliant angular
section is shown by a white angular triangle. The target is
represented by a small black rectangle. Regions of space for
which D <57 cm and D < 30 cm (i.e., locations where the
camera location is compliant) are represented by the light gray
and dark gray semicircles respectively. At each camera position,
the first letter in each line of red text represents the FOV (N:
narrow; W: wide) while the subsequent letters indicate
compliance (C: compliant; NC: non-compliant).



series at the first occurrence of a target detected with both
visibility and distance constraint satisfied, but regardless of
whether the angular constraint is satisfied.

The four derived scenarios we considered are described
below. Each scenario sets a value of termination distance,
Dyop, and stipulates whether the angular constraint needs to
be satisfied or not. In all cases, the starting distance Dy
defined above is set to be equal to Dy, + 70 cm. This
ensures fairness of comparison between settings that have
different termination distance.

Scenario 1: Same distance, No angular constraint

In this case the termination distance Dy, is set to 57 cm for
all settings, and the angular constraint is omitted. This
scenario models a situation in which a blind person uses the
guidance system to get to approximately arm’s distance to
the target, so that he/she can search for the target with
his/her hand.

Scenario 2: Same distance, Angular constraint

The termination distance is the same as in the previous
case, but the angular constraint is enforced. This means
that, at termination, the user is pointing the phone fairly
accurately towards the target. This may simplify subsequent
tactile exploration, as one would need to search only along
the direction pointed at by the phone.

Scenario 3: Same resolution, No angular constraint

This scenario models the case in which a picture should be
taken of the target at a fixed resolution (number of pixels)
in the image. The resolution at which an object is seen is an
important parameter for image processing. For example,
suppose that the target is a sign posted on the wall, which
needs to be read by OCR. The camera needs to be moved

FOV FPS
Seenario 0 | NS 641, WS:30.1 | NF: 26.9, NS: 64.1
cenario U1 (p< 00001) (p<.001)
Seenario 1 | N: 23.1, W: 13.6 F: 13.6, S: 23.1
¢ (p<.01) (0<.01)
Scenario 2 F:15.7,S:25.2
cenario (p<001)
Seenario 3 | NF: 14.8, WF: 207
cenario > |-, 01)
Scenario 4 NF: 16.3, WF: 23.1 NF: 16.3, NS: 29.7
T pe0n) (p<.01)

Table 1. Average time-to-target T values across participants for
all scenarios (in units of sec.). If a main effect was found to be
significant, the average T for the two levels of the corresponding
factor (N,W and/or F,S) is reported (with the level
corresponding to the better of the two results in bold). If
interaction is also significant, the average T value for a factor
level is computed keeping the level of the other factor fixed (e.g.,
NF and WF) for all factors with a significant simple effect.

close enough to the target to ensure sufficient resolution of
the imaged text for OCR reading.

It is important to note that the resolution of a target seen
from a certain distance by the same camera depends on the
focal length of the lens. Hence, to ensure the same
resolution using the N and W settings (i.e., with and
without the fisheye lens add-on), the termination distance
should be different in the two cases. We verified
experimentally that the image width of the target is the
same when seen under the N setting at 57 cm and under the
W setting at 30 cm. Hence, in this scenario, we set Dg,,=57
cm for NF and NS, and Dy,,=30 cm for WF and WS.

Scenario 4: Same resolution, Angular constraint

This scenario models situations in which centering the
target in the image may be important (for example, to
reduce radial distortion that may occur in the periphery of
the image.)

FOV FPS
Scenario 0 N:0.24, W: 0.08
cenano | (p<.001)
Scenario 1 N: 0.16, W: 0.08 F:0.14,8:0.10
(p<.001) (p<.05)
Scenario 2 N: 0.18, W: 0.08 F:0.15, 8: 0.12
(p<.01) (p<.05)
Scenario 3 | N 0-16, W: 0.07
cenano 31 (<.00001)
Scenario 4 N:0.18, W: 0.08
(p<.00001)

Table 2. Average out-of-FOV fraction V values across
participants for significant main factors and interactions
under different settings considered. (See caption of Tab. 1.)

RESULTS

Quantitative Analysis

We considered two observables to compare the different
settings in each scenario. The first observable is the time-to-
target T, defined as the time it takes from the starting to the
termination distance. The second observable is the out-of-
FOV fraction V, defined as follows. Consider the time
series of measurements between Dy, and Dygp. Let N, be
the number of frames in which the target was detected (in-
FOYV), and N, the number of misses, that is, frames in
which the target was not seen (out-of-FOV). Then
V=Noov/(Niy*Nooy). The out-of-FOV fraction can take
values from 0 to 1; small values indicate that the target was
visible most of the time. Thus, while the time-to-target T is
an objective measure of how quickly the user can reach a
target compliant pose, the out-of-FOV fraction can be
interpreted as a quantity that indirectly affects the user’s
experience, given that when the target is out of view, there
is no feedback provided by the system.
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Fig. 4. Box plots representing the distribution of the time-to-
target T, in sec. (left), and out-of-FOV fraction V (right)
across participants for the different settings for Scenario 4.

The median of the time-to-target T and the median of the
out-of-FOV fraction V for each participant over the 10
trials in each session were first computed. Computing the
median for T has the benefit of removing the effect of
censored data (time-outs) — since the number of time-outs
was always less than 5 for all sessions and all participants,
this implies that the median could be calculated even with
the time-outs. The data was then represented as a 3-way
vector Tjjx or Viy, where i is the participant index, j is the
FOV level, and k is the FPS level.

We tested for equality of row and column mean treatment
effects using standard two-factor, within-subject repeated
measures ANOVA analysis at 0.05 significance level.
(performed in the log domain for Tjy, as this was shown to
improve Gaussianity for this data, and directly on Vi ). If
the effects of both main factors were found to be significant
and interaction was also found to be significant, simple
effects were tested for significance using Bonferroni-
corrected paired t-tests.

The results of this analysis are shown in Tab. 1 for T, and
Tab. 2 for V. Each row in the table corresponds to one
specific scenario, while columns indicate the factor that was
found to be significant. More precisely: for a given scenario
(row), if a certain factor (e.g., FOV) was found to be
significant without interaction, the mean values of the
observable (T or V) for the two levels of this factor (e.g.,
N=23.1, W=13.6) are reported in the corresponding cell. In
the case of significant interaction, the cell reports the mean
values of the observable for a fixed level of the other factor,
if the simple effect was found to be significant (e.g., NF:
14.8, WF: 20.7: in this case, FPS was fixed to F). Note that
we included results for Scenario 0, even though, as
discussed earlier, this scenario is excluded from the set
considered in our analysis. This data is only meant as a
reference for the comparative study of subjective user
evaluation (see later in this section).

In order to explain the observed results, we’ll make
extensive use of the concept of camera pose set C(FOV)
introduced in the Procedure Section. Examples of compliant

and non-compliant camera poses are shown in Fig. 3 in a
simplified 2-D illustration.

Time-To-Target

The dependence of time-to-target T with camera settings is
a function of the scenario considered, as discussed below.
An example of the data distribution is shown by means of
box plots in Fig. 4 for Scenario 4.

Scenario 1: Same distance, No angular constraint

It is easy to see that, in this scenario, if camera pose is
compliant for FOV=N, then it is also compliant for
FOV=W (while the opposite is not true). In other words,
C(N)CC(W), and thus we may expect that, using a wide
FOV, one should be able to reach a compliant pose sooner.
The experimental results confirm this conjecture: target is
reached, on average, 10 sec. faster using the wider FOV.

Scenario 2: Same distance, Angular constraint

As shown in Fig. 3, the sets of compliant camera poses are
identical for the two FOVs, thus similar performances could
be expected. This is confirmed by the experimental results,
which show no significant difference between the average
time-to-target using narrow or wide FOV. The overall mean
time-to-target is 20.5 s.

Scenario 3: Same resolution, No angular constraint

The two compliant camera pose sets overlap, but there are
poses in each set that are not represented in the other set
(see Fig. 3). Hence, it is difficult to speculate about the
performance with different FOVs. Analysis of the
experimental results shows that, at least when FPS=F, use
of the narrow FOV results in shorter time-to-target (by
almost 6 sec.).

Scenario 4: Same resolution, Angular constraint

For a given point in space, the set of camera orientations
that satisfy the angular constraint is the same for both
narrow and wide FOV. However, use of the wider FOV
reduces the maximum allowable distance Dy, in this
scenario, as explained earlier. Otherwise stated,
C(N)DC(W), which conforms to the experimental
observation (average time to target is 6.8 seconds less,
under fast FPS, for narrow FOV than for wide FOV).

Concerning the dependence on the frame rate, it is seen that
the slower FPS increases the average time-to-target by a
substantial amount (9.4 sec to 13.4 sec depending on the
setting). In Scenario 3, the main effect of FPS was found to
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be significant with significant interaction with FOV;
however, comparison of the different levels of FPS for any
fixed level of FOV was not found to be significant.

Out-of-FOV Fraction

The observed out-of-FOV fraction (V) values confirm the
intuition that wider field of view (FOV=W) should result in
higher likelihood of the target being in view (fewer misses)
during the guidance process. In the two same-distance
scenarios, a somewhat surprising result emerges: lower
frame rate slightly decreases the rate of misses. A possible
explanation for this is that lower frame rate makes the
system less responsive, which may prompt one to more
carefully aim the camera. (This intuition was supported by
the comment of at least one participant.)

Subjective Assessments of Difficulty

Participants were asked to assess, on a scale from 0 to 5 (0
being “very easy” and 5 “very difficult”), the perceived
difficulty of the guidance process under each setting. The
scores for each participant are shown in Fig. 5. Average
scores were: NF=1.41; NS=3.76; WF=1.53; WS=2.59.
Intra-class correlation analysis (ICC(1,1) [16]) reveals that
the subjective scores are correlated across participants
(p<107). It is interesting to compare the subjective scores of
each participant with the measured values of T and V for
the same participant, to ascertain whether the participants’
perceived difficulty correlates with the chosen
measurements. Remember that participants only
experienced the original Scenario 0, not the derived ones,
and thus data from this scenario should be used
(summarized in the last row of Tab. 1 and 2).

Kendall’s Tt rank correlation coefficients between each
participant’s ratings across the different settings and the
measured values for the same participant were computed
for T and for V. For all but one participant, a positive rank
correlation with T was observed, whereas for three
participants, the rank correlation with V was negative. This
suggests that the execution speed may be a more important
factor than the rate of misses in the participant’s evaluation
of task difficulty.

Qualitative Observations

Each participant was carefully observed by one of the
authors at each session. We noted that the experiment was
very challenging for a few participants, some of whom were
clearly tired towards the end. However, many participants
seemed to approach the experiment as a game that was
mostly enjoyable. We observed large variability in the
participants’ search strategies and search performance,
which we believe arose at least in part to factors that are
separate from the system’s frame rate and FOV: namely,
the participants’ abilities to orient themselves to their
surroundings, to hold the camera properly and move it
slowly and steadily, and to use their proprioception to
maintain awareness of how they were holding the
smartphone in relation to their bodies.

Orientation in the Environment and With Respect to Target
Some participants had great difficulty orienting themselves
to the room, and in some cases wound up aiming the
smartphone camera towards the wrong wall (adjacent and
perpendicular to the wall containing the markers). Some
participants also had a consistent directional bias, e.g.,
usually pointing the camera axis well to the left/right of the
direction their torso was pointing. One participant tended to
consistently point the camera towards the ground, which
caused problems in finding higher markers.

Many participants did not get close enough to the marker.
They seemed reluctant to advance forward, as if they were
waiting for something to happen and did not proceed when
they were short of 30 cm. Also, some participants seemed
to focus too hard on “centering” the target and forgot to
advance closer. To advance closer, some participants
extended their arm but not enough. In fact, it seems that,
when close to the wall and the system was beeping, some
were not sure exactly where to move.

Some participants monitored their distance to the wall with
their foot or hand while others did not. Overall, many
participants often failed to realize when they were very
close to the wall. In fact, sometimes participants came so
close to the wall that the system would detect the marker
but could not announce success (marker never in full view),
or they lost the marker, resulting in a long search time or
time-out.

Holding and Moving the Camera

Most participants held the smartphone with one hand, but a
few used two hands. Some pivoted the smartphone around
the wrist, and others around the elbow. Most participants
held the smartphone at approximately the same height off
the ground, while a few lifted it up and down more in line
with the heights of the targets. Some participants had
trouble with markers that were very low or very high
compared with their height.

Several participants tended to approach the target at a very
large slant angle (i.e., the camera axis was far from
perpendicular to the plane of the wall), largely because they
tended to rotate the smartphone instead of translating it, and
because the system provided no explicit feedback to
differentiate between these two kinds of movements. For
one participant, each time the system told him to turn left
(or right), he tended to translate to the left (right) as directed
but also inadvertently rotated to the right (left); thus over
time he became increasingly slanted relative to the wall,
while maintaining lock on the target.

Some participants moved the smartphone too fast, even
after the experimenters trained them to move the
smartphone slowly. Besides the risk of motion blur, moving
the phone too fast may lead to a situation such that, by the
time a speech feedback utterance is completed, the
directions given in the utterance are no longer appropriate.
This is because the smartphone moved too far between the



time the image generating the feedback was acquired and
the time the feedback utterance is completed. The problem
is exacerbated at slow frame rate, where it may lead to
“limit cycles,” with the user rotating the phone periodically
left to right and right to left, unable to find the precise
direction to the marker.

When the target was lost, some participants were able to
scan the scene methodically to rediscover the target, while
others searched at random.

Hand-Body Coordination

Most participants move the smartphone “forward” with
respect to their body, not to the optical axis. This is the
main reason why, when the smartphone is very tilted, it is
easy to lose the marker. The correct motion, when the
phone is tilted but well centered (off-axis angle is small),
would be along the optical axis.

When moving towards the target, participants have to
decide when to take steps. Some took very small steps
(which seems to be an effective strategy), while some move
their arm and then take a longer step. Clearly some were
better than others at coordination. Some wait until the
marker is well centered before taking a step (which also
seems to be an effective strategy).

Feedback from Participants
This section summarizes the qualitative feedback offered by
the participants at the end of the experiment.

General Feedback

Several participants expressed the desire for more feedback
from the system, including feedback when the camera is too
close to the target. One participant wanted continuous
feedback, and said: “When I don’t hear anything, I feel I am
lost”. A few participants noted that vibration feedback or
the use of earphones/bone conduction headphones might be
useful in a noisy setting, e.g., outdoors in an urban area.
Some also suggested that a Google Glass-type interface
might be more natural than the smartphone interface;
another tried a body scanning strategy, in which the
smartphone was held against the chest, which made the
camera pose more stable but resulted in unwanted camera
tilt. Finally, a few participants pointed out that the word
“turn” in the “turn left/right/etc.” utterances is superfluous
and should be omitted.

Feedback on Settings

Regarding the FOV, some participants said the fisheye lens
provides more information and allows more rapid detection,
but others said they preferred the normal lens, in one case
because the fisheye “requires more filtering”; one person
preferred the narrow lens when closer to the target because
it provided more specific localization. Opinion was divided
on the frame rate, with most participants preferring the
higher rate of information provided by the normal frame
rate (and disliking the wait imposed by the slow frame
rate), yet a few preferring the slow frame rate either

because the pace felt more comfortable or because there are
“too many beeps” in the fast mode, causing worry when the
system does not beep.

Other Feedback

One participant “Felt like the target was pulling me” while
another lamented the fact that “When I walk, I feel that I
lose it because I move.” Someone noted that some blind
people are taught not to “experiment” with touching and are
encouraged to keep their hands to themselves, while others
explore freely by touch. Finally, other comments
emphasized the need to listen carefully to the training
instructions, to stay calm during the trials, and to pay close
attention to their surroundings — underscoring how
challenging the search tasks in these experiments are for
many blind persons. (One person, however, went so far as
to say that he wanted his own version of the system to use!)

DISCUSSION

Our experiments have reinforced the inherent difficulty in
guiding a blind person to a target using acoustic feedback
from a hand-held camera phone system. In the easiest
scenario considered, it took our participants an average of
more than 13 seconds to complete the task, which involved
moving the phone by just 70 cm. The difficulty of the “last
meter” guidance can be explained in simple geometric
terms, as shown in Fig. 3. Simply put, maintaining in-FOV
visibility (that, is, orienting and moving the camera so that
the target remains in the FOV) becomes more challenging
at closer distances. Increasing the camera’s FOV may
appear at first to be a simple solution to maximize visibility
and thus facilitate guidance. However, wider FOV comes at
the cost of reduced angular resolution and thus reduced
image resolution (size) of the target. In practice, this means
that, with a wider FOV, one needs to get closer to the target
before the system can detect and recognize it.

This work is, to the best of our knowledge, the first
investigation into the non-trivial trade-off between spatial
resolution and FOV. Our simple geometric analysis of this
trade-off in different scenarios of usage is able to justify in
good part the experimental results with our blind
participants. Our results show that, in terms of execution
time, wide FOV is preferable to narrow FOV only when
neither spatial resolution nor precise pointing of the
camera towards the target is important. If, however, a
certain minimum spatial resolution is required, narrow FOV
results in shorter average execution time, even though the
out-of-FOV fraction is (as expected) consistently higher
with narrow FOV. It is important to observe that, when the
target is out-of-FOV, the system does not produce any
feedback. This led to sporadic situations with a participant
“losing” a target for some time, and having to explore the
scene moving the camera around for a certain amount of
time before the target is re-acquired. In a few cases, the
participant was not able to re-acquire the target before time-
out.



Concerning the FPS setting, the experiments showed that in
most scenarios a slower FPS increases execution time. This
was obviously expected; perhaps the biggest surprise was
that, even with such a slow frame rate (one frame every
other second), participants were by and large able to
complete the task in the allotted time. Interestingly, the out-
of-FOV fraction seems largely independent of the FPS, and
in some cases a lower FPS makes for a lower miss rate.

CONCLUSION

We have investigated the effects of two important
constraints in object recognition technology, frame rate
(FPS) and camera field of view (FOV), on the ability of
blind users to search for visual targets and acquire well-
framed images of them. The results of the analysis show
that, while increasing the FPS generally improves search
performance, in many cases increasing the FOV does not
help, and may even hurt, performance. We hypothesize that
an increased FOV confers a mixture of benefits and
drawbacks: while it may help the user find the target from a
distance, up close it provides less localization information
than a narrow FOV and may therefore hinder the user’s
attempts to acquire a well-framed (and approximately head-
on) image.

Although our experimental results are specific to the chosen
apparatus, these trade-offs may have important implications
for the design of any object recognition system for blind or
visually impaired users. In general, a wide FOV is only
preferable to a narrow FOV when neither spatial resolution
nor precise camera pointing towards the target is important.
A faster FPS generally improves search performance, but in
many practical situations FPS is increased by reducing the
image resolution, and this must be weighed against the cost
of having to approach the target closer to resolve it.

While the current study assumed a fixed Ul configuration,
in the future we will also study how the Ul may be jointly
optimized with system parameters such as FPS and FOV. In
particular, we will investigate how the Ul can be optimized
for a wide FOV, to provide more specific feedback about
the target’s location in the image and thereby speed the
process of centering the target.

We will also investigate the role of other variables in search
and target framing performance, such as how often (and for
how long) a user loses “sight” of the target by the system,
and what the user can do to recover from this setback as
gracefully as possible. Finally, there is growing interest in
new form factors such as a wireless camera mounted on the
eyeglasses (as in Google Glass), which could facilitate
entirely new visual search strategies and behaviors, and we
plan to study these form factors in the future.
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