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ABSTRACT 
Smartphone apps can use object recognition software to 
provide information to blind or low vision users about 
objects in the visual environment. A crucial challenge for 
these users is aiming the camera properly to take a well-
framed picture of the desired target object. We investigate 
the effects of two fundamental constraints of object 
recognition – frame rate and camera field of view – on a 
blind person’s ability to use an object recognition 
smartphone app. The app was used by 18 blind participants 
to find visual targets beyond arm’s reach and approach 
them to within 30 cm. While we expected that a faster 
frame rate or wider camera field of view should always 
improve search performance, our experimental results show 
that in many cases increasing the field of view does not 
help, and may even hurt, performance. These results have 
important implications for the design of object recognition 
systems for blind users. 

Author Keywords 
Assistive technology; Blindness; Wayfinding; Camera-
based access to information. 
 

ACM Classification Keywords 
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INTRODUCTION 
A growing number of smartphone apps are now available 
that use the smartphone camera to provide information to a 
blind or low vision user about objects in his or her visual 
environment. Such apps use a combination of computer 
vision-based object recognition algorithms or crowd-
sourcing techniques to perform tasks such as identifying 
grocery products, determining the denominations of paper 
currency, reading a sign posted on the wall or reading a 
printed document such as a restaurant menu. However, this 
technology poses a fundamental challenge: how can a user 

with little or no vision take a well-framed picture of the 
desired target object? This process entails both exploration 
in search of a target, and, once the target has been detected, 
guidance to the target using feedback from the system. Our 
work concentrates specifically on the guidance phase, 
which is a crucial bottleneck in the overall search process 
but which has received little attention in past research. 

Recent research [18,17] has explored various real-time 
guidance mechanisms that help a blind or low vision take 
well-framed pictures. Indeed, in our previous work on our 
smartphone based color marker detection system [7,4,13], 
we explored and tested a variety of user interface (UI) 
options before arriving at the UI used in our current system 
(see the “Apparatus” Section). Given such a mechanism 
(which is fixed in our current study), we explore the effects 
that fundamental constraints imposed by the object 
recognition technology itself have on the user’s 
performance in acquiring well-framed pictures. Among the 
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Fig. 1. Experimental set-up showing two visually impaired 
participants using an object recognition smartphone app to 
locate and approach a specific target. Note that the 
participant shown in the lower picture is using the fisheye 
lens attachment. 



most important of these constraints are the video frame rate 
(the rate at which video frames are processed by 
recognition algorithms) and the camera field of view (FOV, 
which is determined by the camera optics). In many 
circumstances it is possible to trade off one constraint 
against another in the design of the object recognition 
system; however, little is known about the practical 
consequences of these trade-offs for visual search and 
framing by a blind or visually impaired person. For 
instance, frame rate can often be increased by down-
sampling the video frames, but at the expense of limiting 
the maximum range at which the target can be resolved. 
Similarly, expanding the FOV (e.g., with a wide-angle or 
fisheye lens) has the potential to speed up the initial search 
for a target, but it also reduces the image resolution, and (as 
we show in this paper) may make it more difficult to 
localize the target from close-up.  

We investigate the effects of these constraints using a fast 
and extremely reliable computer vision-based object 
recognition smartphone app, developed in-house, which 
was used by a total of 18 blind participants to find visual 
targets beyond arm’s reach and to approach them to within 
a distance of approximately 30 cm, using continuous audio 
feedback from the app. Compared with the authors’ initial 
supposition that either a faster frame rate or wider camera 
field of view should always improve search performance, 
the results of our statistical analysis of the experiment are 
more nuanced, showing that in many cases increasing the 
field of view does not help, and may even hurt, 
performance.  

While our study used a specific type of visual target in a 
particular search task, we argue that the results of the study 
generalize to nearly any object recognition-based visual 
search task performed by a blind user. Specifically, any 
mobile object recognition task requiring the target to be 
sufficiently well resolved and fully contained within the 
camera’s field of view will be subject to two fundamental 
system constraints, the frame rate and FOV. Thus, the main 
contribution of our work is to explore the effects that the 
fundamental constraints of object recognition technology 
have on search performance for blind users.  

RELATED WORK 
A number of technologies to support independent 
orientation and mobility for persons with visual impairment 
have been proposed and investigated by the research 
community [14]. Much less attention has been devoted to 
the topic considered in this contribution, that is, precise 
guidance to a target through continuous visual-based 
tracking. Document access via mobile OCR (such as the 
KNFB Mobile reader [1] and Blindsight’s Text Detective 
[3]) presents similar problems: the user needs to take a 
close-up, well-framed picture of the document. Beyond 
OCR, other applications of visual information access 
include barcode reading. A camera-based system for 
barcode access, equipped with a guidance mechanism that 

suggests how to move the camera in order to precisely 
center a detected barcode, was developed by Tekin and 
Coughlan [17]. Preliminary experiments with a guidance 
system using similar color markers as in the present study 
were reported in [13]. The study in [13] was mostly 
qualitative in nature; it highlighted the difference between 
exploration in search of a target, and, once the target has 
been detected, guidance to the target using feedback from 
the system. The present work concentrates on the second 
component (guidance). 

Assisting a blind person while taking pictures, whether for 
leisure [10], to document environmental features [18], or 
for remote assistance by sighted helpers [6,11,2], also 
requires some form of guidance to ensure that a good 
picture of a target from a close distance is produced. For 
example, EasySnap [10] is a mobile application that gives 
feedback to a blind photographer about the scene light, or 
about the presence and localization in the picture of an 
object or of a person. LocateIt [5] uses simple computer 
vision techniques along with crowdsourcing to help a blind 
user point the camera correctly to an object (for example, to 
better identify it or get closer to it). The system developed 
by Vázquez and Steinfeld [18] uses a general-purpose 
saliency map to select a region of interest. Feedback to the 
user is provided through audio tones or synthetic speech; it 
was noted that visually impaired users slightly preferred 
speech feedback over audio tones, consistent with earlier 
findings from other research groups [9]. 

We note that similar guidance mechanisms, whereby the 
blind user receives feedback about the correct pointing of a 
hand-held device, were studied in the context of other 
navigational technology. For example, Talking Signs [8] 
uses beacons transmitting modulated infrared light. A user 
carrying a hand-held receiver in the proximity of the 
beacons hears audio (typically, informational speech) from 
the demodulated received light only when the receiver is 
aimed towards the beacon. Similar interface mechanisms 
(using audio and/or vibration) were studied in wayfinding 
systems using GPS [15] or digital compass [12]. 

ASSESSING VISUAL-BASED GUIDANCE 

Overview and Rationale 
Using a camera system for guidance towards a target can be 
challenging without sight. The characteristics of the image 
acquisition and processing and of the user interface both 
play a role in the user’s experience with such a system. In 
this work, we concentrate on the characteristics of the 
vision system, assuming a simple user interface modality, 
described later in this section. Important system 
specifications include: the camera’s resolution (number of 
pixels); its field of view (FOV); the speed of the 
acquisition/processing system (in terms of frames processed 
per second, FPS); and the quality of the target detection 
system, which can be expressed, for example, in terms of 
false negative and false positive rates. It is clear that these 
characteristics are interrelated. For example, a system with 



higher resolution may take longer time to process, resulting 
in lower FPS. The FOV and resolution, combined with the 
characteristics of the detection algorithm, determine the 
distance at which a target of a certain size can be detected.  

Two characteristics (FOV and FPS) are considered in this 
work. Specifically, we study how execution of a given 
guidance task is affected by the camera FOV as it is 
switched from narrow to wide, and by the FPS as it is 
switched between fast and slow. These two system 
specifications are both important for the design of a visual 
guidance system. The camera FOV can be modified 
(changing the lens, using a zoom lens, or using an add-on 
lens). Intuitively, a wide FOV ensures that the target is seen 
from a wider span of camera orientations, but also reduces 
the apparent size of the target, which affects the ability of 
the computer vision algorithm to recognize it. A wide FOV 
also affects the ability of a blind user to determine the 
target’s precise location. As for the FPS, our goal is to 
understand whether algorithms characterized by low frame 
rate (due e.g. to heavy computational load or the need to 
access a remote server) are still usable for the purpose of 
blind guidance, or result in excessive user frustration. 

We would like to emphasize that we have deliberately 
chosen to use an object recognition system with near-
perfect performance in order to simplify our experimental 
study. Our system is almost entirely unaffected by the kinds 
of issues prevalent in real-world object recognition systems, 
such as false and positive negative detections and confusion 
with clutter. We felt that it would be difficult to model the 
occurrence of false positive/negative detections in a 
realistic way that would generalize to real-world tasks, 
since these detections are heavily influenced by the nature 
and quantity of occlusions and clutter in the scene. 
However, all object recognition systems (whether real or 
ideal) are subject to the FOV and FPS constraints, which 
we feel are the most fundamental constraints in the search 
process; by using our object recognition system we were 
able to design a tractable study that focuses on these two 
variables, thereby minimizing possible confounds with 
other search variables.  

Participants 
The experiments were conducted in two different locations. 
We recruited a total of 20 participants, 10 at each location. 
The oldest participant (age 86) was unable to hold the 
smartphone steady, even after training, and was therefore 
unable to perform the search task, so this person was 
excluded from the study. Another participant had to 
terminate the study early, so her data was also excluded 
from the study. As a result, our study includes a total of 
N=18 participants (six females and 12 males), with ages 
ranging from 18 to 71 years, with median value 48.5 years. 
Nine participants had no light perception and the rest had 
very limited light perception (insufficient to see the color 
markers in the experiment). Five participants have had their 
current degree of vision impairment since birth. 

Apparatus 
Detection Software 
For our experiments we employed a system that uses 
specially designed fiducials (“markers”) in the form of a 
color pie with four sectors (see Fig. 2). The detection 
software uses the algorithm described in [4], which returns 
the position (in the image) of four equi-spaced keypoints on 
the marker’s circumference as well as on the marker’s 
center. Given the known size of the marker (16 cm in 
diameter) and the optical/imaging characteristics of the 
camera, the camera’s pose (position and orientation) can be 
estimated from these five keypoints. The detection 
algorithm assumes that the camera is kept approximately 
vertical, with a roll angle (around the optical axis) between 
-45o and 45o. If the user inadvertently rotates the phone by 
more than the allowed roll angle, a short warning vibration 
is produced. The algorithm is sensitive to the order of the 

  

  

 

Fig. 2. Top row: the color marker used in our experiments, 
seen at a distance of 57 cm with narrow FOV (left) and at 
30 cm with wide FOV. Second row: the marker seen at a 
large slant angle (left) and off-axis angle (right) is still 
detected by our system. The red dots are the detected 
keypoints and the yellow pixels indicate the detected color 
sectors in the marker. Bottom row: the placement of 
markers on the wall for our experiments. 



colors in the sectors, which enables us to define a variety of 
different color markers by permuting the same four colors. 
Each color permutation is assigned an ID, and the system 
can be set to detect only markers with a specified ID. 

The marker detection algorithm was implemented on an 
iPhone 4. At VGA resolution (640 by 480 pixels), the 
achievable frame rate varies from 9 frames per second 
(FPS) when no marker is visible, to 3 FPS when the marker 
is detected. The frame rate can also be artificially decreased 
to 0.5 FPS, to achieve the low frame rate modality used in 
our experiments. We chose this value of FPS as it can be 
reasonably expected that most standard computer vision 
algorithms for target detection would take no longer than 2 
seconds per frame to execute on an iPhone. 

In some experimental settings, we increased the camera’s 
FOV (normally approx. 48o by 61o) by means of a fisheye 
lens from Photojojo.com that snaps on and off the iPhone 
with a magnetic attachment. With this lens, the FOV 
increases to approximately 87o by 130o. This lens 
introduces very noticeable radial distortion which, however, 
does not affect marker detection, even from very large slant 
angles (see Fig. 2). The distance to the marker can also be 
computed accurately even with the fisheye lens on, except 
in situations with large horizontal and vertical off-axis 
angles. (The off-axis angle is the angle between the optical 
axis and the ray pointing from the camera center to the 
center of the marker, which is 0o when the marker center 
appears in the center of the image. It can be decomposed 
into horizontal and vertical components, which we refer to 
as the horizontal and vertical off-axis angles.) Marker 
detection in the conditions considered in our experiments, 
from a maximum distance of about 1.5m, under controlled 
illumination, and with solid white background, is extremely 
accurate and reliable, with virtually no false positives or 
missed detections. The application logs time-stamped data 
relative to acquired frame and detection results. 

User Interface 
The system has the following acoustic UI. When no marker 
is detected, the system is silent. When a marker is detected 
at a vertical or horizontal off-axis angle of more than 10o, a 
recorded sentence is uttered, giving directions to the user 
about how to rotate (pivot) the camera in order to reduce 
the off-axis angle.  These sentences take the form of “Turn 
right”, “Turn up”, “Turn left and down”, etc. When the 
marker is “well centered” (meaning that both vertical and 
horizontal off-axis angles are less than 10o), the system 
beeps periodically. Beeps are repeated at a rate of 2 
beeps/sec. when the marker is at a distance of more than 50 
cm, and of about 5 beeps/sec. at lower distance. When the 
frame rate is artificially reduced to 0.5 FPS, one beep is 
emitted for each processed frame when the distance to the 
marker is 50 cm or more, and a sequence of three short 
beeps is emitted for each processed frame at shorter 
distances. 

Procedure 
The experimental set-up consisted of eight color markers 
(each with a distinct permutation of colors), affixed to a 
wall as shown in Fig. 2. The markers were arranged in three 
rows ranging in height (measured from the floor to the 
center of the target) from 112 cm to 162 cm, and the 
horizontal spacing between adjacent markers in each row 
was 45 cm (measured between the marker centers). 

For each participant who volunteered for the experiment, 
the experimenters first obtained his or her consent to 
participate in accordance with an IRB protocol. The 
participant was then given a training and practice session to 
acquaint him/her with the purpose of the study and the 
operation of the iPhone app, including the proper way to 
hold and move the smartphone, and was asked to try out the 
system a few times to find and approach one or more 
markers. 

The experiment consisted of four sessions of 12 trials each, 
for a total of 48 trials for each participant in the experiment. 
In each trial, the participant was asked to find and approach 
the target, starting from a point 150 cm from the wall 
(centered relative to the set of targets), and ending when the 
system announced the target was successfully localized in 
the camera’s FOV from a distance of approximately 30 cm. 
Specifically, the following termination criteria were 
implemented: (1) the target is 30 cm or closer to the camera 
(distance constraint); (2) the magnitudes of the horizontal 
and vertical off-axis angles are both 10o or less (angular 
constraint); and (3) the entire target is contained in the 
image (visibility constraint). This last constraint is dictated 
by the fact that our system can compute the distance to the 
target only when the target is fully visible. In practice, this 
constrains the distance to the target to be larger than a 
certain amount (approximately 20 cm) for successful 
termination. We refer to these combined termination criteria 
as Scenario 0; in the next section, we will introduce four 
additional “Derived Scenarios,” called Scenarios 1, 2, 3 and 
4, based on modified criteria (defined ex post facto) that are 
less stringent than the criteria defining Scenario 0. 

When the Scenario 0 termination criteria are met, the 
system declares success by uttering, “You have reached the 
target. Congratulations!” Note that, for a given lens setting 
(FOV), compliance with the termination criteria is 
determined solely by the pose (3-D location and 
orientation) of the camera. (Note that the camera orientation 
is specified by three angles, roll, yaw and pitch.) We will 
say that a pose is compliant if it satisfies the termination 
criteria. For a certain FOV, we define the compliant pose 
set C(FOV), which contains all poses that are compliant for 
that specific FOV. 

At the start of each trial, the participant was asked to face 
away from the wall at the starting position, and to turn to 
face the wall and begin searching for the target when the 
experimenter told him/her to begin. If success was not 
attained within 180 sec. from the time the experimenter told 



the participant to begin, or within 180 sec. from the first 
feedback produced by the system, a “time-out” was 
declared for the trial. In each trial the target was chosen 
uniformly randomly from the set of eight targets on the 
wall. 

Two factors, the FOV and frame rate (together these factor 
levels are jointly referred to as the experimental “settings”), 
were fixed for each entire session of 12 trials. The FOV had 
two possible levels: normal, using the standard iPhone 
camera lens, and wide, using the fisheye lens. The frame 
rate also had two possible levels: fast (several FPS), and 
slow (0.5 FPS). We will use the following notation for these 
factors: FOV = N or W denotes the narrow (normal) or 
wide-angle lens, and FPS = F or S denotes the fast or slow 
frame rate. The two factors imply a total of four possible 
settings: NF, NS, WF, and WS. Each of the four settings 
was applied to exactly one of the four sessions in the entire 
experiment. For each participant, the order in which the 
settings were assigned to the sessions was chosen at random 
in advance of the experiment. This randomization was done 
to minimize the confound between experimental settings 
and learning effects. The participant was informed of the 
FOV and FPS settings at the start of each session. The first 
two trials of each session were timed practice trials during 
which the experimenter was free to help out the participant, 
and the participant was free to ask for help; the purpose of 
these trials was to acquaint the participant with each setting, 
so these trials were not used in the data analysis. The next 
ten trials of the session were recorded and analyzed for a 
total of 40 trials recorded for each participant. 

After the four sessions were completed, a brief 
questionnaire was administered to the participant, and the 
experimenter solicited feedback about the system and the 
experiment. Participants were also asked to report the 
perceived difficulty of completing the tasks for each one of 
the four settings on a scale between 0 and 5. 

Derived Scenarios 
In order to draw meaningful conclusions on how the 
experimental settings affect search performance, fair 
comparisons need to be drawn between the FOV = N vs. W 
levels. This need arises since the two FOV levels have 
different camera resolutions, which implies that a target can 
be satisfactorily resolved from a greater maximum distance 
with FOV = N than with FOV = W. Thus, it may be 
necessary to bring the camera closer to the target with FOV 
= W than with FOV = N for successful recognition. 
Moreover, even for Scenario 0 (the actual scenario used in 
the experiment, in which the termination distance of 30 cm 
was used for both N and W), different angular 
considerations apply for N vs. W: at 30 cm, in the narrow 
FOV case the marker had to be seen at an off-axis angle no 
larger than approximately 6o for the marker to be entirely 
contained in the image (visibility constraint). By contrast, 
this was not an issue for the wide FOV. 

As a result, although all the tests were conducted under the 
same Scenario 0 termination criteria (see the “Procedure” 
section), for ex post facto data analysis we considered 
other, less restrictive derived scenarios to take into account 
various practical consequences of different FOV settings. 
Each derived scenario (see Fig. 3) corresponds to a specific 
set of search criteria and fulfills the following property: if a 
trial meets the Scenario 0 termination criteria, then for each 
Scenario 1, 2, 3 and 4 there must exist some contiguous 
subset of the time series for the trial (formed by omitting 
some data points at the beginning and/or at the end of the 
original trial) that also fulfills all the criteria for that 
scenario. Thus, each “successful” trial satisfying Scenario 0 
can be analyzed under Scenarios 1 through 4, and analysis 
under these derived scenarios permits meaningful 
conclusions on how to compare the search process across 
different settings. We note that using these derived 
scenarios, these conclusions can be drawn solely from 
Scenario 0 trials, without having the participants perform 
multiple versions of the experimental trials (up to four 
versions would be necessary, corresponding to Scenarios 1 
through 4). 

For example, one could look at the collected time series and 
artificially terminate it at the first occurrence of target 
detection at a distance of Dstop>30 cm, with both visibility 
and angular constraint satisfied. This is equivalent to 
changing the distance constraint to a higher value Dstop of 
distance. Conversely, one may find the first occurrence of a 
target seen at distance larger than or equal to a certain value 
Dstart, and remove all data points in the time series before 
that. This would effectively modify the starting location of 
the participant. Or, one could artificially terminate the time 

 

 

Fig. 3. Examples of compliant and non-compliant camera poses 
under all derived scenarios. The edges of the narrow (wide) 
FOV are shown by green (blue) lines. The compliant angular 
section is shown by a white angular triangle. The target is 
represented by a small black rectangle. Regions of space for 
which D≤ 57 cm and D≤ 30 cm (i.e., locations where the 
camera location is compliant) are represented by the light gray 
and dark gray semicircles respectively. At each camera position, 
the first letter in each line of red text represents the FOV (N: 
narrow; W: wide) while the subsequent letters indicate 
compliance (C: compliant; NC: non-compliant). 



series at the first occurrence of a target detected with both 
visibility and distance constraint satisfied, but regardless of 
whether the angular constraint is satisfied.  

The four derived scenarios we considered are described 
below. Each scenario sets a value of termination distance, 
Dstop, and stipulates whether the angular constraint needs to 
be satisfied or not. In all cases, the starting distance Dstart 
defined above is set to be equal to Dstop + 70 cm. This 
ensures fairness of comparison between settings that have 
different termination distance. 

Scenario 1: Same distance, No angular constraint 
In this case the termination distance Dstop is set to 57 cm for 
all settings, and the angular constraint is omitted. This 
scenario models a situation in which a blind person uses the 
guidance system to get to approximately arm’s distance to 
the target, so that he/she can search for the target with 
his/her hand.  

Scenario 2: Same distance, Angular constraint 
The termination distance is the same as in the previous 
case, but the angular constraint is enforced.  This means 
that, at termination, the user is pointing the phone fairly 
accurately towards the target. This may simplify subsequent 
tactile exploration, as one would need to search only along 
the direction pointed at by the phone. 

Scenario 3: Same resolution, No angular constraint 
This scenario models the case in which a picture should be 
taken of the target at a fixed resolution (number of pixels) 
in the image. The resolution at which an object is seen is an 
important parameter for image processing. For example, 
suppose that the target is a sign posted on the wall, which 
needs to be read by OCR. The camera needs to be moved 

close enough to the target to ensure sufficient resolution of 
the imaged text for OCR reading.  

It is important to note that the resolution of a target seen 
from a certain distance by the same camera depends on the 
focal length of the lens. Hence, to ensure the same 
resolution using the N and W settings (i.e., with and 
without the fisheye lens add-on), the termination distance 
should be different in the two cases. We verified 
experimentally that the image width of the target is the 
same when seen under the N setting at 57 cm and under the 
W setting at 30 cm. Hence, in this scenario, we set Dstop=57 
cm for NF and NS, and Dstop=30 cm for WF and WS. 

Scenario 4: Same resolution, Angular constraint 
This scenario models situations in which centering the 
target in the image may be important (for example, to 
reduce radial distortion that may occur in the periphery of 
the image.)  

RESULTS 
Quantitative Analysis 
We considered two observables to compare the different 
settings in each scenario. The first observable is the time-to-
target T, defined as the time it takes from the starting to the 
termination distance. The second observable is the out-of-
FOV fraction V, defined as follows. Consider the time 
series of measurements between Dstart and Dstop. Let Niv be 
the number of frames in which the target was detected (in-
FOV), and Noov the number of misses, that is, frames in 
which the target was not seen (out-of-FOV). Then 
V=Noov/(Niv+Noov). The out-of-FOV fraction can take 
values from 0 to 1; small values indicate that the target was 
visible most of the time. Thus, while the time-to-target T is 
an objective measure of how quickly the user can reach a 
target compliant pose, the out-of-FOV fraction can be 
interpreted as a quantity that indirectly affects the user’s 
experience, given that when the target is out of view, there 
is no feedback provided by the system. 

 FOV FPS 

Scenario 0 N: 0.24, W: 0.08 
(p<.001)  

Scenario 1 N: 0.16, W: 0.08 
(p<.001) 

F: 0.14, S: 0.10 
(p<.05) 

Scenario 2 N: 0.18, W: 0.08 
(p<.01) 

F: 0.15, S: 0.12 
(p<.05) 

Scenario 3 N: 0.16, W: 0.07 
(p<.00001)  

Scenario 4 N: 0.18, W: 0.08 
(p<.00001)  

Table 2. Average out-of-FOV fraction V values across 
participants for significant main factors and interactions 
under different settings considered. (See caption of Tab. 1.) 

 FOV FPS 

Scenario 0 NS: 64.1, WS: 30.1 
(p<.00001) 

NF: 26.9, NS: 64.1 
(p<.001) 

Scenario 1 N: 23.1, W: 13.6 
(p<.01) 

F: 13.6, S: 23.1 
(p<.01) 

Scenario 2  F: 15.7, S: 25.2 
(p<.001) 

Scenario 3 NF: 14.8, WF: 20.7 
(p<.01)  

Scenario 4 NF: 16.3, WF: 23.1 
(p<.01) 

NF: 16.3, NS: 29.7 
(p<.01) 

Table 1. Average time-to-target T values across participants for 
all scenarios (in units of sec.). If a main effect was found to be 
significant, the average T for the two levels of the corresponding 
factor (N,W and/or F,S) is reported (with the level 
corresponding to the better of the two results in bold). If 
interaction is also significant, the average T value for a factor 
level is computed keeping the level of the other factor fixed (e.g., 
NF and WF) for all factors with a significant simple effect. 



The median of the time-to-target T and the median of the 
out-of-FOV fraction V for each participant over the 10 
trials in each session were first computed. Computing the 
median for T has the benefit of removing the effect of 
censored data (time-outs) – since the number of time-outs 
was always less than 5 for all sessions and all participants, 
this implies that the median could be calculated even with 
the time-outs. The data was then represented as a 3-way 
vector Tijk or Vijk, where i is the participant index, j is the 
FOV level, and k is the FPS level.  

We tested for equality of row and column mean treatment 
effects using standard two-factor, within-subject repeated 
measures ANOVA analysis at 0.05 significance level.  
(performed in the log domain for Tijk, as this was shown to 
improve Gaussianity for this data, and directly on Vijk ). If 
the effects of both main factors were found to be significant 
and interaction was also found to be significant, simple 
effects were tested for significance using Bonferroni-
corrected paired t-tests. 

The results of this analysis are shown in Tab. 1 for T, and 
Tab. 2 for V. Each row in the table corresponds to one 
specific scenario, while columns indicate the factor that was 
found to be significant. More precisely: for a given scenario 
(row), if a certain factor (e.g., FOV) was found to be 
significant without interaction, the mean values of the 
observable (T or V) for the two levels of this factor (e.g., 
N=23.1, W=13.6) are reported in the corresponding cell. In 
the case of significant interaction, the cell reports the mean 
values of the observable for a fixed level of the other factor, 
if the simple effect was found to be significant (e.g., NF: 
14.8, WF: 20.7: in this case, FPS was fixed to F). Note that 
we included results for Scenario 0, even though, as 
discussed earlier, this scenario is excluded from the set 
considered in our analysis. This data is only meant as a 
reference for the comparative study of subjective user 
evaluation (see later in this section). 

In order to explain the observed results, we’ll make 
extensive use of the concept of camera pose set C(FOV) 
introduced in the Procedure Section. Examples of compliant 

and non-compliant camera poses are shown in Fig. 3 in a 
simplified 2-D illustration. 

Time-To-Target 
The dependence of time-to-target T with camera settings is 
a function of the scenario considered, as discussed below. 
An example of the data distribution is shown by means of 
box plots in Fig. 4 for Scenario 4.  

Scenario 1:  Same distance, No angular constraint  
It is easy to see that, in this scenario, if camera pose is 
compliant for FOV=N, then it is also compliant for 
FOV=W (while the opposite is not true). In other words, 
C(N)⊂C(W), and thus we may expect that, using a wide 
FOV, one should be able to reach a compliant pose sooner. 
The experimental results confirm this conjecture: target is 
reached, on average, 10 sec. faster using the wider FOV. 

Scenario 2: Same distance, Angular constraint  
As shown in Fig. 3, the sets of compliant camera poses are 
identical for the two FOVs, thus similar performances could 
be expected. This is confirmed by the experimental results, 
which show no significant difference between the average 
time-to-target using narrow or wide FOV. The overall mean 
time-to-target is 20.5 s. 

Scenario 3: Same resolution, No angular constraint  
The two compliant camera pose sets overlap, but there are 
poses in each set that are not represented in the other set 
(see Fig. 3). Hence, it is difficult to speculate about the 
performance with different FOVs. Analysis of the 
experimental results shows that, at least when FPS=F, use 
of the narrow FOV results in shorter time-to-target (by 
almost 6 sec.). 

Scenario 4: Same resolution, Angular constraint  
For a given point in space, the set of camera orientations 
that satisfy the angular constraint is the same for both 
narrow and wide FOV. However, use of the wider FOV 
reduces the maximum allowable distance Dstop in this 
scenario, as explained earlier. Otherwise stated, 
C(N)⊃C(W), which conforms to the experimental 
observation (average time to target is 6.8 seconds less, 
under fast FPS, for narrow FOV than for wide FOV).  

Concerning the dependence on the frame rate, it is seen that 
the slower FPS increases the average time-to-target by a 
substantial amount (9.4 sec to 13.4 sec depending on the 
setting). In Scenario 3, the main effect of FPS was found to 

     

Fig. 4. Box plots representing the distribution of the time-to-
target T, in sec. (left), and out-of-FOV fraction V (right) 
across participants for the different settings for Scenario 4. 

 

    
Fig. 5. Subjective evaluations for the different settings across 17 
participants (blue: NF; light blue: NS; yellow: WF; brown: WS). 



be significant with significant interaction with FOV; 
however, comparison of the different levels of FPS for any 
fixed level of FOV was not found to be significant. 

Out-of-FOV Fraction 
The observed out-of-FOV fraction (V) values confirm the 
intuition that wider field of view (FOV=W) should result in 
higher likelihood of the target being in view (fewer misses) 
during the guidance process. In the two same-distance 
scenarios, a somewhat surprising result emerges: lower 
frame rate slightly decreases the rate of misses. A possible 
explanation for this is that lower frame rate makes the 
system less responsive, which may prompt one to more 
carefully aim the camera. (This intuition was supported by 
the comment of at least one participant.) 

Subjective Assessments of Difficulty 
Participants were asked to assess, on a scale from 0 to 5 (0 
being “very easy” and 5 “very difficult”), the perceived 
difficulty of the guidance process under each setting. The 
scores for each participant are shown in Fig. 5. Average 
scores were: NF=1.41; NS=3.76; WF=1.53; WS=2.59. 
Intra-class correlation analysis (ICC(1,1) [16]) reveals that 
the subjective scores are correlated across participants 
(p<10-7). It is interesting to compare the subjective scores of 
each participant with the measured values of T and V for 
the same participant, to ascertain whether the participants’ 
perceived difficulty correlates with the chosen 
measurements. Remember that participants only 
experienced the original Scenario 0, not the derived ones, 
and thus data from this scenario should be used 
(summarized in the last row of Tab. 1 and 2).  

Kendall’s τ rank correlation coefficients between each 
participant’s ratings across the different settings and the 
measured values for the same participant were computed 
for T and for V. For all but one participant, a positive rank 
correlation with T was observed, whereas for three 
participants, the rank correlation with V was negative. This 
suggests that the execution speed may be a more important 
factor than the rate of misses in the participant’s evaluation 
of task difficulty. 

Qualitative Observations 
Each participant was carefully observed by one of the 
authors at each session. We noted that the experiment was 
very challenging for a few participants, some of whom were 
clearly tired towards the end. However, many participants 
seemed to approach the experiment as a game that was 
mostly enjoyable. We observed large variability in the 
participants’ search strategies and search performance, 
which we believe arose at least in part to factors that are 
separate from the system’s frame rate and FOV: namely, 
the participants’ abilities to orient themselves to their 
surroundings, to hold the camera properly and move it 
slowly and steadily, and to use their proprioception to 
maintain awareness of how they were holding the 
smartphone in relation to their bodies. 

Orientation in the Environment and With Respect to Target 
Some participants had great difficulty orienting themselves 
to the room, and in some cases wound up aiming the 
smartphone camera towards the wrong wall (adjacent and 
perpendicular to the wall containing the markers). Some 
participants also had a consistent directional bias, e.g., 
usually pointing the camera axis well to the left/right of the 
direction their torso was pointing. One participant tended to 
consistently point the camera towards the ground, which 
caused problems in finding higher markers. 

Many participants did not get close enough to the marker. 
They seemed reluctant to advance forward, as if they were 
waiting for something to happen and did not proceed when 
they were short of 30 cm. Also, some participants seemed 
to focus too hard on “centering” the target and forgot to 
advance closer. To advance closer, some participants 
extended their arm but not enough. In fact, it seems that, 
when close to the wall and the system was beeping, some 
were not sure exactly where to move. 

Some participants monitored their distance to the wall with 
their foot or hand while others did not. Overall, many 
participants often failed to realize when they were very 
close to the wall. In fact, sometimes participants came so 
close to the wall that the system would detect the marker 
but could not announce success (marker never in full view), 
or they lost the marker, resulting in a long search time or 
time-out. 

Holding and Moving the Camera 
Most participants held the smartphone with one hand, but a 
few used two hands. Some pivoted the smartphone around 
the wrist, and others around the elbow. Most participants 
held the smartphone at approximately the same height off 
the ground, while a few lifted it up and down more in line 
with the heights of the targets. Some participants had 
trouble with markers that were very low or very high 
compared with their height. 

Several participants tended to approach the target at a very 
large slant angle (i.e., the camera axis was far from 
perpendicular to the plane of the wall), largely because they 
tended to rotate the smartphone instead of translating it, and 
because the system provided no explicit feedback to 
differentiate between these two kinds of movements. For 
one participant, each time the system told him to turn left 
(or right), he tended to translate to the left (right) as directed 
but also inadvertently rotated to the right (left); thus over 
time he became increasingly slanted relative to the wall, 
while maintaining lock on the target. 

Some participants moved the smartphone too fast, even 
after the experimenters trained them to move the 
smartphone slowly. Besides the risk of motion blur, moving 
the phone too fast may lead to a situation such that, by the 
time a speech feedback utterance is completed, the 
directions given in the utterance are no longer appropriate. 
This is because the smartphone moved too far between the 



time the image generating the feedback was acquired and 
the time the feedback utterance is completed. The problem 
is exacerbated at slow frame rate, where it may lead to 
“limit cycles,” with the user rotating the phone periodically 
left to right and right to left, unable to find the precise 
direction to the marker. 

When the target was lost, some participants were able to 
scan the scene methodically to rediscover the target, while 
others searched at random. 

Hand-Body Coordination 
Most participants move the smartphone “forward” with 
respect to their body, not to the optical axis. This is the 
main reason why, when the smartphone is very tilted, it is 
easy to lose the marker. The correct motion, when the 
phone is tilted but well centered (off-axis angle is small), 
would be along the optical axis. 

When moving towards the target, participants have to 
decide when to take steps. Some took very small steps 
(which seems to be an effective strategy), while some move 
their arm and then take a longer step. Clearly some were 
better than others at coordination. Some wait until the 
marker is well centered before taking a step (which also 
seems to be an effective strategy). 

Feedback from Participants 
This section summarizes the qualitative feedback offered by 
the participants at the end of the experiment. 

General Feedback 
Several participants expressed the desire for more feedback 
from the system, including feedback when the camera is too 
close to the target. One participant wanted continuous 
feedback, and said: “When I don’t hear anything, I feel I am 
lost”. A few participants noted that vibration feedback or 
the use of earphones/bone conduction headphones might be 
useful in a noisy setting, e.g., outdoors in an urban area. 
Some also suggested that a Google Glass-type interface 
might be more natural than the smartphone interface; 
another tried a body scanning strategy, in which the 
smartphone was held against the chest, which made the 
camera pose more stable but resulted in unwanted camera 
tilt. Finally, a few participants pointed out that the word 
“turn” in the “turn left/right/etc.” utterances is superfluous 
and should be omitted. 

Feedback on Settings 
Regarding the FOV, some participants said the fisheye lens 
provides more information and allows more rapid detection, 
but others said they preferred the normal lens, in one case 
because the fisheye “requires more filtering”; one person 
preferred the narrow lens when closer to the target because 
it provided more specific localization. Opinion was divided 
on the frame rate, with most participants preferring the 
higher rate of information provided by the normal frame 
rate (and disliking the wait imposed by the slow frame 
rate), yet a few preferring the slow frame rate either 

because the pace felt more comfortable or because there are 
“too many beeps” in the fast mode, causing worry when the 
system does not beep. 

Other Feedback 
One participant “Felt like the target was pulling me” while 
another lamented the fact that “When I walk, I feel that I 
lose it because I move.” Someone noted that some blind 
people are taught not to “experiment” with touching and are 
encouraged to keep their hands to themselves, while others 
explore freely by touch. Finally, other comments 
emphasized the need to listen carefully to the training 
instructions, to stay calm during the trials, and to pay close 
attention to their surroundings – underscoring how 
challenging the search tasks in these experiments are for 
many blind persons. (One person, however, went so far as 
to say that he wanted his own version of the system to use!) 

DISCUSSION 
Our experiments have reinforced the inherent difficulty in 
guiding a blind person to a target using acoustic feedback 
from a hand-held camera phone system. In the easiest 
scenario considered, it took our participants an average of 
more than 13 seconds to complete the task, which involved 
moving the phone by just 70 cm. The difficulty of the “last 
meter” guidance can be explained in simple geometric 
terms, as shown in Fig. 3. Simply put, maintaining in-FOV 
visibility (that, is, orienting and moving the camera so that 
the target remains in the FOV) becomes more challenging 
at closer distances. Increasing the camera’s FOV may 
appear at first to be a simple solution to maximize visibility 
and thus facilitate guidance. However, wider FOV comes at 
the cost of reduced angular resolution and thus reduced 
image resolution (size) of the target. In practice, this means 
that, with a wider FOV, one needs to get closer to the target 
before the system can detect and recognize it.  

This work is, to the best of our knowledge, the first 
investigation into the non-trivial trade-off between spatial 
resolution and FOV. Our simple geometric analysis of this 
trade-off in different scenarios of usage is able to justify in 
good part the experimental results with our blind 
participants. Our results show that, in terms of execution 
time, wide FOV is preferable to narrow FOV only when 
neither spatial resolution nor precise pointing of the 
camera towards the target is important. If, however, a 
certain minimum spatial resolution is required, narrow FOV 
results in shorter average execution time, even though the 
out-of-FOV fraction is (as expected) consistently higher 
with narrow FOV. It is important to observe that, when the 
target is out-of-FOV, the system does not produce any 
feedback. This led to sporadic situations with a participant 
“losing” a target for some time, and having to explore the 
scene moving the camera around for a certain amount of 
time before the target is re-acquired. In a few cases, the 
participant was not able to re-acquire the target before time-
out.  



Concerning the FPS setting, the experiments showed that in 
most scenarios a slower FPS increases execution time. This 
was obviously expected; perhaps the biggest surprise was 
that, even with such a slow frame rate (one frame every 
other second), participants were by and large able to 
complete the task in the allotted time. Interestingly, the out-
of-FOV fraction seems largely independent of the FPS, and 
in some cases a lower FPS makes for a lower miss rate.  

CONCLUSION 
We have investigated the effects of two important 
constraints in object recognition technology, frame rate 
(FPS) and camera field of view (FOV), on the ability of 
blind users to search for visual targets and acquire well-
framed images of them. The results of the analysis show 
that, while increasing the FPS generally improves search 
performance, in many cases increasing the FOV does not 
help, and may even hurt, performance. We hypothesize that 
an increased FOV confers a mixture of benefits and 
drawbacks: while it may help the user find the target from a 
distance, up close it provides less localization information 
than a narrow FOV and may therefore hinder the user’s 
attempts to acquire a well-framed (and approximately head-
on) image.  

Although our experimental results are specific to the chosen 
apparatus, these trade-offs may have important implications 
for the design of any object recognition system for blind or 
visually impaired users. In general, a wide FOV is only 
preferable to a narrow FOV when neither spatial resolution 
nor precise camera pointing towards the target is important. 
A faster FPS generally improves search performance, but in 
many practical situations FPS is increased by reducing the 
image resolution, and this must be weighed against the cost 
of having to approach the target closer to resolve it. 

While the current study assumed a fixed UI configuration, 
in the future we will also study how the UI may be jointly 
optimized with system parameters such as FPS and FOV. In 
particular, we will investigate how the UI can be optimized 
for a wide FOV, to provide more specific feedback about 
the target’s location in the image and thereby speed the 
process of centering the target. 

We will also investigate the role of other variables in search 
and target framing performance, such as how often (and for 
how long) a user loses “sight” of the target by the system, 
and what the user can do to recover from this setback as 
gracefully as possible. Finally, there is growing interest in 
new form factors such as a wireless camera mounted on the 
eyeglasses (as in Google Glass), which could facilitate 
entirely new visual search strategies and behaviors, and we 
plan to study these form factors in the future. 
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