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Abstract varying lighting conditions and computational time limita
tions.

Much past research on finding text in natural scenes uses  \While some past work in text detection approaches the
bottom-up grouping processes to detect candidate text feaproblem by searching for individual letters [1], most ap-
tures as a first processing step. While such grouping proce-proaches divide it two separate processes, text segmenta-
dures are a fast and efficient way of extracting the parts of tion followed by reading the segmented text. We focus on
an image that are most likely to contain text, they stillsuff  the problem of segmentation in this paper, leaving the task
from Iarge amounts of false pOSitiVGS that must be pruned of reading segmented text for future research.

out before they can be read by OCR. ) Many text segmentation algorithms employ determinis-

We argue that a natural framework for pruning outfalse e pottom-up processes for grouping text features inte ca
positive text features is figure-ground segmentation, Whic giqate text regions using features such as edges, color or
we implement using a graphical model (i.e. MRF). The oyt re [12, 7, 5, 4]. A recently developed and very effec-
graphical model is ”data—drlvgn” in that the nodeg of the  tjve algorithm [2] based on a statistical framework uses a
graph correspond to the candidate text features. Since eactyqcade of filters trained from a labelled data set of natural
node has only two possible states (figure and ground), andgcenes containing text. These filters are chosen by Adaboost
since the connectivity of the graphical model is sparse, we, maximally distinguish between patches of text and non-
can perform rapid inference on the graph using belief prop- eyt hackground. Our goal is to combine the best aspects
agation. We show promising results on a variety of urban ¢ poih types of algorithms by using bottom-up grouping
and indoor scene images containing signs, demonstrating,scesses in tandem with a statistical model to make cor-
the feasibility of the approach. rections to these grouping processes.

Our approach combines a bottom-up search for likely
text features, based on grouping sets of simple, rapidly

1. Introduction detected features, with a statistical framework that ecti
fies mistakes made in the bottom-up process. This frame-

A large body of work addresses the problem of detecting Work is based on graphical models that are “data-driven”
and reading printed text, but so far this problem is consid- in that their structure and connectivity is determined by
ered solved only in the domain of OCR (optical character the set of candidate text features detected. Such a model
recognition). This domain is limited to the analysis of high represents likely segmentations of the candidate text fea-
resolution, high-contrast images of printed text withitt ~ tures into figure (text) and ground (non-text), and provides
background clutter. The broader challenge of detecting anda Way of pruning out false candidates using the context of
reading text in highly cluttered scenes, such as indoor ornearby candidates. Besides providing a natural framework
outdoor scenes with informational signs, is much more dif- for modeling the role of context in segmentation, another
ficult and is a topic of ongoing research. The most straight- benefit of the graphical model framework is the ability to
forward solution is to search an image for occurrences of learn the model parameters automatically from labeled data
every letter in the alphabet, but in most cases this is im- (though we have not done this in our preliminary experi-
practical because of limited image resolution that impairs Ments).
the visibility of individual letters, unknown font varidltty, Recent work related to ours also uses a graphical model



framework for text segmentation in documents [16] and (of chosen to be consistent with the cross-section of a typical
greater relevance to our work) in natural scenes [15]. Un- character stroke (e.g. going left to right across a vertical
like our approach, the latter work uses color to initiate the stroke, the intensity increases and then decreases a few pix
segmentation and requires images in which individual let- els to the right). This separation range equates to a particu
ters are clearly visible. By contrast, we have designed ourlar range of scales; we have intentionally kept the separati
algorithm to process grayscale images with letters that maydistances small so that we can detect small letters and/or
be poorly resolved (see Figures 6-10). This allows us to seg-text in scenes viewed at coarse scales.

ment text in images in which the letters appear small and/or Edges are grouped into horizontal strokes (Figure 2(c))
process the images at coarser scales (which decreases thesing a greedy procedure that scans the rows of the image.

amount of computation required). A stroke begins with an edge pixel and continues as long
as there is a smooth, roughly horizontal continuation of the
2 Grouping Edgesinto Text Features edge (i.e. the vertical coordinates of the stroke pixels are

allowed to increase or decrease by one pixel from one col-

We have devised a bottom-up procedure for grouping Umn to j[he next). Strok_es are categorized as top or bottom
edges into composite features that are signatures of regiondePending on the polarity of the edges.
containing text, and which are uncommon in non-text re-  =dges and edge pairs are then grouped into top and bot-
gions. Speed is a major consideration, so we decided to usd®M endstops (Figure 3(a)), representing ends of strokes.
a very simple edge detector to provide the basic elements O instance, the bottom of the letter “T" is represented
to be grouped. Edges are grouped into a hierarchy of more2S & bottom endstop by grouping a vertical edge pair with
complex features, shown in Figure 1. Edge pairs, horizon- the €dge at the bottom of the stroke. The last category of
tal strokes, endstops and corners are the intermediase-lev INtermediate-level features is corners (Figure 3(b)),olvhi.
features; the higher-level features, which we call “sticks 2re defined by grouping vertical and horizontal edge pairs
and “boxes,” are the text features output by the grouping that are suitably aligned.
procedure (see Figures 2,3 for examples on a text image).
This output is subsequently processed to remove false pos-
itive text features using a graphical model, as described in
Section 3.
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Edges Figure 2. First three stages of feature group-

ing illustrated on road sign example. Top

Figure 1. Bottom-up hierarchy of text fea- to bottom: (a) Edges_ (b) Edge pairs: hori-

tures. Top-level features (sticks and boxes) zontal (yellow), vertical (cyan). (c) Horizontal
are used to construct the graphical model. strokes: top (red) and bottom (blue).

Edges are detected (see Figure 2(a)) and classified into The final text candidate features extracted by this process
four orientations (up, down, left, right) using local min- aresticksandboxes(Figure 3(c)). A stick is a roughly ver-
ima/maxima of simple x and y derivatives of the image in- tical line segment whose height is approximately the height
tensity. We assume the text is roughly horizontal and that of a text letter. It is defined by two locations, a top and bot-
it consists of light letters against a darker backgrounxt; te tom. The top location of the stick is defined by the location
of the opposite polarity is detected simply by reversing the of any of the following features: a top left or top right cor-
contrast of the image. ner, a top endstop or (the center of) a top stroke; the bottom

Next, nearby horizontal/vertical edges of opposite polar- location of the stick is defined similarly in terms of “bot-
ities are grouped into edge pairs (Figure 2(b)). The polari- tom” features. Any pair of these top and bottom features
ties and range of allowed separation between the edges ardefines a stick, as long as the distance between the pair is



boxes, but these false positives tend to cluster in difteren
ways, and with less regularity, than true positives. In the
next section we describe a method for segmenting the true
positives based on a graphical model that exploits these dif
ferences between true and false positives.

3 Data-Driven Graphical Model for Segmen-
tation

We approach text detection in cluttered scenes as a
figure-ground segmentation problem. The output of the
grouping process described in the previous section praduce
a substantial number of false-positive text candidatésk(st
or box features), but relatively few false negatives. The tr
positives tend to cluster into regular structures, diffilse
from the false positives, which are distributed more ran-
domly. Thus it is natural to segment the text features into
two groups: figure, representing true positives, and ground
for false positives.
within a certain range, and the stick is oriented within 45 ~ OUur approach draws on ideas from work on object-
degrees of the vertical. specific figure-ground segregation [11], which uses normal-
ized cuts to perform grouping, and from work on cluster-
ing using graphical models [9]. We use affinity functions to
measure the compatibilities of pairs of elements as patenti
figure candidates and construct a graphical model to repre-
sent a figure-ground process. We call this graphical model
data-drivenbecause the structure of the model depends on
the data: each text feature (stick or box) defines one node of
the graph, and the compatibility of any pair of candidates is
expressed by the edge connecting the corresponding nodes.

Figure 3. Last three stages of feature group-
ing illustrated on road sign example. Top to
bottom: (a) Endstops: top (green) and bot-
tom (yellow). (b) Corners. (c) Sticks (red) and
boxes (yellow).

Figure 4. Scene clutter example. Figure Each node in the graph has two possible states, figure
shows previous road sign with local scene or ground. The graphical model defines a probability dis-
context.  Sticks (red) and boxes (yellow) tribution on all possible combinations of figure-ground la-
shown as before. Note numerous false posi- bels at each node. We use belief propagation to estimate the
tives in background. marginal probabilities of these labels at each node; ang nod

with a sufficiently high marginal probability of belonging t
the figure is designated as figure.
Any two sticks that are sufficiently compatible define a
quadrilateral-shaped feature called a box. Here compati-3.1 Figure-Ground Segmentation
bility means that the bottoms of the sticks are within a few
rows of each other, and that the sticks have roughly the same We construct a figure-ground segmentation model us-
height. ing a data-driven graphical model with pairwise interacsio
The rationale for generating stick and box features is thatrepresenting compatibilities between elements. Our frame
it is a rapid procedure for extracting structures from an im- work is similar to that of the multi-scale graphical models
age that reflect the regularity of near-vertical elements oc in [8, 6], with the important difference that our graphical
curring in text. In particular, the box features often ctate model has a data-driven structure, rather than defining a
with the characteristic space occupied by individual tette  graph with nodes at each location in a pixel lattice. More-
Relatively few regions of the non-text background generate over, rather than the typical nearest-neighbor connéxgtivi
many stick and box features; in outdoor urban scenes theon a lattice (each pixel has four or eight neighbors), our
most common false-positive regions consist of structuresgraph connects each pair of elements within a certain dis-
such as tree branches and linear structures such as windowaince of each other, much like the connectivity used in nor-
(see Figure 4 for examples). malized cuts segmentation [10]. The use of rich text fea-
Not only are the relatively few false-positive sticks and tures rather than individual pixels as graph nodes, and the



longer spatial range of connectivity that results, allows 0 conform to their ideal form. For a stick, the unitary po-
model to perform effective segmentation without the need tential isB(s;) = Fg,”“k’ if s, =1andB(s;) =1if s; =0.

for a multi-scale model. Here
We define the graphical model for a general figure- ‘
ground segmentation process as follows. Each ofthe Fglick — g=ler—2pl/lyr—yslgN.

features extracted from the image is associated with a graph
here(: and yp) are the top and bottom coor-
node (vertex};, wherei ranges from throughN. The data v (27, yr) and(zz, y5) P

characterizing each feature is denotedfh hich includes dinates of the stick, andV. is the number of comers that
9 . w define it (i.e. 0, 1 or 2). The first factor rewards verticality
any relevant information about the feature.

. . f the stick h h f
Each nodes; can be in two possible states, 0 or 1, rep- of the stick, and the second rewards the presence of corners,

resenting ground and figure, respectively. The probability Wh|ch provide evidence for the stick belonging to a text re-

) AN ) gion.
of any Igbe-llmg of all the nodes is given by the following For a boxs;, the unitary potential is3(s;) — FLe if
expression:

s; =1andB(s;) =1if s; = 0. Here

N

P(s1,...,sn) = 1/ZHBi(5i) H Cij(sis 85) Fbow = e~Ihi=hal/lhavalgNe
o . = _ <_”> whereh, andh; are the heights of the sticks that comprise

~ This is the expression for a pairwise MRF, whéigs;) the box, andv,,y = (h1 + ho)/2 is the average of the stick

is the unitary potential function(;;(s;, s;) is the binary — heights. The first factor rewards the similarity of the stick

potential function and’ is a normalization factor. (We note  heights, and the second rewards the presence of corners as

that the probability is conditioned on all data, . ..dy, before.

which we omit for brevity. Similarly, the notation for the The binary potential is defined between a stick and a box,

unary and binary potentials also neglects this dependenceyng rewards the consistency of the two features that is ev-

on the data.) The notation ij > represents the set of all jgence for them belonging to the same text region. For a

pairs of features and; that are close enough to each other stjck s, and boxs;, the binary potential i€(s;, s;) = Fi

to be directly connected in the grapif;(s;) represents a  jf 5, — | ands; = 1, andC(s;, s;) = 1 otherwise. Here
unitary factor reflecting the likelihood of featurg belong-

ing to the ground or figure, independent of the context of Fp=¢FR
other nearby featuregl;;(s;, s;) is thecompatibility func-
tion between featuresandj, which reflects how the rela-
tionship between two features influences the probability of
assigning them to figure-ground. E = Ky|hy — hBo"
The choice of unitary and compatibility functions is key s
to the effectiveness of the graphical model. These funstion + Ks[|my — ms| + |ma — mg|]
may be chosen by trial and error, as in the current appli-
cation, or by maximum likelihood learning. An example Hereh, is the height of the stick antZ’” is the average
of this kind of learning is in [9], in which compatibilities  height of the box (i.e. the average height of the two sticks in
(binary potentials) learned from labeled data are used tothe box);z; represents the values of theocations of the
construct graphical models for clustering. However, far ou three stick bottoms (se, is for the lone sticky, is for the
preliminary results on text segmentation, simple trialard  left stick of the box and:3 is for the right stick of the box);
ror sufficed for choosing suitable unitary and compatipilit andmi = (y1 —y2)/(x1 —x2), ma = (y2 —y3)/(x2 — x3),

whereFE is an error measure that is the sum of three terms:

| + Ko min |21 — 2]
1=2,3

functions. ms = (y1 — y3)/(z1 — x3) represent slopes (to enforce
approximate horizontality of the stick bottoms}(;, K>
3.2 Graphical Model for Text Segmenta- and K5 are constants.
tion Finally, the factorR is a constant that rewards the ap-

propriate ratio of horizontal and vertical edge pairs in the

In this subsection we discuss the graphical model for text region defined by the lone stick and the more distant stick
segmentation in more detail. Each stick or box feature givesof the box. LetN;, andN, be the number of horizontal and
rise to one node in the graph. Direct connections in this vertical edge pairs, respectively, in this region. Thes- 5
graph are only made between features within a fixed radiusif N, /(N, + Ny,) > Tr for an appropriate thresholbz, (in
that are ofdifferenttypes, i.e. between a stick and a box, text regions the majority of edge pairs are usually ver}jcal
but not between two sticks or between two boxes. andR = 1 otherwise.

The unitary potentials are defined to reward sticks and  Once the graph has been defined in this way, we run
boxes for figure membership according to how closely they belief propagation [13] in an asynchronous schedule that



sweeps the entire graph a few times. Then the unitary be-
liefs, i.e. estimates aP(s; = 1), are used to decide if each
feature belongs to the figure or groundAfs; = 1) > 0.9
then we decide “figure”. The results of this figure-ground
labeling procedure are shown in Figure 5.

Figure 6. Experimental results. Note algo-
Figure 5. Eliminating background states us- rithm’s ability to handle large amounts of
ing belief propagation. Top: stick and box scene clutter.
features. Bottom: remaining figure states
after belief propagation. Note that the false
positives are eliminated. 5 Conclusions

We have demonstrated the feasibility of a novel algo-
rithm for segmenting text in natural scenes. The algorithm
4 Resaults consists of a grouping procedure to generate text feature
hypotheses, and a graphical model for segmenting these
hypotheses into figure and ground. The results show that
We ran our algorithm with the same exact settings and the algorithm is capable of segmenting text in a variety of
parameter values for all of the following images (see Fig- scenes with few false positives.
ures 6-10). The algorithm (written in interpreted Python Future work will focus on converting the code to C++
code) took about half a minute to process 640 x 500 imagesyhich we expect to speed up the algorithm by an order
on a standard laptop computer. Note the algorithm's ability ot magnitude) using manually segmented images of text to
to handle considerable amounts of scene clutter. In Figure 7jgarn the appropriate graphical model potentials, and en ac
we demonstrate the algorithm’s ability to detect text of two ¢rately framing the detected text into a box-shaped region
different polarities. Also note that the algorithm handies  \hich can be read by OCR. In many cases it will be impor-
limited range of scales; in order to detect other textinéhes ant 1o undo distortion from perspective viewing [3] in orde
figures we would need to run the algorithm at different scale g petter segment, frame and read the text. Finally, we note
ranges. The algorithm’s robustness to non-uniform lightin - 4t the OCR stage will have the added benefit of ruling out

conditions is shown in Figure 8. Figure 9 demonstrates thatgyme false positives which cannot be ruled out earlier.
the algorithm is selective for finding the Latin (e.g. Enlg)is

alphabet because the edge grouping procedure was designed

specifically for English text. Finally, in Figure 10 notidet 6 Acknowledgments
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Figure 9. Algorithm is tailored to finding En-
glish text, and does not detect Chinese text.
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Figure 7. Polarity selectivity. Top: algorithm
finds light text on dark background. Bottom:
by inverting the contrast of input image, text
of opposite polarity is detected.

Figure 10. Most common false positives: pe-
riodic structures such as rows of windows re-
semble text at a local scale.
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