
Finding Text in Natural Scenes by Figure-Ground Segmentation
To appear in ICPR 2006

Huiying Shen and James Coughlan
Smith-Kettlewell Eye Research Institute

San Francisco, CA 94115
USA

{hshen,coughlan}@ski.org

Abstract

Much past research on finding text in natural scenes uses
bottom-up grouping processes to detect candidate text fea-
tures as a first processing step. While such grouping proce-
dures are a fast and efficient way of extracting the parts of
an image that are most likely to contain text, they still suffer
from large amounts of false positives that must be pruned
out before they can be read by OCR.

We argue that a natural framework for pruning out false
positive text features is figure-ground segmentation, which
we implement using a graphical model (i.e. MRF). The
graphical model is ”data-driven” in that the nodes of the
graph correspond to the candidate text features. Since each
node has only two possible states (figure and ground), and
since the connectivity of the graphical model is sparse, we
can perform rapid inference on the graph using belief prop-
agation. We show promising results on a variety of urban
and indoor scene images containing signs, demonstrating
the feasibility of the approach.

1. Introduction

A large body of work addresses the problem of detecting
and reading printed text, but so far this problem is consid-
ered solved only in the domain of OCR (optical character
recognition). This domain is limited to the analysis of high-
resolution, high-contrast images of printed text with little
background clutter. The broader challenge of detecting and
reading text in highly cluttered scenes, such as indoor or
outdoor scenes with informational signs, is much more dif-
ficult and is a topic of ongoing research. The most straight-
forward solution is to search an image for occurrences of
every letter in the alphabet, but in most cases this is im-
practical because of limited image resolution that impairs
the visibility of individual letters, unknown font variability,

varying lighting conditions and computational time limita-
tions.

While some past work in text detection approaches the
problem by searching for individual letters [1], most ap-
proaches divide it two separate processes, text segmenta-
tion followed by reading the segmented text. We focus on
the problem of segmentation in this paper, leaving the task
of reading segmented text for future research.

Many text segmentation algorithms employ determinis-
tic, bottom-up processes for grouping text features into can-
didate text regions using features such as edges, color or
texture [12, 7, 5, 4]. A recently developed and very effec-
tive algorithm [2] based on a statistical framework uses a
cascade of filters trained from a labelled data set of natural
scenes containing text. These filters are chosen by Adaboost
to maximally distinguish between patches of text and non-
text background. Our goal is to combine the best aspects
of both types of algorithms by using bottom-up grouping
processes in tandem with a statistical model to make cor-
rections to these grouping processes.

Our approach combines a bottom-up search for likely
text features, based on grouping sets of simple, rapidly
detected features, with a statistical framework that recti-
fies mistakes made in the bottom-up process. This frame-
work is based on graphical models that are “data-driven”
in that their structure and connectivity is determined by
the set of candidate text features detected. Such a model
represents likely segmentations of the candidate text fea-
tures into figure (text) and ground (non-text), and provides
a way of pruning out false candidates using the context of
nearby candidates. Besides providing a natural framework
for modeling the role of context in segmentation, another
benefit of the graphical model framework is the ability to
learn the model parameters automatically from labeled data
(though we have not done this in our preliminary experi-
ments).

Recent work related to ours also uses a graphical model

framework for text segmentation in documents [16] and (of
greater relevance to our work) in natural scenes [15]. Un-
like our approach, the latter work uses color to initiate the
segmentation and requires images in which individual let-
ters are clearly visible. By contrast, we have designed our
algorithm to process grayscale images with letters that may
be poorly resolved (see Figures 6-10). This allows us to seg-
ment text in images in which the letters appear small and/or
process the images at coarser scales (which decreases the
amount of computation required).

2 Grouping Edges into Text Features

We have devised a bottom-up procedure for grouping
edges into composite features that are signatures of regions
containing text, and which are uncommon in non-text re-
gions. Speed is a major consideration, so we decided to use
a very simple edge detector to provide the basic elements
to be grouped. Edges are grouped into a hierarchy of more
complex features, shown in Figure 1. Edge pairs, horizon-
tal strokes, endstops and corners are the intermediate-level
features; the higher-level features, which we call “sticks”
and “boxes,” are the text features output by the grouping
procedure (see Figures 2,3 for examples on a text image).
This output is subsequently processed to remove false pos-
itive text features using a graphical model, as described in
Section 3.

Sticks Boxes

Corners

Endstops Edge pairs

Edges

Horiz. strokes

Figure 1. Bottom-up hierarchy of text fea-
tures. Top-level features (sticks and boxes)
are used to construct the graphical model.

Edges are detected (see Figure 2(a)) and classified into
four orientations (up, down, left, right) using local min-
ima/maxima of simple x and y derivatives of the image in-
tensity. We assume the text is roughly horizontal and that
it consists of light letters against a darker background; text
of the opposite polarity is detected simply by reversing the
contrast of the image.

Next, nearby horizontal/vertical edges of opposite polar-
ities are grouped into edge pairs (Figure 2(b)). The polari-
ties and range of allowed separation between the edges are

chosen to be consistent with the cross-section of a typical
character stroke (e.g. going left to right across a vertical
stroke, the intensity increases and then decreases a few pix-
els to the right). This separation range equates to a particu-
lar range of scales; we have intentionally kept the separation
distances small so that we can detect small letters and/or
text in scenes viewed at coarse scales.

Edges are grouped into horizontal strokes (Figure 2(c))
using a greedy procedure that scans the rows of the image.
A stroke begins with an edge pixel and continues as long
as there is a smooth, roughly horizontal continuation of the
edge (i.e. the vertical coordinates of the stroke pixels are
allowed to increase or decrease by one pixel from one col-
umn to the next). Strokes are categorized as top or bottom
depending on the polarity of the edges.

Edges and edge pairs are then grouped into top and bot-
tom endstops (Figure 3(a)), representing ends of strokes.
For instance, the bottom of the letter “T” is represented
as a bottom endstop by grouping a vertical edge pair with
the edge at the bottom of the stroke. The last category of
intermediate-level features is corners (Figure 3(b)), which
are defined by grouping vertical and horizontal edge pairs
that are suitably aligned.

Figure 2. First three stages of feature group-
ing illustrated on road sign example. Top
to bottom: (a) Edges. (b) Edge pairs: hori-
zontal (yellow), vertical (cyan). (c) Horizontal
strokes: top (red) and bottom (blue).

The final text candidate features extracted by this process
aresticksandboxes(Figure 3(c)). A stick is a roughly ver-
tical line segment whose height is approximately the height
of a text letter. It is defined by two locations, a top and bot-
tom. The top location of the stick is defined by the location
of any of the following features: a top left or top right cor-
ner, a top endstop or (the center of) a top stroke; the bottom
location of the stick is defined similarly in terms of “bot-
tom” features. Any pair of these top and bottom features
defines a stick, as long as the distance between the pair is

Figure 3. Last three stages of feature group-
ing illustrated on road sign example. Top to
bottom: (a) Endstops: top (green) and bot-
tom (yellow). (b) Corners. (c) Sticks (red) and
boxes (yellow).

within a certain range, and the stick is oriented within 45
degrees of the vertical.

Figure 4. Scene clutter example. Figure
shows previous road sign with local scene
context. Sticks (red) and boxes (yellow)
shown as before. Note numerous false posi-
tives in background.

Any two sticks that are sufficiently compatible define a
quadrilateral-shaped feature called a box. Here compati-
bility means that the bottoms of the sticks are within a few
rows of each other, and that the sticks have roughly the same
height.

The rationale for generating stick and box features is that
it is a rapid procedure for extracting structures from an im-
age that reflect the regularity of near-vertical elements oc-
curring in text. In particular, the box features often correlate
with the characteristic space occupied by individual letters.
Relatively few regions of the non-text background generate
many stick and box features; in outdoor urban scenes the
most common false-positive regions consist of structures
such as tree branches and linear structures such as windows
(see Figure 4 for examples).

Not only are the relatively few false-positive sticks and

boxes, but these false positives tend to cluster in different
ways, and with less regularity, than true positives. In the
next section we describe a method for segmenting the true
positives based on a graphical model that exploits these dif-
ferences between true and false positives.

3 Data-Driven Graphical Model for Segmen-
tation

We approach text detection in cluttered scenes as a
figure-ground segmentation problem. The output of the
grouping process described in the previous section produces
a substantial number of false-positive text candidates (stick
or box features), but relatively few false negatives. The true
positives tend to cluster into regular structures, differently
from the false positives, which are distributed more ran-
domly. Thus it is natural to segment the text features into
two groups: figure, representing true positives, and ground,
for false positives.

Our approach draws on ideas from work on object-
specific figure-ground segregation [11], which uses normal-
ized cuts to perform grouping, and from work on cluster-
ing using graphical models [9]. We use affinity functions to
measure the compatibilities of pairs of elements as potential
figure candidates and construct a graphical model to repre-
sent a figure-ground process. We call this graphical model
data-drivenbecause the structure of the model depends on
the data: each text feature (stick or box) defines one node of
the graph, and the compatibility of any pair of candidates is
expressed by the edge connecting the corresponding nodes.

Each node in the graph has two possible states, figure
or ground. The graphical model defines a probability dis-
tribution on all possible combinations of figure-ground la-
bels at each node. We use belief propagation to estimate the
marginal probabilities of these labels at each node; any node
with a sufficiently high marginal probability of belonging to
the figure is designated as figure.

3.1 Figure-Ground Segmentation

We construct a figure-ground segmentation model us-
ing a data-driven graphical model with pairwise interactions
representing compatibilities between elements. Our frame-
work is similar to that of the multi-scale graphical models
in [8, 6], with the important difference that our graphical
model has a data-driven structure, rather than defining a
graph with nodes at each location in a pixel lattice. More-
over, rather than the typical nearest-neighbor connectivity
on a lattice (each pixel has four or eight neighbors), our
graph connects each pair of elements within a certain dis-
tance of each other, much like the connectivity used in nor-
malized cuts segmentation [10]. The use of rich text fea-
tures rather than individual pixels as graph nodes, and the

longer spatial range of connectivity that results, allows our
model to perform effective segmentation without the need
for a multi-scale model.

We define the graphical model for a general figure-
ground segmentation process as follows. Each of theN
features extracted from the image is associated with a graph
node (vertex)si, wherei ranges from1 throughN . The data
characterizing each feature is denoted by~di, which includes
any relevant information about the feature.

Each nodesi can be in two possible states, 0 or 1, rep-
resenting ground and figure, respectively. The probability
of any labelling of all the nodes is given by the following
expression:

P (s1, . . . , sN) = 1/Z

N∏

i=1

Bi(si)
∏

<ij>

Cij(si, sj)

This is the expression for a pairwise MRF, whereBi(si)
is the unitary potential function,Cij(si, sj) is the binary
potential function andZ is a normalization factor. (We note
that the probability is conditioned on all data~d1, . . . ~dN ,
which we omit for brevity. Similarly, the notation for the
unary and binary potentials also neglects this dependence
on the data.) The notation< ij > represents the set of all
pairs of featuresi andj that are close enough to each other
to be directly connected in the graph.Bi(si) represents a
unitary factor reflecting the likelihood of featuresi belong-
ing to the ground or figure, independent of the context of
other nearby features.Cij(si, sj) is thecompatibility func-
tion between featuresi andj, which reflects how the rela-
tionship between two features influences the probability of
assigning them to figure-ground.

The choice of unitary and compatibility functions is key
to the effectiveness of the graphical model. These functions
may be chosen by trial and error, as in the current appli-
cation, or by maximum likelihood learning. An example
of this kind of learning is in [9], in which compatibilities
(binary potentials) learned from labeled data are used to
construct graphical models for clustering. However, for our
preliminary results on text segmentation, simple trial ander-
ror sufficed for choosing suitable unitary and compatibility
functions.

3.2 Graphical Model for Text Segmenta-
tion

In this subsection we discuss the graphical model for text
segmentation in more detail. Each stick or box feature gives
rise to one node in the graph. Direct connections in this
graph are only made between features within a fixed radius
that are ofdifferent types, i.e. between a stick and a box,
but not between two sticks or between two boxes.

The unitary potentials are defined to reward sticks and
boxes for figure membership according to how closely they

conform to their ideal form. For a sticksi, the unitary po-
tential isB(si) = F stick

U if si = 1 andB(si) = 1 if si = 0.
Here

F stick
U = e−|xT −xB |/|yT −yB |2Nc

where(xT , yT) and(xB , yB) are the top and bottom coor-
dinates of the stick, andNc is the number of corners that
define it (i.e. 0, 1 or 2). The first factor rewards verticality
of the stick, and the second rewards the presence of corners,
which provide evidence for the stick belonging to a text re-
gion.

For a boxsi, the unitary potential isB(si) = F box
U if

si = 1 andB(si) = 1 if si = 0. Here

F box
U = e−|h1−h2|/|havg|2Nc

whereh1 andh2 are the heights of the sticks that comprise
the box, andhavg = (h1 + h2)/2 is the average of the stick
heights. The first factor rewards the similarity of the stick
heights, and the second rewards the presence of corners as
before.

The binary potential is defined between a stick and a box,
and rewards the consistency of the two features that is ev-
idence for them belonging to the same text region. For a
stick si and boxsj , the binary potential isC(si, sj) = FB

if si = 1 andsj = 1, andC(si, sj) = 1 otherwise. Here

FB = e−ER

whereE is an error measure that is the sum of three terms:

E = K1|h1 − hBox
avg | + K2 min

i=2,3
|x1 − xi|

+ K3[|m1 − m3| + |m2 − m3|]

Hereh1 is the height of the stick andhBox
avg is the average

height of the box (i.e. the average height of the two sticks in
the box);xi represents the values of thex locations of the
three stick bottoms (sox1 is for the lone stick,x2 is for the
left stick of the box andx3 is for the right stick of the box);
andm1 = (y1−y2)/(x1−x2), m2 = (y2−y3)/(x2−x3),
m3 = (y1 − y3)/(x1 − x3) represent slopes (to enforce
approximate horizontality of the stick bottoms).K1, K2

andK3 are constants.
Finally, the factorR is a constant that rewards the ap-

propriate ratio of horizontal and vertical edge pairs in the
region defined by the lone stick and the more distant stick
of the box. LetNh andNv be the number of horizontal and
vertical edge pairs, respectively, in this region. ThenR = 5
if Nv/(Nv +Nh) > TR for an appropriate thresholdTR (in
text regions the majority of edge pairs are usually vertical),
andR = 1 otherwise.

Once the graph has been defined in this way, we run
belief propagation [13] in an asynchronous schedule that

sweeps the entire graph a few times. Then the unitary be-
liefs, i.e. estimates ofP (si = 1), are used to decide if each
feature belongs to the figure or ground. IfP (si = 1) > 0.9
then we decide “figure”. The results of this figure-ground
labeling procedure are shown in Figure 5.

Figure 5. Eliminating background states us-
ing belief propagation. Top: stick and box
features. Bottom: remaining figure states
after belief propagation. Note that the false
positives are eliminated.

4 Results

We ran our algorithm with the same exact settings and
parameter values for all of the following images (see Fig-
ures 6-10). The algorithm (written in interpreted Python
code) took about half a minute to process 640 x 500 images
on a standard laptop computer. Note the algorithm’s ability
to handle considerable amounts of scene clutter. In Figure 7
we demonstrate the algorithm’s ability to detect text of two
different polarities. Also note that the algorithm handlesa
limited range of scales; in order to detect other text in these
figures we would need to run the algorithm at different scale
ranges. The algorithm’s robustness to non-uniform lighting
conditions is shown in Figure 8. Figure 9 demonstrates that
the algorithm is selective for finding the Latin (e.g. English)
alphabet because the edge grouping procedure was designed
specifically for English text. Finally, in Figure 10 notice that
the algorithm finds two false positives in a building region,
which contains periodic structures resembling text at a local
scale.

Figure 6. Experimental results. Note algo-
rithm’s ability to handle large amounts of
scene clutter.

5 Conclusions

We have demonstrated the feasibility of a novel algo-
rithm for segmenting text in natural scenes. The algorithm
consists of a grouping procedure to generate text feature
hypotheses, and a graphical model for segmenting these
hypotheses into figure and ground. The results show that
the algorithm is capable of segmenting text in a variety of
scenes with few false positives.

Future work will focus on converting the code to C++
(which we expect to speed up the algorithm by an order
of magnitude) using manually segmented images of text to
learn the appropriate graphical model potentials, and on ac-
curately framing the detected text into a box-shaped region
which can be read by OCR. In many cases it will be impor-
tant to undo distortion from perspective viewing [3] in order
to better segment, frame and read the text. Finally, we note
that the OCR stage will have the added benefit of ruling out
some false positives which cannot be ruled out earlier.

6 Acknowledgments

The authors were supported by the National Insti-
tute on Disability and Rehabilitation Research (grant no.

Figure 7. Polarity selectivity. Top: algorithm
finds light text on dark background. Bottom:
by inverting the contrast of input image, text
of opposite polarity is detected.

Figure 8. Robustness to non-uniform light-
ing, in this case due to shadows falling on
sign.

H133G030080), the NSF (grant no. IIS0415310) and the
National Eye Institute (grant no. EY015187- 01A2).

References

[1] S. Gold, A. Rangarajan, C.P. Lu, S. Pappu and E. Mjolsness,
New Algorithms for 2D and 3D Point Matching: Pose Estima-
tion and Correspondence, Pattern Recognition, 31(8):1019-
1031, 1998.

[2] X. Chen and A. L. Yuille. “Detecting and Reading Text in
Natural Scenes.” CVPR 2004.

[3] X. Chen, J. Yang, J. Zhang and A. Waibel. “Automatic De-
tection of Signs with Affine Transformation.” Proceedings of
WACV2002. Orlando, December, 2002.

[4] J. Gao and J. Yang. “An Adaptive Algorithm for Text Detec-
tion from Natural Scenes.” CVPR 2001.

Figure 9. Algorithm is tailored to finding En-
glish text, and does not detect Chinese text.

Figure 10. Most common false positives: pe-
riodic structures such as rows of windows re-
semble text at a local scale.

[5] H. Li, D. Doermann and O. Kia. Automatic text detection and
tracking in digital videos. IEEE Transactions on Image Pro-
cessing, 9(1):147–156, January 2000.

[6] X. He, R. S. Zemel and M. A. Carreira-Perpinan. “Multi-
scale Conditional Random Fields for Image Labeling.” CVPR
2004.

[7] A.K. Jain and B. Tu. “Automatic Text Localization in Images
and Video Frames.” Pattern Recognition. 31(12), pp 2055-
2076. 1998.

[8] S. Kumar and M. Hebert. “Man-Made Structure Detection
in Natural Images using a Causal Multiscale Random Field.”
CVPR 2003.

[9] N. Shental, A. Zomet, T. Hertz and Y. Weiss. “ Pairwise Clus-
tering and Graphical Models.” NIPS 2003.

[10] J. Shi and J. Malik. ”Normalized Cuts and Image Segmen-
tation.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8), 888-905, August 2000.

[11] S. X. Yu and J. Shi. “Object-Specific Figure-Ground Segre-
gation.” CVPR 2003.

[12] V. Wu, R. Manmatha, and E. M. Riseman. Finding Text In
Images. Proc. of the 2nd intl. conf. on Digital Libraries. Phi-
ladaphia, PA, pages 1–10, July 1997.

[13] J.S. Yedidia, W.T. Freeman, Y. Weiss. “Bethe Free Ener-
gies, Kikuchi Approximations, and Belief Propagation Algo-
rithms”.2001. MERL Cambridge Research Technical Report
TR 2001-16.

[14] A. L. Yuille, “Deformable Templates for Face Recognition”.
Journal of Cognitive Neuroscience.Vol 3, Number 1. 1991.

[15] D.Q. Zhang and S.F. Chang, “Learning to Detect Scene Text
Using a Higher-Order MRF with Belief Propagation.” CVPR
04.

[16] Y. Zheng, H. Li and D. Doermann, “Text Identification in
Noisy Document Images Using Markov Random Field.” Pro-
ceedings of the Seventh International Conference on Docu-
ment Analysis and Recognition (ICDAR 2003).

