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Abstract

Graphical models provide an attractive framework for
shape matching because they are well-suited to formulat-
ing Bayesian models of deformable templates. In addition,
the advent of powerful inference techniques such as belief
propagation (BP) has recently made these models tractable.
However, the enormous size of the state spaces involved in
these applications (about the size of the pixel lattice) has re-
stricted their use to models drawing on sparse feature maps
(e.g. edges), which are typically unable to cope with missing
or occluded features since the locations of missing features
are not represented in the state space.

We propose a novel method for allowing BP to handle
partial occlusions in the presence of clutter, which we call
dynamic quantization (DQ). DQ is an extension of standard
pruning techniques which allows BP to adaptively add as
well as subtract states as needed. Since DQ allows BP
to focus on more probable regions of the image, the state
space can be adaptively enlarged to include locations where
features are occluded, without the computational burden of
representing all possible pixel locations. The combination
of BP and DQ yields deformable templates that are both
fast and robust to significant occlusions, without requiring
any user initialization. Experimental results are shown on
deformable templates of planar shapes.

1. Introduction
A variety of problems relating to the detection and match-
ing of shapes have been formulated in terms of deformable
template models [23], which explicitly model the shape and
appearance of flexible objects. A common property of many
deformable template models is the specification of a global
shape in terms of parts, with geometric relationships among
the parts enforcing constraints on the global shape. To find
the best match of such a deformable template model with
an image, candidates for the model parts are extracted from
the image by a feature selection process (or in some cases
drawn from a quantized space of values aligned to the image
pixel grid), and the candidates that best satisfy the desired

geometric relationships among the parts are chosen as the
best-fitting solution.

An early example of this paradigm is the “pictorial struc-
tures” framework of [9], which describes a face template
composed of elementary parts (eyes, nose, etc.) with spring-
like spatial interactions between them, and a technique sim-
ilar to dynamic programming (DP) used to find a nearly
globally optimal solution. Similar matching procedures
based on DP include landmark matching [2] and work ad-
dressing the related problem of finding generic smooth im-
age contours [3]. Recently, [8] has introduced a deformable
template which exploits the decomposition of a large class
of shapes into triangulated polygons, giving rise to tree-
shaped graphical models (without loops) that can be solved
exactly with DP. One of the major advantages of deformable
templates which can be matched by DP is that the globally
optimal match is found without the need for an initial ap-
proximate guess of where the target is located in the image.
By contrast, local gradient-based optimization procedures,
which need a suitable initial condition to converge to the
correct solution, are used to match many other types of de-
formable templates (e.g. [4]).

Dynamic programming is a useful optimization tool for
these types of deformable templates, but it is subsumed by
a more powerful technique, belief propagation (BP) [16],
which is appropriate when a deformable template is cast as
a graphical model (Markov random field). BP is exact on
graphical models without loops (i.e. chains or trees) – the
same models for which DP is guaranteed to work – but has
also been shown empirically to provide good approximate
solutions on a variety of loopy graphs [14]. Moreover, the
graphical model formulation is attractive because a graphi-
cal model specifies a statistical model of the shape and ap-
pearance variability, rather than simply specifying a global
fitness function to evaluate the quality of a match between
a template and an image. The shape (prior) and appear-
ance (likelihood) models are specified separately, which
makes it easier to understand the behavior of the deformable
template, and both the prior and likelihood models can be
learned from training data.
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Graphical models used to represent shape deformations
and matching processes have recently been applied to de-
formable templates in tracking applications [17, 10] and to
dense stereo matching [21], all of which use BP to perform
inference on the models. Work by [20, 12] to extend the
use of BP to the continuous variable domain demonstrates
simple graphical models for recovering facial appearance
under partial occlusion and for detecting articulated objects
in clutter. More recently, an optimization technique related
to BP is used in the graphical model-based shape match-
ing work by [18]. All of these algorithms require the entire
target to be visible, except for [20, 12, 19], which are too
computationally demanding for real-time use. Finally, cur-
rent research on 3-D registration by [1] using BP to match
3-D non-rigid surfaces defined by range data can handle sig-
nificant amounts of missing data (range occlusions), but re-
quires that there be no clutter.

In previous work [6] we devised the first deformable
template we are aware of based on BP. This template used
a graphical model to represent the contour of a deformable
planar shape such as a hand or a letter. The algorithm used a
pre-pruning step to eliminate unlikely pixel locations from
subsequent processing by BP. Although this pre-pruning
stage greatly sped up the algorithm, it did so at the expense
of requiring the entire target to be visible. Earlier work
with a DP-based deformable template [5] removed this re-
striction by eliminating the pre-pruning step and allowing
the possibility of features to be visible or occluded at every
pixel. This technique was robust to occlusions but compu-
tationally very expensive.

As an alternative, we propose a novel technique for
speeding up BP, called dynamic quantization (DQ), which
is a compromise between pre-pruning unlikely candidates
(and removing them from subsequent consideration) and
representing all possible pixel locations. The main idea of
DQ is to combine standard pruning techniques, which re-
move states that are sufficiently unlikely, with a technique
for augmenting state spaces by adding sufficiently promis-
ing states. In this way, the number of allowed states in-
creases or decreases over time as needed, allowing BP to
focus on the more probable regions of state space (corre-
sponding to more important regions of the image). As a
result, DQ allows BP to perform template matching even
with partial occlusions in the presence of considerable clut-
ter, while remaining computationally tractable. We illus-
trate the DQ modification of BP with experimental results
on planar deformable templates, demonstrating robustness
to partial occlusions.

2. Generative Model

In this section we describe in detail the graphical models we
use to define our deformable templates, including the shape

prior, appearance likelihood model and a discussion of the
resulting posterior.

2.1. Graphical Model Shape Prior

This subsection summarizes the basic graphical model used
in our previous work [6], which models the shape of the
boundary of a planar object as a sequence of points with as-
sociated orientations. The graphical model enforces spring-
like geometric relationships between neighboring points to
ensure that the overall shape is similar to a reference shape
used to define the template, assigning high probabilities to
configurations of points that are most similar to the refer-
ence. We will begin this section by specializing to the case
of the letter A; generalization to models of other shapes fol-
lows naturally, which we discuss in the next subsection and
demonstrate in our experimental results.

The variability of the template shape is modelled by the
shape prior, which assigns a probability to each possible
deformation of the shape. The shape is represented by a set
of points x1,x2, . . . ,xN in the plane which trace the con-
tours of the shape, and by an associated chain θ1, θ2, · · · , θN

of tangent directions which describe the orientation of the
tangent to the boundary at each point. In the case of the
model of the letter A, N = 20 (see Figure 1). (Our notation
is different from that used in [6], in which θi represented
the orientation of the normal to the boundary rather than
the tangent.) Each point xi has two components xi and yi.
For brevity we define variable qi = (xi, θi), which we
also refer to as “node” i. The configuration Q, defined as
Q = (q1,q2, · · · ,qN ), completely defines the shape.

The shape prior is defined relative to a reference
shape so as to assign high probability to configurations
Q which are similar to the reference configuration Q̃ =
(q̃1, q̃2, · · · , q̃N ) and low probability to configurations that
are not. This is achieved using a graphical model which
penalizes the amount of deviation in shape between Q and
Q̃ in a way that is invariant to global rotation and transla-
tion. (The scale of the shape prior is fixed and we assume
knowledge of this scale when we execute our algorithm.)

Figure 1: Letter A template. Nodes drawn as circles, with
lines indicating graph connectivity. All nodes are shown in
their reference shape positions (x̃i, ỹi).
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Deviations in shape are measured by the geometric rela-
tionships of connected pairs of points qi and qj on the tem-
plate (see Figure 1 for the connectivity), and are expressed
in terms of pairwise interaction potentials ψij(qi,qj).
High potential values occur for highly probable shape con-
figurations, for which the geometric relationships of pairs of
points are most faithful to the reference shape Q̃. We first
outline the main properties of the potentials before defining
them precisely.

Two kinds of geometric relationships, both of which are
invariant to global translations and translations, are used to
define the potentials. First, we expect that the relative orien-
tations of tangent directions at nearby points on the bound-
ary should be roughly invariant to local deformations. In
other words, we expect θj − θi ≈ θ̃j − θ̃i for connected
nodes i and j. Second, we note that the location of point
xj can be expressed relative to the location xi and tangent
θi; this relationship should also be roughly invariant to local
deformations. Just as θj must be roughly consistent with θi,
the location xj must also be roughly consistent with the lo-
cation and tangent direction of qi. (The reciprocal relation-
ship between the location xi and the location and tangent
direction of qj also holds.)

More precisely, we can express these geometric relation-
ships in terms of interaction energies Uij(qi,qj). Low in-
teraction energies occur for highly probable shape config-
urations, for which the geometric relationships of pairs of
points tend to be faithful to the reference shape Q̃, and high
interaction energies are obtained for improbable configura-
tions; the precise connection to probabilities is formulated
in Equation (5).

The soft constraint that θj − θi ≈ θ̃j − θ̃i is expressed in
the following interaction energy Uij(qi,qj):

UC
ij (qi,qj) = sin2

(
θj − θi − Cij

2

)
(1)

where Cij = θ̃j − θ̃i. This energy attains a minimum when
θj − θi = Cij (and a maximum when θj − θi = Cij + π).

Next we define the relationship between the location
of point xj relative to qi. x̃i and θ̃i define a local co-
ordinate system, and the coordinates of x̃j in that coordi-
nate system are invariant to global translation and rotation.
If we define the unit tangent vectors ti = (cos θi, sin θi)
and t̃i = (cos θ̃i, sin θ̃i) and vectors perpendicular to them
t⊥i = (− sin θi, cos θi) and t̃⊥i = (− sin θi, cos θi), then the
dot product of xj − xi with ti and t⊥i should have values
similar to the corresponding values for the reference shape:
(xj − xi) · ti ≈ (x̃j − x̃i) · t̃i and (xj − xi) · t⊥i ≈
(x̃j − x̃i) · t̃⊥i . Now we can define the remaining two terms
in Uij(qi,qj), the energies

UA
ij (qi,qj) = [(xj − xi) · ti −Aij ]2 (2)

and

UB
ij (qi,qj) = [(xj − xi) · t⊥i −Bij ]2 (3)

where Aij = (x̃j − x̃i) · t̃i and Bij = (x̃j − x̃i) · t̃⊥i . The
full interaction energy is then given as (omitting arguments
(qi,qj) for brevity):

Uij =
1
2
{KA

ijU
A
ij +KB

ijU
B
ij +KC

ijU
C
ij } (4)

where the non-negative coefficients KA
ij ,K

B
ij and KC

ij de-
fine the strengths of the interactions and are set to 0 for
those pairs i and j with no direct interactions (the major-
ity of pairs). Higher values of KA

ij ,K
B
ij and KC

ij produce a
stiffer (less deformable) template.

Noting that in general Uij(qi,qj) �= Uji(qj ,qi),
we symmetrize the interaction energy as follows:
Usym

ij (qi,qj) = Uij(qi,qj) + Uji(qj ,qi). We use
the symmetrized energy to define the shape prior:

P (Q) =
1
Z

∏
i<j

exp(−Usym
ij (qi,qj)) (5)

where Z is a normalization constant and the product is over
all pairs i and j, with the restriction i < j to eliminate
double-counting and self-interactions. Note that the prior is
a Markov random field or graphical model that has pairwise
connections between all pairs i and j whose coefficients are
non-zero. The graph connectivity and the values of the coef-
ficients were chosen experimentally by stochastically sam-
pling the prior using a Metropolis MCMC sampler, i.e. gen-
erating samples from the prior distribution to illustrate what
shapes have high probability (as in [6]).

2.1.1 Constructing Shape Priors

Once we constructed and tested our letter A template, we
used a simple procedure to construct other deformable tem-
plate prior models. A clear, representative image of the
shape was taken to define the reference shape. The points
used to define the reference shape contour were chosen
manually by clicking on the image with a mouse at roughly
equal intervals along the contour. (The associated tangent
orientations were also extracted by defining them to be per-
pendicular to the image gradient direction at each point, as-
suming an idealized version of the appearance model de-
scribed in the next section.)

In our experiments it sufficed to use the same coeffi-
cient values for all the shapes we tried. The connectivity
was initially chosen so most nodes had no more than two
nearest neighbors (as in a Markov chain), with more nearest
neighbors chosen near junctions and high-curvature points.
Longer-range connections were added as needed to preserve
the continuity of the shape estimates determined by BP (i.e.
so that adjacent parts of the shape would not be matched
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to non-adjacent regions of the image). Learning techniques
such as maximum likelihood estimation could be employed
to determine more optimal coefficient values and graph con-
nectivities.

2.2. Appearance Model
The appearance (i.e. imaging, or likelihood) model explains
what image data may be expected given a specific shape
configuration. Rather than model raw image pixel data, we
extract information from the image gradient.

The first type of image data derived from the raw
grayscale image I(x) is an edge map Ie(x), and an asso-
ciated edge orientation map φ(x) to provide estimates of
the orientation of edges throughout the image. Ie(x) is
defined as the magnitude of the image gradient: Ie(x) =
|G �∇I(x)| where G(.) is a smoothing Gaussian. The ori-
entation map φ(x) is calculated as arctan(gy/gx) where
(gx, gy) = G �∇I(x).

The edge strength part of the likelihood model quantifies
the tendency for edge strength values to be high on edge
and low off edge. As in our previous work [6], we use
the approach of Geman and Jedynak [11] and define two
conditional distributions of edge strength that are empiri-
cally measured: Pon(Ie(x)) = P (Ie(x)|x ON edge) and
Poff (Ie(x)) = P (Ie(x)|x OFF edge). The most impor-
tant property of these two distributions is that the log like-
lihood ratio logPon(Ie)/Poff (Ie) increases monotonically
with edge strength, meaning that higher edge strengths cor-
respond to greater evidence for edges.

As shown in [6], the overall likelihood of the entire tem-
plate is proportional to terms depending only on these log
likelihood ratios, rather than the individual distributions
Pon(Ie) and Poff (Ie). Rather than learning these indi-
vidual distributions, we will propose simple models of the
likelihood ratios themselves. More specifically, we will ap-
proximate the likelihood ratio Pon(Ie)/Poff (Ie) as a step
function having a value of 1 for edge strengths above a cer-
tain threshold and a value of 0.1 below threshold. In other
words, we are binarizing the edge strength map. However,
this thresholding procedure is done just for simplicity and is
not a necessary step of our algorithm. The likelihood mod-
els could be extended to continuous (or more finely quan-
tized) values, but we found the thresholding procedure to
suffice for our deformable template model.

Next we turn to the orientation map. We expect that
on a true object boundary the direction of ∇I should point
roughly perpendicular to the tangent of the boundary. De-
noting the true normal tangent direction of the boundary as
θ, we then expect that φ(x) is approximately equal to either
θ+π/2 or θ−π/2 (corresponding to the two possible edge
polarities). This relationship between θ and φ(x) may also
be quantified as a conditional distribution Pang(φ|θ), which
was assumed to be of the form Pang(φ − θ) and measured

[6] to have sharp peaks at ±π/2. If x is not on an edge then
we may assume that the distribution of φ(x) is uniform in
all directions: U(φ) = 1/2π. Again, we approximate the
likelihood ratio Pang(φ − θ)/U(φ − θ) as a step function
having a value of 1 when φ and θ are aligned within 10◦ of
perpendicular and a value of 0.1 otherwise.

The complete imaging model is a distribution of all the
image gradient data across the entire image, conditioned on
the template shape configuration Q. We can express the
likelihood model as a distribution that factors over every
pixel. We define d(x) = (Ie(x), φ(x)) and let D denote
the values of d(x) across the entire image. Defining the
likelihood ratio

R(qi) =
Pon(Ie(xi)
Poff (Ie(xi)

Pang(φ(xi) − θi)
U(φ(xi) − θi)

(6)

we obtain (after some manipulation [6]):

P (D|Q) ∝ [
N∏

i=1

R(qi)] (7)

where the constant of proportionality is a function of D only
and does not depend on Q. (This dependence on D will not
matter for estimating the template configuration, described
in the next subsection.)

2.3. Posterior Distribution
The shape configuration Q is determined by the posterior
distribution P (Q|D) = P (Q)P (D|Q)/P (D). Multiply-
ing the likelihood Equation (7) by the prior yields an ex-
pression for the posterior of the following form:

P (q1, · · · ,qN |D) =
1
Z

∏
i

ψi(qi)
∏
i<j

ψij(qi,qj) (8)

where ψi(qi) is the local evidence for qi (from the likeli-
hood ratios in Equation (7)) and ψij(qi,qj) is the compat-
ibility (or pairwise potential) between qi and qj (from the
shape prior, Equation (5)).

Given the posterior distribution on shape configurations,
a natural decision rule for choosing the most representative
configuration is the MAP (maximum a posterior) estimate.
Instead we use the output of BP – estimates of marginals
for each variable – to calculate the MPM (Marginal A Pos-
teriori Modes), i.e. the MAP estimate applied separately to
the marginal posterior of each variable qi. More precisely,
the MPM is given by q∗

i = arg maxqi
P (qi|D) for all i. If

the posterior is strongly peaked about its mode, as it should
be when there is sufficient evidence for one correct match
in the image, we expect the MPM and MAP to be similar.
(Techniques similar to those used to find multiple targets in
[5] may be used in the case of multiple matches, i.e. mul-
tiple targets in one image.) Empirically we find the MPM
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to be a satisfactory estimator, as shown in our experimental
results.

3. Methods: Dynamic Quantization
Now that we have defined our graphical model of a de-
formable template, we will use a modified version of BP to
perform inference with it. Although BP could be straight-
forwardly applied once the variables qi are quantized to a
sufficiently fine lattice (e.g. (xi, yi) lying on the input im-
age pixel lattice and θi drawn from a discrete set of equally
spaced angles from 0 to 2π), a huge number of allowed
states would result, making BP prohibitively slow. Instead,
we propose a dynamic quantization technique for efficiently
quantizing the states of the variables in the graphical model.

3.1. Motivation
BP was originally formulated for use with graphical mod-
els having discrete variables, whereas our graphical models
are most naturally represented using continuous variables.
Recent work [20, 12] building on ideas from particle fil-
tering has made it possible to perform BP on graphs with
continuous variables, using stochastic particles to represent
messages. However, a major drawback of the particle rep-
resentation is that the multiplication of these particle-based
messages – a fundamental component of each BP iteration
– requires a computationally intensive Gibbs sampling pro-
cedure. As mentioned above, it is also possible to finely
quantize the continous variables to obviate the need for the
particle representation, at the expense of performing BP on
very large (discrete) state spaces.

We chose instead to selectively quantize the variables
in our graphical models, based on our intuition that only
a fairly small number of “hot spots” in the variable state
spaces are important. Therefore, it should suffice to quan-
tize the space only in the neighborhood of these hot spots.

Our new dynamic quantization technique builds on our
previous work [6], which used two forms of state pruning.
The first form of pruning, which we called pre-pruning or
adaptive quantization, initializes the allowed states for each
variable qi = (xi, θi) to encompass those values most con-
sistent with image evidence. More specifically, only those
locations xi are allowed that correspond to pixels with edge
strengths above a certain threshold. At these locations only
two possible orientation values of θi are allowed, φ ± π/2,
where φ denotes the image gradient direction. (These two
values correspond to assuming that the image gradient di-
rection is exactly equal to the normal orientation of the edge
boundary, and allowing for two possible polarities of the
edge.) We use the same procedure to initialize the state
spaces in BP.

The second form of pruning, called belief pruning, con-
sists of monitoring the beliefs of each variable at each itera-

tion of BP and discarding any states whose beliefs dropped
below a certain threshold. (This is very similar to the “beam
search” technique used to prune states in hidden Markov
models (HMM’s) in speech recognition [13].) While we
have also retained this second form of pruning in our cur-
rent work, we have added a modification that allows for new
states to be created as well as old states to be destroyed.

The new ingredient that DQ adds to the two existing
pruning techniques is a procedure for deciding when there
is a possible deficiency of important states in a variable’s
state space, and a method for determining which states to
add to correct such deficiencies. The intuition for this new
procedure can be illustrated by considering the case of a
simple graphical model deformable template representing a
generic smooth curve. (For simplicity no orientation vari-
ables are used in this model, only location variables). If the
variable state spaces are initialized very conservatively, so
that no pixels with true edges are omitted, then BP will de-
tect the correct target curve. The cost of such a conservative
initialization will be to slow down BP with a lot of superflu-
ous states corresponding to false positives and background
clutter in the edge detection.

If the variable state spaces are initialized to include only
pixels with edge strengths above a moderate threshold, then
a small fraction of the true edge pixels will be omitted from
the state spaces, and BP will find an incorrect solution be-
cause of their absence. However, a simple criterion will al-
low BP to consider previously disallowed states: if an edge
pixel candidate lacks any suitable continuations, then all
pixel locations that would make reasonable continuations
should be added to the appropriate state space for consider-
ation.

In the next subsection we formalize this procedure for
“resurrecting” previously disallowed states.

3.2. Definition
We can formalize the DQ procedure by considering the gen-
eral form of the BP message update equation for the mes-
sage from node i to node j:

mij(qj) �→ 1
Zij

∑
qi

ψij(qi,qj)ψi(qi)
∏

k∈N(i)\j

mki(qi)

(9)
where Zij is a normalization factor and the neighborhood
N(i) denotes the set of nodes directly coupled to i (exclud-
ing i itself).

We assume that, for each variable qi, every possible state
space Si contains states belonging to some lattice Li (e.g.
the cross product of the pixel lattice and a set of regularly
spaced orientations from 0 to 2π), i.e. Si ⊂ Li. Mes-
sages can then be represented as weighted lists of states
belonging to these lattices. A message list corresponding
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to mij(qi) can be thought of as a sparse representation of
the entire message mij(.); states absent from the list imply
corresponding message values of zero. Thus, in the mes-
sage product term

∏
k∈N(i)\j mki(qi), if there is a state

with non-zero message value coming from one neighbor-
ing node that is absent from the message(s) coming from
one or more neighboring nodes, the product at that state is
set to zero.

q
i

q
j

Figure 2: Illustration of DQ in the update of the message
mij(.) from node i to node j. Dots, filled circles and empty
circles represent the states of the lattices Li and Lj (six
states in each). Filled circles represent allowed states, i.e.
members of Si and Sj (which initially correspond to edge
locations). Given the value of qi at the lower left, at least
one allowed state of qj exists that is compatible with it (in-
dicated by lowest arrow). However, given the value of qi

near the top left, no states qj are compatible. DQ will there-
fore add the states in the fan-out Fij(qi), represented by
empty circles, to the state space Sj .

Next we define the fan-out of a state qi to node j to be
all states qj (on the lattice) that are consistent according to
the pairwise potential ψij :

Fij(qi) = {∀qj ∈ Lj |ψij(qi,qj) > ε}
where ε is a small constant.

The “active ingredient” of DQ (see Figure (2)) is to
check that, for each allowed state qi, there is at least one
allowed state qj in its fan-out (a continuation of the edge at
qi). If not, then the fan-out states Fij(qi) are added to the
state space Sj . After this procedure has been applied to ev-
ery possible allowed state qi, the message update proceeds
as usual (except that the state space Sj may now have been
modified). The usual belief pruning procedure is also used
to discard very improbable states, which offsets the growth
of states from the adaptive quantization.

DQ allows BP to begin with modest-sized state spaces,
corresponding to strong edges in the image. It adds new
states as needed in order to “fill in” features which are either
faint or entirely missing because of occlusions. Much like
the DDMCMC (data-driven Monte Carlo Markov chain)
technique [22] for searching posterior distributions with the

help of simpler data-driven distributions, DQ draws on can-
didate states suggested by the image data, but is not limited
by the choice of candidates. We feel that this technique
preserves one of the most attractive properties of continu-
ous BP – the ability to dynamically allocate resources (in
the form of particles) only to the more important regions of
state space – without requiring costly sampling procedures
to perform message multiplications.

4. Results
We tested the DQ modification to BP on our graphical de-
formable template models applied to real images. Four tem-
plate shapes were tested: the letters A and B, a car shape
and a cat shape. For the first two templates the images were
grayscale images of a whiteboard with handwritten charac-
ters; street scene images were used for the car template and
close-up images were used for the cat template. The orig-
inal images, which ranged from about 400 x 300 to 2000
x 1500, were decimated by a factor of 3 in both dimen-
sions before the image gradient information was computed.
Aside from the scale of the target shape, which was chosen
manually for each image, no other form of user initializa-
tion was required.

Figure (3) shows typical detection results obtainable for
the letter A template without DQ, demonstrating the de-
formable template’s ability to automatically find a correct
match even in the presence of substantial clutter, as well as
its rotation invariance and robustness to local shape defor-
mations.

Figure 3: Typical detection results without DQ. Original
images on left, solutions superimposed in black on right.
Top row example demonstrates rotation invariance of de-
formable template, and bottom row example shows robust-
ness to local shape deformations.

We tested the ability of DQ to allow the algorithm to re-
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cover from gaps in the target shapes. An example of this ca-
pability is shown in Figure (4). Pixel locations in the gap are
not represented in the state spaces {Si} at the beginning of
BP, but the DQ procedure is able to “fill” the gap using the
prior knowledge of the shape prior. Although the locations
in the gap have substantially weaker edge evidence than lo-
cations along the existing target edges, these locations are
favorable as continuations of the existing edges near them.
Once states corresponding to these gap locations are res-
urrected in the course of BP, subsequent message updates
establish that they are probable locations given the context
of the entire target shape.

Figure 4: Robustness of template to partial occlusion. (a)
Image contains an A missing its middle left corner and por-
tions of adjoining segments. (b) DQ is able to recover the
missing points (red and white crosses), enabling a success-
ful detection.

We also demonstrate that DQ is able to fill in gaps on
targets surrounded by clutter, as shown in Figure (5). When
clutter is present, many spurious states corresponding to
non-target locations are added by DQ in attempts to explore
possible continuations of features resembling letter A parts.
(E.g. parts of the letter X that resemble the sides of the
letter A are likely to spawn states corresponding to a non-
existent centerline between the sides of the A.) However,
subsequent BP message updates rule out such states as im-
probable, since they correspond to matches with even less
edge support than the true target.

Additional results are demonstrated in Figures (6),
(7), (8), and (9). The letter B example in Figure (6b)
demonstrates a successful match for a partially occluded
target in clutter; note that the solution deviates from some
of the visible edges of the target, reflecting the influence
of the prior (reference) shape. The car example in Fig-
ure (7) is based on a simple contour model of the tops of
both wheels and the chassis between them. The algorithm
finds a satisfactory match in the presence of considerable
clutter (green/blue pixels in Figure (7b) show the edges se-
lected by pre-pruning) and occlusions (see Figure (8)). Fi-
nally, we demonstrate a simple head-on cat head template
based on the contour of the two ears and the portion of the
head between them. An edge-based contour representation
is less appropriate for this object than for the others we mod-

Figure 5: Robustness of template to partial occlusions in
presence of clutter. Top row: (a) Image contains an A miss-
ing part of its centerline, with solution in (b). Bottom row:
(a) Image contains an A missing part of its top, with solu-
tion in (b).

elled, since it is difficult to extract clean edges from the cat’s
furry silhouette. However, Figure (9) shows some success-
ful matches, including one with an occlusion.

Execution times were on the order of tens of seconds on
a standard desktop PC running a C++ implementation of
the algorithm. We emphasize that there is no need for the
user to initialize the template near the target shape, since
BP considers all edge pixels across the entire image to be
equally likely a priori, and the template is invariant to global
rotation and translation. (However, the scale of the target is
assumed to be known.)

5. Conclusions
DQ is a promising new enhancement of BP for deformable
template matching. It extends standard pruning techniques,
allowing BP to adaptively add as well as subtract states as
needed. Since DQ allows BP to focus on the more prob-
able regions of the image, state spaces can be adaptively
enlarged to include locations where features are occluded,
without the computational burden of representing all possi-
ble pixel locations. As a result, deformable template match-
ing by BP is able to fill in gaps in target shapes in reasonable
amounts of time. Although DQ is presented in the context
of deformable template matching, we note that the tech-
nique should apply to inference on any graphical model in
which the pairwise potentials are sparse (i.e. the state of one
node strongly constrains the possible states of neighboring
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Figure 6: Additional A result, and sample result for B tem-
plate.

nodes) and the states are fairly low in dimension (perhaps
three or lower).

It is desirable to extend the current framework to in-
clude features which are stronger (i.e. more distinctive) than
edges, such as corners. Because such strong features are
comparatively rare in the background (and along the con-
tour of the target itself), their presence allows the model to
“hone in” on the target more quickly. Our preliminary ex-
periments with deformable templates that include corner ev-
idence show significant speed-ups compared to models that
rely on image gradient information alone. In addition, more
structured features combining regional and edge properties
of the image (such as eyes for face models or wheels for car
models), can be used to speed up the search even further, as
in [7].

The use of structured features also motivates the use of
hierarchical graphical models to represent objects, in which
multiple levels of representation are integrated in one graph-
ical model. For example, a letter model could represent
strokes at the top level, and the edges they are composed of
at the bottom level. Any combination of edge, corner and
stroke detectors could naturally be combined as evidence
for the model. We will investigate the use of hierarchical
models and structured features in future research.
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Figure 9: Cat results. Note occlusion on bottom panel.
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