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Abstract. Printed text is a ubiquitous form of information that is inaccessible to
many blind and visually impaired people unless it is represented in a non-visual
form such as Braille. OCR (optical character recognition) systems have been
used by blind and visually impaired persons for some time to read documents
such as books and bills; recently this technology has been packaged in a porta-
ble device, such as the smartphone-based kReader Mobile (from K-NFB Read-
ing Technology, Inc.), which allows the user to photograph a document such as
a restaurant menu and hear the text read aloud. However, while this kind of
OCR system is useful for reading documents at close range (which may still re-
quire the user to take a few photographs, waiting a few seconds each time to
hear the results, to take one that is correctly centered), it is not intended for
signs. (Indeed, the KNFB manual, see knfbreader.com/upgrades_mobile.php ,
lists “posted signs such as signs on transit vehicles and signs in shop windows”
in the “What the Reader Cannot Do” subsection.) Signs provide valuable loca-
tion-specific information that is useful for wayfinding, but are usually viewed
from a distance and are difficult or impossible to find without adequate vision
and rapid feedback.

We describe a prototype smartphone system that finds printed text in cluttered
scenes, segments out the text from video images acquired by the smartphone for
processing by OCR, and reads aloud the text read by OCR using TTS (text-to-
speech). Our system detects and reads aloud text from video images, and there-
by provides real-time feedback (in contrast with systems such as the kReader
Mobile) that helps the user find text with minimal prior knowledge about its lo-
cation. We have designed a novel audio-tactile user interface that helps the user
hold the smartphone level and assists him/her with locating any text of interest
and approaching it, if necessary, for a clearer image. Preliminary experiments
with two blind users demonstrate the feasibility of the approach, which repre-
sents the first real-time sign reading system we are aware of that has been ex-
pressly designed for blind and visually impaired users.
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1 Introduction and Related Work

OCR is designed to process images that consist almost entirely of text, with very little
non-text clutter, such as would be obtained from a picture (e.g., acquired by a flat-bed
image scanner) of a single page of a book. A growing body of research [2] has fo-
cused on the complementary problem of finding text in cluttered images, such as are
encountered by a person searching for a sign, so that the text can be isolated in each
image in order to be processed effectively by OCR. Some research [4] has specifically
tackled the added challenge of finding and reading text on a portable device, and
smartphone apps such as Word Lens (http://questvisual.com/) have been developed,
which are able to find and read scene text at several video frames per second, but are
intended for use by people with normal vision.

A comparatively small amount of work has addressed the specific problem of finding
and reading signs or other non-document text for blind or visually impaired people. Yi
and Tian [6] have focused on computer vision algorithms for finding text in complex
backgrounds (e.g., found in typical indoor and outdoor urban scenes), training their
algorithms on an image dataset collected by ten blind users, but have not yet ad-
dressed the formidable user interface issues posed by a full system that helps a visual-
ly impaired user find text and have it read aloud to him/her. The “Smart Telescope”
SBIR project from Blindsight Corporation (www.blindsight.com) is a novel system to
help a person with low vision find and read text by automatically detecting text re-
gions in a scene acquired by a wearable camera and presenting the regions one at a
time to the user, using a head-mounted display that zooms into the text to enable
him/her to read it. Finally, [3] reports studies with three blind users of a real-time
computer vision-based smartphone system for locating special “color marker” signs,
describing the strategies employed by the users to find each marker, walk towards it
and touch it. While color markers are specially designed for ease of detection by the
system, and are therefore much easier to find and read than the kinds of text signs
considered in our application, the search strategies adopted by the users underscore
the challenges of finding any kind of sigh with a camera-based system.

2 Finding Text in Images and Performing OCR

The foundation of our prototype system is a processing pipeline that includes a com-
puter vision algorithm for finding text in images, followed by a standard OCR pack-
age run on the text regions identified by this algorithm.
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Fig. 1. Main stages of text detection and recognition. (a) Sample indoor image taken by
smartphone. (b) “Blob” regions detected in image (each blob is given a separate, random color
for visibility). (c) Detected text region drawn as a “text box” (in yellow). (d) When this text
region is input to OCR it is correctly read as “ELECTRICAL.”

The text detection algorithm, which builds on previous work by the authors [5], pro-
cesses a video frame (which has 640x480 resolution, see Fig. 1a) and converts it to
grayscale for subsequent processing. “Blob”-like structures in the image (Fig. 1b) are
detected in the image, one blob typically being extracted for each character of text (in
addition to many other blobs corresponding to non-text clutter in the image). Blobs
whose shape and/or size are incompatible with that of text characters are removed,
and the remaining blobs are searched for groups of consistently sized ones that are
aligned in a way that is consistent with a horizontal word or line of text. This proce-
dure is applied to the image at both polarities (for detecting light text on a dark back-
ground and vice versa), yielding blob groups that are classified as text groups, which
form candidate text regions demarcated by rectangles (Fig. 1c), referred to as “text
boxes.”



Each text box forms a cropped portion of the image that is sent to the Tesseract OCR
engine (http://code.google.com/p/tesseract-ocr/), an open source OCR package that
runs in real time on the smartphone (Fig. 1d). Some OCR output contains errors, ei-
ther because it results from a false positive text box (i.e., it is reported incorrectly as a
text region), or because the text box is valid but OCR is unable to process it correctly.
To reduce the number of spurious or incorrect OCR output strings to communicate to
the user, we apply a simple filtering procedure to discard strings with unlikely charac-
ters or character combinations.

3 System and User Interface

Our software was programmed in C++ and implemented on an LG-P990 Android
smartphone processing video frames using the smartphone's camera. After processing
each video image frame as described above, we read aloud each text string using TTS.
If more than one text string is detected in an image, the text strings are read aloud in
the following order: from the top of the image to the bottom of the image, and from
left to right among strings that are at roughly the same height in the image.

Depending on the complexity of the images and amount of text contained in them, the
processing proceeds at a rate as high as one or two frames per second (for simpler
images with small amounts of texture). After experimentation we chose a TTS setting
that allows all text to be read aloud, before processing the next frame. The advantage
of this setting is that scenes with longer strings of text are less likely to be cut off, but
at the cost of sometimes delaying the processing of a new frame for a few or more
seconds.

The philosophy behind our user interface is that some errors are inevitable with any
OCR system, especially one based on a handheld camera; the simplest way to over-
come the errors is for the user to obtain multiple readings of each text sign over time
and arrive at a consensus among the readings. Specifically, spurious readings (e.g.,
due to false positives from background clutter) can be ignored because of their incon-
sistency over time; minor reading errors (e.g., a few misread characters in a word) can
often be “repaired” by waiting for a correct reading (which is more likely to be read
consistently, and usually makes more sense to the user in a given context, than an
incorrect reading) or inferring the most likely word that gives rise to multiple mis-
readings.

To improve the basic TTS user interface, we introduced three novel functions. First,
we implemented a tilt detection function (similar to that in [1]), using the smartphone
accelerometer to sense the direction of gravity, which allows the user to point the
camera arbitrarily above or below the horizon and to the left or to the right, but issues
a vibration warning if the camera is rotated clockwise or counterclockwise about its
line of sight. This maximizes the chances that text appears roughly horizontal in the
image (as required for successful detection). Second, any text string that originates
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from a text box that is close to the border of the image is read aloud in a low pitch, to
warn the user that important text may be cut off at the edge of the image. (For in-
stance, a “No smoking permitted” sign may be detected as “smoking permitted” if the
first word falls outside of the image.) Finally, any text string corresponding to text
that is sufficiently small in the image is read aloud in a high pitch, which warns the
user that such text may be incorrectly recognized (and that the user should approach
closer if possible to get a more reliable reading).

4 Experimental Results and User Testing

We explained the purpose and operation of the system to two completely blind volun-
teer subjects. Particular emphasis was placed on the importance of moving the camera
slowly to avoid motion blur, ensuring the camera lens was not covered (e.g., by the
user’s fingers), and thoroughly sweeping the desired target region to accommodate the
camera’s limited field of view. After a brief training session with a handheld sign, we
took the subjects to a conference room in which ten text signs were posted along two
adjoining walls. The signs were high contrast (black and white), of varying font, font
size and polarity (i.e., dark text on light background or vice versa), and were placed at
approximately chest level; they contained the type of text that might be expected in an
office building, such as “Room 590” or “Main entrance.” The subjects were told to
search both walls for an unknown number of signs, standing a few meters away from
the signs (i.e., out of reach), and to tell the experimenter the content of each sign de-
tected.
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Fig. 2. Scene from experiment shows signs posted on wall with blind volunteer holding system.

The first subject took under six minutes to search for the signs, and reported six of
them perfectly correctly. Of the remaining four signs, two were completely missed,



the sign labeled “Dr. Samuels” elicited a TTS response of “Samuels” (which was
audible to the experimenter but not the subject) and the “Meeting in Session” sign
gave rise to the words “Meeting” and “section” (though they were not uttered togeth-
er). The second subject searched for the signs in about the same length of time, but
only reported three of them perfectly, in part because he moved the camera quickly
while searching for them. The pattern of errors he encountered among the other seven
signs is telling: for instance, the sign labeled “Exam Room 150” was detected and
read aloud correctly, but he was unable to understand the word “exam” (perhaps be-
cause there was no context to prepare him for it); and he reported “D L Samuels meet-
ing in session” as a sign, which is an incorrect combination of two signs, “Dr. Samu-
els” (in which the system misread “Dr.”) and “Meeting in Session.” Of the three spe-
cial user interface functions we devised, the tilt sensor appeared to be most consistent-
ly useful to the subjects, while the situations requiring the use of the low/high pitch
signals were less common.

While the results show that the system needs to be improved substantially before it
becomes practical, the study provides proof of concept of the approach and provides
insight into the most important problems to be addressed. First, the main challenge in
using the system was finding text in an unknown location, which required the user to
patiently scan large areas. Slow processing speeds (especially on images of high-
texture regions), combined with motion blur (exacerbated by low lighting conditions
where the experiment was conducted), forced the user to scan slowly. False positive
text detections created a significant amount of spurious TTS responses, which further
slowed down the process. Somewhat surprisingly, even when the system functioned
perfectly, the TTS output was not always interpreted correctly by the user. Finally, the
simple procedure we used for deciding the order in which to announce multiple text
lines was helpful, but did not address the need to announce the contents of each sign
separately from the others. We discuss possible solutions to these problems, which we
are currently implementing, in the next section.

5 Conclusion

We have demonstrated a novel smartphone system to find and read aloud text signs
for blind and visually impaired users. A prototype system has been implemented on
the Android smartphone, which includes special user interface features to help guide
the search for text. We have conducted preliminary experiments with blind volunteers
to test the system, demonstrating its feasibility.

We are planning several future improvements and extensions to the system. First and
foremost, speed and accuracy improvements to the text detection algorithm will make
the system faster and create fewer false positive readings; a faster algorithm may also
permit processing of higher resolution video images, which would enable signs to be
detected from farther away. The ability to detect text that is poorly resolved (because
of small size or motion blur) would also permit text detection in some cases when the



text is not clear enough to be read. A more efficient user interface might then signal
the presence of text with a brief audio tone, help the user center and/or approach the
text and then have it read aloud. Multiple text lines will be clustered into distinct sign
regions, which will help both with centering of signs and intelligibility of the TTS
output, and the user will be able to hear the TTS output repeated for any given sign
upon request. Eventually we envision a system that analyzes an entire scene as an
image panorama (i.e., mosaic), acquired by panning the camera back and forth, which
is able to seamlessly read lines of text that extend beyond the borders of any individu-
al image frame.
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