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1 Maximum Entropy

The maximum entropy principle is used as a means of estimating probability
distributions from data. Specifically, given data samples z', ..., 2" the maxi-
mum entropy distribution P(z) is chosen to be the distribution with maximum
entropy that satisfies the following constraint:

< f(z) >p=< f(x) >ecmp (1)

where f(z) is a (scalar or vector) function of z, < . >p denotes expectation with
respect to distribution P(.), and < . >, denotes expectation with respect
to the empirical samples. More specifically, < f(z) >p= >, P(z)f(x) and
< f(x) >emp= (1/M) thwzl f(z*). (For simplicity we assume z is discrete, but
the procedure is easily generalized to the case where x is continuous, in which
case sums over x are replaced by integrals.)

Since the entropy of P(x) is S = — ) P(x)log P(x), we can use Lagrange
multipliers to cast the appropriate constrained optimization problem:

E ==Y Pa)log P(x)+7((Y_ P@) = 1)+ A P@)f(2))= < f(@) >emp)

where the second term enforces the fact that probability distributions must
sum to 1 and the third term enforces the match between the maximum entropy
distribution and the empirical data. (If f(.) and X\ are vectors, then anywhere
they are multiplied together, a dot product is understood.)

Differentiating F yields:

OE/OP(x) = —log P(z) — 1+ 7+ Af(z), (3)
and setting OE/OP(z) = 0 yields the following closed-form expression for P(x):
Plaly M (@) A

where Z()) is a normalization factor (i.e. Z(\) =" e*(®)) and we now write
the probability conditioned on the value of A.

The value of X is chosen to satisfy Eq. 1, which we will discuss later.

As an example, if z is a (continuous) scalar and f(z) is the vector-valued
function f(x) = (z,2?), it is straightforward to show that the maximum entropy
distribution P(x) will be a Gaussian.



2 Maximum Likelihood

In this section we review maximum likelihood estimation and show how it relates
to maximum entropy. Suppose that we accept that our probability distribution
has the form given in Eq. 4, and we are provided empirical samples x1,...,x;.
Then the maximum likelihood estimate of A is given by:

M
argmazxy H P(zH|\) (5)
p=1
where we are assuming that the samples are conditionally independent given A.
This is the value of A that best explains all the empirical data. Taking logs, we
see this is equivalent to:

argmaxyL(X) (6)
where
M M
L) =) log P(a*]\) = Y _(Af(a) —log Z(N)) (7)

and L(A) is the log likelihood function. We re-express L(\) as:

L(A) = M(A < f(2) >emp —log Z(X)) (8)

If we differentiate L(\) we get the following expression:

8L()\)/8)\ = M(< f(l') >emp - Zp(x‘)‘)f(x)) = M(< f(:L') >emp - < f(l') >P(.|)\))
) )

which we note attains 0 when eq. 1 is satisfied. In other words, maximum
entropy and maximum likelihood lead to the same learned distribution but flow
from different assumptions.

It can be shown that L(\) is convex (because its second derivative is negative)
and thus has a unique maximum. It can be solved for numerically using gradient
ascent:

Anew — yold k(< f(x) >emp — ZP(:CP\)f(!L‘)) (10)

where k is a constant that sets the step size. Other methods are available
(e.g. GIS, generalized iterative scaling) that can find the solution with fewer
calculations. In practice, the bottleneck in solving for A with any of these
methods is the fact that the expectation ) P(z|\)f(z) can be difficult to
evaluate.



3 Comments

The maximum entropy principle is sometimes regarded as an ideal learning
method that makes minimal assumptions in arriving at an estimate of a distri-
bution learned from data. However, it is important to realize that the form of
f(z) is an important (implicit) assumption that can affect the outcome of learn-
ing from data. For example, the maximum entropy distribution corresponding
to f(x) will in general be different from one corresponding to g(z) = f(z)?, even
if f(x) is always positive (and can thus be deduced from the value of g(x)).

Finally, note that maximum likelihood is sometimes regarded as non-Bayesian
because there is no explicit prior given on A (which is implicitly uniform). It is
easy to extend the estimation of A\ to cases in which a prior is placed on A, so
that P(z|A) is replaced with P(A|z) in Eq. 5.



