
Zebra Crossing Spotter: Automatic Population of Spatial Databases for Increased Safety of
Blind Travelers

Dragan Ahmetovic1, Roberto Manduchi2, James M. Coughlan3, and Sergio Mascetti1

1Università degli Studi di Milano
2University of California Santa Cruz

3Smith-Kettlewell Eye Research Institute

Abstract

In this paper we propose a computer vision-based technique
that mines existing spatial image databases for discovery of
zebra crosswalks in urban settings. Knowing the location
of crosswalks is critical for a blind person planning a trip
that includes street crossing. By augmenting existing spa-
tial databases (such as Google Maps or OpenStreetMap)
with this information, a blind traveler may make more in-
formed routing decisions, resulting in greater safety during
independent travel.

Our algorithm first searches for zebra crosswalks in satel-
lite images; all candidates thus found are validated against
spatially registered Google Street View images. This cas-
caded approach enables fast and reliable discovery and
localization of zebra crosswalks in large image datasets.
While fully automatic, our algorithm could also be com-
plemented by a final crowdsourcing validation stage for in-
creased accuracy.

1 Introduction

Independent travel can be extremely challenging without
sight. Many blind persons learn (typically with the help
of an Orientation and Mobility, or O&M, professional) the
routes that they will traverse routinely [20], for example
to go to work, school or church. Far fewer attempt inde-
pendent trips to new locations: for example to visit a new
friend or meet a date at a restaurant. To reach an un-
familiar location, a blind person needs to learn the best
route to the destination (which may require taking public
transportation); needs to follow the route safely while be-
ing aware of his or her location at all times; and needs to
adapt to contingencies, for example if a sidewalk is under-
going repair and is not accessible. Each one of these tasks
has challenges of its own. In particular, the lack of visual
access to landmarks (for example, the location and layout
of a bus stop or the presence of a pedestrian traffic light at
an intersection) complicates the wayfinding process. Thus,
a straightforward walk for a sighted person could become a
complex, disorienting, and potentially hazardous endeavor
for a blind traveler.

Technological solutions for the support of blind wayfind-
ing exist. Outdoors, where GPS can be relied upon for
approximate self-localization, a blind person can use acces-
sible navigation apps. While these apps cannot substitute
proper O&M training, they provide the traveler with rel-
evant information on-the-go, or can be used to preview a
route to be taken. A navigation tool, though, is only as

good as the map it draws information from. Existing ge-
ographical information systems (GIS) lack many features
that, while accessible by sight, are not available to a blind
person. For example, Hara et al. found that knowing the
detailed layout of a bus stop (e.g., the presence of features
such as a bench or nearby trees) can be extremely useful
for a blind person for figuring out where to wait for the bus
[8]. Other relevant information lacking in GIS may include
the presence of curb ramps (curb cuts) near intersections,
or the location of an accessible pedestrian signal controlled
by a push button.

We propose a novel technique to detect zebra crossings
on satellite and street level images. Knowing the location of
marked crosswalks is important for any traveler. A pedes-
trian, crossing a street outside of a marked crosswalk, has
to yield the right-of-way to all vehicles1, a difficult task for
pedestrians with visual impairments. Conversely, a marked
crosswalk is clearly visible by drivers, grants right-of-way to
pedestrians, and is highly preferable as a location for street
crossing in terms of safety. Pedestrians who are blind or
visually impaired are taught sophisticated O&M strategies
for orienting themselves to intersections and deciding when
to cross, using audio and tactile cues and any remaining vi-
sion [3]. However, there may be no non-visual cues available
to indicate the presence and location of crosswalk markings.

Blind travelers may benefit from information about the
location of marked crosswalks in two main ways. First, en-
suring that a route includes street crossing only on clearly
marked crosswalks would increase safety during a trip. Sec-
ond, this information can be used jointly with other tech-
nology that supports safe street crossing. For example,
recent research [4, 1] shows that computer vision-based
smartphone apps can assist visually impaired pedestrians
in finding and aligning properly to crosswalks. This ap-
proach would be greatly enhanced by the ability to ask a
GIS whether a crosswalk is present, even before arriving at
the intersection. If a crosswalk is present, the geometric
information contained in the GIS can then be used to help
the user aim the camera towards the crosswalk, align to
it and find other features of interest (e.g., walk lights and
walk light push buttons).

2 Related work

Satellite and street-level imagery of urban areas in mod-
ern GIS are vast data sources. Computer vision methods
can be used to extract geo-localized information about ele-
ments captured in these images (e.g., landmarks, vehicles,

1http://mutcd.fhwa.dot.gov

1

buildings). Satellite images have been used to detect urban
areas and buildings [19], roads [14] and vehicles [13]. Senlet
and Elgammal [18] propose sidewalk detection that corrects
occlusion errors by interpolating available visual data. In
street level images, Xiao and Quan [21] propose detection of
buildings, persons and vehicles, while Zamir and Shah [22]
tackle the issue of localizing user captured photographs.

There has been an increasing interest in adding specific
spatial information to existing GIS through crowdsourcing.
The impact of this phenomenon, called volunteered geo-
graphic information (VGI), is stressed by Goodchild [6].
Wheelmap2 allows accessibility issues to be marked on
OpenStreetMap, the largest entirely crowdsourced GIS.
Hochmair et al. [11] assess bicycle trails quality in Open-
StreetMap while Kubásek et al. [12] propose a platform for
reporting illegal dump sites.

Safe and autonomous urban navigation is difficult for
people with visual impairments. Smartphone apps that ad-
dress this issue have been proposed. iMove3 informs the
user about the current address and nearby points of inter-
est. Crosswatch [4] and ZebraLocalizer [1] allow pedestrians
with visual impairments to detect crosswalks with smart-
phone camera.

Crowdsourcing is also used to assist users with visual im-
pairments during navigation. BlindSquare4 is a navigation
app that relies on Foursquare social network for points of
interest data and OpenStreetMap for street info. VizWiz5

allows one to ask help of a remote assistant and attach a
picture to the request. BeMyEyes6 extends this approach
to allow assistance through video feed. Rice et al. [17]
gather information on temporary road accessibility issues
(e.g., roadworks, potholes). StopFinder [16] helps people
with visual impairments to locate bus stops by gathering
data about non-visual landmarks near bus stops. Hara et
al. [8] improve on this approach by performing crowdsourc-
ing on street-level imagery, without the need to explore an
area of interest in person. Guy and Truong [7] propose an
app to gather information on the structure and position of
nearby crossings through crowdsourcing of street-level im-
ages and to assist users with visual impairments in crossing
streets.

Computer vision techniques use satellite and street-level
images to assist persons with visual impairments. Hara
et al. [10] propose the detection of inaccessible sidewalks
in Google Street View images. Murali and Coughlan [15]
match 360◦ panoramas captured by smartphone to satellite
images of the surroundings for estimating the user’s posi-
tion in the intersection more precisely than with GPS.

Hybrid approaches using automated computer vision
techniques for menial work and human “Turkers" for more
complex tasks have also been proposed. Hara et al. [9]
extend their previous work to combine crowdsourcing and
computer vision detection of street accessibility problems,
such as obstacles or damaged roads.

To the best of our knowledge, our technique is the first to
use satellite and street-level imagery for automated detec-
tion of zebra crossings. The detection can be extended with
crowdsourcing for a final validation step, for adding missed

2http://wheelmap.org
3http://www.everywaretechnologies.com/apps/imove
4http://blindsquare.com/
5http://vizwiz.org
6http://www.bemyeyes.org

crosswalks and for gathering other information on the sur-
roundings of the detected crossings that can be of use to
visually impaired pedestrians in finding and aligning to the
crossings. Detected crosswalks can be added to a crowd-
sourced GIS and used by travelers with visual impairments
during navigation planning. Solutions that detect cross-
walks using the smartphone video camera [1, 4] can benefit
from this information to assist the user in finding crossings
at long distances that cannot be captured by the camera.

3 Zebra Crossing Identification

Multiple types of road surface markings are used across
the world to define pedestrian crossings. In the United
States, at least two different types of pedestrian crossing
markings are available1. The transverse marking consists
of two white lines, perpendicular to the road direction, with
width between 6in (15cm) and 24in (60cm). The separa-
tion between the two lines is at least 6ft (180cm). Zebra
crossings, known as “continental crossings” in USA, can be
visually detected at larger distances than other crosswalk
markings in the same illumination [5]. Thus, zebra cross-
ings are common when the crossing visibility is paramount
for the pedestrians’ safety, for example near schools and
hospitals. As such, they also inform drivers to pay more
attention to the crosswalk, which is desirable for pedestri-
ans with visual impairments who cannot rely on sight for
noticing incoming vehicles.

While in this contribution we focus on U.S. zebra cross-
ings, the parameters of the detection can be tuned for other
types of zebra crossings with different geometric character-
istics. Other pedestrian crossing types, such as transverse
markings, can be detected with the same approach but they
require significant changes to the detection algorithm and
therefore they will be considered as future work.

A zebra crossing is a set of parallel, uniformly painted,
white stripes on a dark background. The gaps separat-
ing the white stripes are “dark stripes”. Each stripe is a
rectangle or, in case of diagonal crossings, a parallelogram.
United States regulation dictates that zebra crossings be
at least 6ft (180cm) wide, with white stripes 6in (15cm) to
24in (60cm) thick. The thickness of the dark stripes is not
regulated.

3.1 Technique Overview

The proposed cascade classifier is composed of two main
steps, as shown in Figure 1. The overall idea is to extract
candidate zebra crossings from satellite images and then to
validate them through street view images. The input of
the procedure is an area A in which to detect the zebra
crossings.

In the first step (see Section 3.2), the satellite images
covering the input area A are downloaded from an online
GIS and candidate zebra crossings are extracted from them
through a computer vision technique. While the technique
proposed in our solution can be applied to images from
different providers, the system we developed gathers images
from Google Maps.

The second step (see Section 3.3) acquires, for each candi-
date zebra crossing, nearby street view panoramas (if avail-
able) that might contain the zebra crossing. Zebra crossings

2

Satellite Images
Processing

Street view
images processing

Satellite images

Candidate
crossings

Street view images

Detected
crossings

Geographical
area

Figure 1: Technique overview

are detected in street view panoramas and matched with
the candidate crossings extracted from satellite images. In
case of a match, the validated zebra crossing is returned
and the result can be cached for future use.

It is also possible to extract candidate zebra crossings
from all street view panoramas in the input area A and
then validate them with satellite images. However, this
approach would require downloading all panoramas in A,
which is time consuming given the Google download lim-
its7 and the large amount of data. In our experiments, for
an input area of 1.6km2, starting first with satellite im-
ages required downloading ≈ 23MB, followed by 16MB for
the street view panoramas validation. Conversely, starting
from street view panoramas would have required download-
ing 637MB, followed by less than 1MB for the subsequent
validation through satellite images. Overall, the cost (in
terms of data transfer) of starting with satellite images is
only about 6% of the reverse procedure that begins with
street view images.

3.2 Satellite Image Processing

Algorithm 1 describes the procedure to acquire the satellite
images8 and to process them. To acquire satellite images,
we rely on the Google Static Maps API 9 that allows satel-
lite images to be downloaded through HTTP calls. Each
call specifies the GPS coordinates of the image center, the
zoom factor and the image resolution. The maximum image
resolution is constrained so, for large input areas, several
HTTP requests must be sent.

We reconstruct the area A by downloading the images
whose union yields A. Indeed, given a zoom factor and the
maximum image resolution, it is straightforward to com-
pute the size (in meters) of the region covered by each im-
age. Thus, A can be partitioned in sub-regions with this
maximum size (Line 2). Figure 2(a) shows an example of
the partitioning step.

Since there is a maximum daily number of requests that
can be submitted to Google Maps, we only download images
that do not contain roads. This can be achieved through
the Google Maps Javascript API 10. These APIs expose a

7https://developers.google.com/maps/licensing
8Satellite and street view imagery courtesy of Google c©
9https://developers.google.com/maps/documentation/

staticmaps/
10https://developers.google.com/maps/documentation/

javascript/

A
640px

38m
=

640px

38m
=

(a) Area A partitioned

1 2 3

4 5

6 7 8

current
image

d
d

(b) Extended image

Figure 2: Area partitioning and extended image

method to compute, given an input coordinates, the closest
position on a road. Before downloading an image centered
at a point p, we compute the distance from p to the clos-
est road. If this distance is larger than half the diagonal
length of the image, we can infer that the image does not
include any road, and hence we can avoid downloading it
(Line 4). Note that this approach has a secondary advan-
tage: it limits the number of false positives, i.e., patterns
that are similar to zebra crossings that are erroneously rec-
ognized as such.

Dividing A in subregions implies that a zebra crossing
spanning multiple adjacent images may be recognized in
some of them or may not be recognized in any. Consider
the example in Figure 3, where the white dashed line is
the boundary between two adjacent images. To tackle this
problem, we construct an extended image by merging a
downloaded image with the borders of the 8 surrounding
images, as shown in Figure 2(b) (see Algorithm 1, Line 6).
The width of each border is chosen to guarantee the recog-
nition of a zebra crossing, even if it is on the border between
adjacent images. Still, this approach can result in a cross-
ing being recognized in more than one image. We show in
the following how to merge candidate zebra crossings that
correspond to the same crossing and appear in different
images.

The detection technique extracts the line segments cor-
responding to the long edges of stripes from the image (see
Figure 4(a)) using a customized version of the EDLines al-
gorithm [2] (Line 7). The line segments are grouped into
sets of stripes based on horizontal distance, vertical dis-
tance and parallelism criteria (Line 8). The resulting can-
didate crossings (see Figure 4(b)) are validated based on

3

Algorithm 1 Satellite images acquisition and processing
Input: Rectangular geographical area A.
Output: a set Z of zebra crossings, each one represented
by its position and direction.
Method:
1: Z ← ∅ {algorithm result}
2: partition A in a set R of sub-regions
3: for all (sub-region r ∈ R) do
4: if (r does not contain a road) then continue
5: download satellite image i of area r
6: generate extended image i′

7: L← detect line segments in i′

8: S ← group line segments in L in candidate crossings

9: for all (candidate crossing s ∈ S) do
10: if (s is not a valid crossing) then continue
11: z ← position and direction of zebra crossing s
12: merge and add z to Z
13: end for
14: end for
15: return Z

Figure 3: Zebra crossing on two adjacent images

the stripes number and color intensity and the candidate
crossings that are not validated are discarded (Line 10).

Our technique is adapted from the ZebraLocalizer algo-
rithm for zebra crossing recognition on smartphones [1].
Differently from ZebraLocalizer, our approach does not re-
quire reconstructing the ground plane since satellite images
are not subject to perspective distortion, being acquired
from above the ground plane.

(a) Line segments (b) Crossing

Figure 4: Satellite detection steps

If a set of stripes is not discarded, it is assumed to be a ze-
bra crossing and it is characterized by its direction and po-
sition. Its direction is easily derived as the angle of the line
perpendicular to the stripes, which should all share nearly
the same angle, due to the parallelism criterion (Line 8).
The zebra crossing’s position is represented as the quadri-

lateral bounding the detected set of stripes, as depicted in
Figure 4(b).

Finally, the detected zebra crossing is added to the set
of results Z. As mentioned above, the same zebra crossing
may be recognized in two or more different images. Hence,
when inserting z in Z (Line 12), we first check if Z already
contains a zebra crossing with approximately the same po-
sition and direction as z. If a similar crossing is found, the
two crossings are merged.

3.3 Street View Image Processing

Algorithm 2 describes the procedure to validate a single
zebra crossing through the acquisition and processing of
street view panoramas. The procedure is iterated for all
zebra crossings detected during satellite image processing.
In Google Maps, street view panoramas are spherical images
(i.e., they span 360◦ horizontally and 180◦ vertically) posi-
tioned at discrete coordinates distributed non-uniformly in
space and they are structured in a graph that closely follows
the road graph. Through the Google Maps Javascript API
it is possible to request the panorama closest to a point in
space and to retrieve the coordinates of panoramas directly
linked to a given one.

Algorithm 2 Street view images acquisition and process-
ing
Input: candidate zebra crossing z ∈ Z represented by its
position and direction.
Output: a validated zebra crossing z′ represented by its
position and direction or null if not validated.
Method:
1: c0 ← get the coordinates of panorama closest to z
2: C ← {c0} {Set of panoramas to be processed}
3: while (C 6= ∅) do
4: c← pop element from C
5: α← direction angle from c to z
6: i← image at coordinates c with direction alpha
7: L← detect line segments in i
8: L′ ← rectify line segments in L
9: S ← group line segments in L′ in candidate crossings
10: for all (s ∈ S) do
11: if (s is a valid crossing) then
12: z′ ← position and direction of zebra crossing s
13: if (z matches z′) then return z′

14: end if
15: end for
16: push in C coordinates of panoramas directly linked

to c and close to z
17: end while
18: return null

For an input zebra crossing z the algorithm first identi-
fies the coordinates c0 of the panorama closest to it. The
panorama centered in c0 in some cases does not contain z
due to occlusion by the car used to take the pictures, or
by other objects and vehicles. Thus, our algorithm pro-
cesses c0 as well as other nearby panoramas until the cross-
ing has been validated or all nearby panoramas have been
processed. The set of coordinates of panoramas still to be
processed is represented by C, initially containing only c0.

For each panorama centered in coordinates c ∈ C, the
algorithm identifies a small portion of the spherical im-
age that actually needs to be acquired. On the vertical

4

axis, we use a fixed pitch (−30◦) and vertical field of view
(60◦) in order to exclude the portion of the panorama oc-
cluded by the car taking the picture and the portion of the
panorama above the horizon, which clearly does not contain
crossings. For capturing the correct horizontal portion of
the panorama we first compute the direction angle α that,
starting from coordinates c, points towards the center of z
(see Line 5). This angle represents the center, along the
horizontal axis, of the acquired image. A horizontal field
of view of 60◦, given the pitch, vertical field of view, and
a camera height of 2.5m, guarantees to include, at min-
imum distance, a span of 3.5m. Considering the United
States regulation, this is sufficient to include from 5 to 23

stripes of a crossing, sufficient for a correct detection. See
Figures 5(a) and 5(b).

horizon

pitch

vertical
field

of view

camera direction

(a) Vertical field of view

horizontal
field of
view

camera

direction

direction
angle

North

(b) Horizontal field of view

Figure 5: Horizontal and vertical field of view

The usage of fixed parameters simplifies a number of for-
mulae, including those for image rectification (see below).
As future work these parameters could be derived from the
relative position of c and z. For example smaller pitch val-
ues can be used if z is closer to c.

The image i containing a portion of the panorama at co-
ordinates c and with direction α is acquired and then pro-
cessed with an adapted version of ZebraLocalizer [1] algo-
rithm to reconstruct the coordinates of line segments on the
ground plane (Lines 7 to 11). The difference with ZebraLo-
calizer is that, since camera height and pitch are fixed, we
can pre-compute the homography to reconstruct the ground
plane in all acquired images. Figures 6(b) and 6(c) show an
example of ground plane reconstruction. Rectified line seg-
ments are then grouped and validated based on the same
criteria described in Section 3.2.

If the set S of identified stripes represents a valid cross-
ing z′, its position and orientation are compared with those
of z. Clearly, even if z′ actually represents the same cross-
ing as z, the bounding quadrilaterals of the two crossings
rarely have exactly the same coordinates, due to a number
of approximations introduced in the computation, includ-
ing GPS imprecision and the fact that not all stripes of a
zebra crossing are always identified. For example, the same
crossing detected in a satellite image (Figure 6(a)) and de-
tected in a street view panorama (Figure 6(b)) has different
GPS coordinates, as shown in Figure 6(d). Similarly, the
orientation of z and z′ can differ.

Thus, there is a tolerance in the comparison of z with
z′ and a system parameter defines the maximum distance
such that z and z′ are considered the same crossing. Anal-
ogously, a system parameter defines the maximum angular
distance between the orientation of z and z′. If z and z′

represent the same crossing, then z′ is returned as a valid
crossing.

If the set of stripes S does not represent a valid crossing or
if z′ does not represent the same crossing as z, the algorithm
populates C with the coordinates of other panoramas close
to c (if any). The algorithm adds to C the coordinates of
panoramas directly linked to c that have not already been
processed during the validation of z and that are close to z
(the maximum distance is bounded by a system parameter).
Eventually either z is validated or all nearby street view
panoramas are processed (i.e.: C = ∅); in this case null is
returned.

4 Experimental evaluation

This section reports the results of the experiments con-
ducted to evaluate our technique over a dense urban region
of San Francisco. These results are quantified in terms of
precision (the fraction of detected zebra crossings that are
true detections) and recall (the fraction of true zebra cross-
ings that are correctly detected). We demonstrate that our
cascade classifier is powerful enough to identify nearly all
zebra crossings, with only a small number of false positive
candidates that need to be eliminated in a subsequent stage
of crowdsourcing-based image inspection.

4.1 Experimental setting

To evaluate the proposed technique we considered a rect-
angular urban area A in San Francisco, with sides of length
1529m and 1025m and an area of 1.6km2. The area coor-
dinates11, along with detected crossing portions, true pos-
itives (green pins) and false positives (red pins) have been
published12.

A total of 141 zebra crossings and 152 transverse pedes-
trian crossings have been detected in the satellite and street
view images of the area by a human operator. In the follow-
ing, a zebra crossing is considered to be detected correctly
if at least 4 consecutive stripes of the crossing have been
detected correctly.

Concerning satellite images, with the maximum zoom
level available in Google maps for the considered area, each
image with maximum resolution of 640 × 640 pixels cov-
ers 38m × 38m. Thus, a total of 1149 satellite images are
required to cover A. Since the size of each image is approx-
imately 46KB, the size of all images covering A is 52MB.
The total number of street view panoramas available in A
is 1425. As we show in the following, we acquired only a
small portion of these panoramas, each having a resolution
of 640× 640 pixels and, on average, a size of 51KB.

The tests were conducted on a laptop computer with Intel
core i7 4500u 1.8GHz CPU and 8GB RAM.

4.2 Satellite image processing evaluation

As reported in Algorithm 1, only images containing streets
are actually considered. With this approach a total of 791
images actually need to be acquired with a total size of
35MB. This means that, in A, our technique avoids down-
loading about one third of the images that would be oth-
erwise required. In areas where the density of the road
network is lower (like in suburban or rural areas), we can

11http://webmind.di.unimi.it/satzebra/satzebra.kml
12http://webmind.di.unimi.it/satzebra

5

(a) Satellite detection (b) Street view detection (c) Reconstructed street view (d) imprecision in detection

Figure 6: Imprecision in GPS coordinates between satellite and street view detected crossings

expect that an even higher percentage of images can be
omitted.

The recognition process described in Algorithm 1
(Lines 7-8) detects a total of 773 zebra crossing portions.
Often a single zebra crossing is detected as two or more ze-
bra crossing portions. For example this can happen when
a vehicle is visible in the middle of the crossing, causing a
partial occlusion. By merging these crossing portions (Al-
gorithm 1, Line 12) our technique identifies 199 candidate
crossings.

Out of 199 detected candidate crossings, 137 correspond
to actual zebra crossings. Since the number of actual zebra
crossings in A is 141, recall is 0.97. A few zebra crossings
are not detected due to discolored or faded paint (see Fig-
ure 7(a)) while others are almost totally covered by trees,
shadows or vehicles (see Figure 7(b)). The process also
yields 62 false positives, hence the precision is 0.69. In many
cases, false positives correspond to rooftops (Figure 7(c))
or other parts of buildings (Figure 7(d)).

These recall and precision scores refer to parameter set-
tings tuned for the highest possible recall so that almost no
crosswalks are missed by the algorithm. Naturally, perfect
recall is difficult to reach and comes at the expense of a
greater number of false positives, i.e., a smaller precision.
However, considering that a final crowdsourcing validation
step is possible, it is much easier for crowdworkers to rule
out false positives than it is to find false negatives, which
requires scrutinizing the entire area of interest to identify
crosswalks that have not been detected by the algorithm.
Parameters can be tuned for different trade-off levels be-
tween precision and recall. The Pareto frontier shown in
Figure 8 lists the best precision and recall trade-offs ob-
tained during the tuning of the parameters.

Regarding computation time, we consider the CPU-
bound process only and we ignore the time to acquire im-
ages, which mainly depends on the quality of the network
connection. The CPU-bound computation required for the
extraction of candidate crossings in a single image is 180ms.
Running the algorithm sequentially on the 791 images ac-
quired for A requires a total of 142s. However, note that
the process can be easily parallelized and thus it would be
straightforward to further reduce computation time.

4.3 Street view image processing evaluation

For each candidate crossing in Z (the set of candidate cross-
ings computed with satellite images), there are on aver-
age 5.7 nearby street view panoramas. By considering true
positives only (i.e., candidate crossings that represent ac-

tual crossings), the average number of nearby street view
panoramas increases to 7.3 and only 2 candidate crossings
that represent actual crossings have no street view panora-
mas in their vicinity (less than 1.5%). Conversely, false
positive candidate crossings have a much lower number of
nearby street view panoramas (on average 2.6). Indeed, 19
false positives (30% of the total) do not have any nearby
street view panorama and 46 false positives have 3 or fewer
surrounding panoramas (74%). This is caused by the fact
that, as observed previously, many false positives are lo-
cated on rooftops or other areas that are not in the imme-
diate vicinity of streets.

As reported in Algorithm 2, our solution acquires nearby
panoramas iteratively, until the candidate crossing is val-
idated. On average, considering true positives, 1.8 street
view panoramas are acquired for each candidate crossing.
In 76% of the cases a true positive crossing is validated
with at most two panoramas, and up to 56% are validated
by processing a single street view panorama (see Figure 9).
Conversely, filtering out false positives requires processing
all available nearby street view panoramas. Overall, the
technique requires acquiring and processing a total of 406
street view panoramas for A (≈ 2 for each candidate cross-
ing). The total size of these images is 20.3MB.

The street view-based validation (tuned for the best re-
call score) filters out 58 out of 62 false positives identified
in the previous step, yielding a precision score of 0.97. The
few false positives still present are caused by patterns very
similar to zebra crossings, like the stairs in Figure 7(d). Of
137 true positives in Z, 134 are validated, resulting in a
recall score of 0.98. Overall, the recall score of the whole
procedure (including both satellite and street view detec-
tion) is 0.95.

As with the satellite detection, different parameter set-
tings yield different precision and recall scores during the
validation. Figure 8 shows the settings that yield the best
precision and recall trade-offs during the validation.

Regarding computation time, each street view image can
be processed in 46ms and hence the total computation time
is 18.5s. Overall, considering the two detection steps (from
satellite images and street view panoramas), the total CPU-
bound computation time to process A is 161s.

5 discussion and future work

While the accuracy of the detection is high, since no com-
puter vision algorithm is perfectly accurate, we envision a
subsequent stage of processing based on online crowdsourc-

6

(a) FN - discoloration (b) FN - hidden by trees (c) FP - roof pattern (d) FP - stairs pattern

Figure 7: False negatives (FN) and false positives (FP) in satellite detection and street view validation

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.7 0.75 0.8 0.85 0.9 0.95

P
re

ci
si

on

Recall

Whole recognition
Satellite detection

Figure 8: Pareto frontier of the detection procedure

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e

di
st

ri
bu

ti
on

Panoramas required for validation (actual crossings only)

Figure 9: Used panoramas cumulative distribution

ing (as in [10]) to rule out false positives and identify false
negatives. A web service will be offered to allow users to
submit crossings that have been missed (possibly also inte-
grated in a future navigation software). For pruning false
positives, instead, we intend to leverage crowdsourcing ser-
vices such as Amazon Mechanical Turk13 and propose that
zebra crossings detected by our computer vision algorithm
be referred to crowdworkers, who will decide whether zebra
crossings are indeed present in the images. The crossings
database could also be augmented with auxiliary informa-
tion such as the presence and location of important features
such as walk lights (which could be monitored in real time
by the app) and walk push buttons. These could be also
added by users or automatically by a visual detection app.

The resulting crosswalk database could be accessed by vi-
sually impaired pedestrians through the use of a GPS nav-
igation smartphone app. The app could identify the user’s
current coordinates and look up information about nearby
zebras, such as their number, placement and orientation.
Existing apps such as Intersection Explorer and Nearby
Explorer (for Android) and Sendero GPS LookAround and
Intersection (for iPhone) could be modified to incorporate

13https://www.mturk.com

information from the crosswalk database. Computer vision-
based detection apps on smartphones, such as Zebralo-
calizer [1] and Crosswatch [4], could additionally use the
database to help users to approach and align properly to
crosswalks even when they are not yet detected by the app.

Another important way in which the crosswalk database
could be used by blind and visually impaired pedestrians
is for help with offline route planning, which could be con-
ducted by a traveler on his/her smartphone or computer
from home, work or other indoor location before embark-
ing on a trip. For example, a route-planning algorithm may
weigh several criteria in determining an optimal route, in-
cluding the number of non-zebra crossings encountered on
the route (which are less desirable to traverse than zebra
crossings) as well as standard criteria such as total distance
traversed. The crosswalk database could also be augmented
with additional information, including temporary hazards
or barriers due to road construction, etc.

6 Conclusions

Our contribution presents a technique that uses computer
vision algorithms to detect and localize zebra crosswalks
with high accuracy in existing spatial images databases
such as Google satellite and Street View. To the best of our
knowledge, these features are not already marked in exist-
ing GIS services and we argue that knowing the position of
existing crosswalks could be useful to travelers with visual
impairments for planning the navigation, finding pedestrian
crosswalks and crossing roads.

For the detection we propose a cascade classifier derived
from the algorithm we previously proposed for zebra cross-
ing recognition on smartphones [1]. The proposed solution
identifies potential crossings in street areas in satellite im-
ages and validates potential crossings with nearby Street
View panoramic images.

We evaluated the proposed solution on a 1.6km2 area
in San Francisco in which the pedestrian crossings were
previously manually labeled. The dataset contained of 791
satellite images limited to street areas and 406 portions of
Street View images referring to potential crossings. The
technique achieved a precision of 0.97 and a recall of 0.95
with a computation time of 161s for the whole area.

The proposed approach is also complementary to exist-
ing solutions [1, 4] that leverage computer vision techniques
for detecting pedestrian crossings using video cameras on
mobile devices. A technique leveraging both data sources
would be a helpful tool for assisting people with visual im-
pairments to align to and safely and independently to cross
roads.

7

7 Acknowledgments

James M. Coughlan acknowledges support by the National
Institutes of Health from grant No. 2 R01EY018345-06 and
by the Administration for Community Living’s National
Institute on Disability, Independent Living and Rehabili-
tation Research, grant No. 90RE5008-01-00.

References

[1] D. Ahmetovic, C. Bernareggi, A. Gerino, and S. Ma-
scetti. Zebrarecognizer: Efficient and precise localiza-
tion of pedestrian crossings. In Int. Conf. on Pattern
Recognition. IEEE, 2014.

[2] C. Akinlar and C. Topal. Edlines: A real-time line seg-
ment detector with a false detection control. Pattern
Recognition Letters, 2011.

[3] J. Barlow, B. Bentzen, D. Sauerburger, and L. Franck.
Teaching travel at complex intersections. Foundations
of Orientation and Mobility, 2010.

[4] J. Coughlan and H. Shen. Crosswatch: a system for
providing guidance to visually impaired travelers at
traffic intersection. Jour. of Assistive Technologies,
2013.

[5] K. Fitzpatrick, S. T. Chrysler, V. Iragavarapu, and
E. S. Park. Crosswalk marking field visibility study.
Technical report, 2010.

[6] M. F. Goodchild. Citizens as sensors: the world of
volunteered geography. GeoJournal, 2007.

[7] R. Guy and K. Truong. Crossingguard: exploring in-
formation content in navigation aids for visually im-
paired pedestrians. In Conf. on Human Factors in
Computing Systems. ACM, 2012.

[8] K. Hara, S. Azenkot, M. Campbell, C. L. Bennett,
V. Le, S. Pannella, R. Moore, K. Minckler, R. H. Ng,
and J. E. Froehlich. Improving public transit accessi-
bility for blind riders by crowdsourcing bus stop land-
mark locations with google street view. In Int. Conf.
on Computers and Accessibility. ACM, 2013.

[9] K. Hara, V. Le, and J. Froehlich. Combining crowd-
sourcing and google street view to identify street-level
accessibility problems. In Conf. on Human Factors in
Computing Systems. ACM, 2013.

[10] K. Hara, V. Le, J. Sun, D. Jacobs, and J. Froehlich.
Exploring early solutions for automatically identify-
ing inaccessible sidewalks in the physical world using
google street view. HCI Consortium, 2013.

[11] H. H. Hochmair, D. Zielstra, and P. Neis. Assessing
the completeness of bicycle trails and designated lane
features in openstreetmap for the united states and eu-
rope. In Transportation Research Board Annual Meet-
ing, 2013.

[12] M. Kubásek, J. Hřebíček, et al. Crowdsource approach
for mapping of illegal dumps in the czech republic. Int.
Jour. of Spatial Data Infrastructures Research, 2013.

[13] J. Leitloff, S. Hinz, and U. Stilla. Vehicle detection
in very high resolution satellite images of city areas.
Trans. on Geoscience and Remote Sensing, 2010.

[14] M. Mokhtarzade and M. V. Zoej. Road detection from
high-resolution satellite images using artificial neural
networks. Int. jour. of applied earth observation and
geoinformation, 2007.

[15] V. Murali and J. M. Coughlan. Smartphone-based
crosswalk detection and localization for visually im-
paired pedestrians. In Int. Conf. on Multimedia and
Expo (workshop). IEEE, 2013.

[16] S. Prasain. Stopfinder: improving the experience of
blind public transit riders with crowdsourcing. In Int.
Conf. on Computers and Accessibility. ACM, 2011.

[17] M. T. Rice, A. O. Aburizaiza, R. D. Jacobson, B. M.
Shore, and F. I. Paez. Supporting accessibility for blind
and vision-impaired people with a localized gazetteer
and open source geotechnology. Transactions in GIS,
2012.

[18] T. Senlet and A. Elgammal. Segmentation of occluded
sidewalks in satellite images. In Int. Conf. on Pattern
Recognition. IEEE, 2012.

[19] B. Sirmacek and C. Unsalan. Urban-area and building
detection using sift keypoints and graph theory. Trans.
on Geoscience and Remote Sensing, 2009.

[20] W. R. Wiener, R. L. Welsh, and B. B. Blasch. Foun-
dations of orientation and mobility. American Foun-
dation for the Blind, 2010.

[21] J. Xiao and L. Quan. Multiple view semantic segmen-
tation for street view images. In Int. Conf. on Com-
puter Vision. IEEE, 2009.

[22] A. R. Zamir and M. Shah. Accurate image localiza-
tion based on google maps street view. In Oroc. of.
European Conf. on Computer Vision. Springer, 2010.

8

