
Localizing Blurry and Low-Resolution Text in Natural Images

Pannag Sanketi Huiying Shen James M. Coughlan

The Smith-Kettlewell Eye Research Institute
San Francisco, CA 94115

{pannag, hshen, coughlan}@ski.org

Abstract

There is a growing body of work addressing the prob-
lem of localizing printed text regions occurring in natural
scenes, all of it focused on images in which the text to be
localized is resolved clearly enough to be read by OCR.
This paper introduces an alternative approach to text lo-
calization based on the fact that it is often useful to localize
text that is identifiable as text but too blurry or small to be
read, for two reasons. First, an image can be decimated
and processed at a coarser resolution than usual, resulting
in faster localization before OCR is performed (at full res-
olution, if needed). Second, in real-time applications such
as a cell phone app to find and read text, text may initially
be acquired from a lower-resolution video image in which it
appears too small to be read; once the text’s presence and
location have been established, a higher-resolution image
can be taken in order to resolve the text clearly enough to
read it.

We demonstrate proof of concept of this approach by de-
scribing a novel algorithm for binarizing the image and ex-
tracting candidate text features, called “blobs,” and group-
ing and classifying the blobs into text and non-text cate-
gories. Experimental results are shown on a variety of im-
ages in which the text is resolved too poorly to be clearly
read, but is still identifiable by our algorithm as text.

1. Introduction

OCR is a successful application of image processing and
computer vision to the problem of reading printed text that
is well resolved in good-quality images [7]. In such images,
the text regions comprise the majority of pixels, and there
is a minimum of non-text background clutter. A growing
body of work addresses the more challenging complemen-
tary problem of finding and localizing text in natural im-
ages, which are dominated by clutter, so that the text regions
may be segmented out and input to OCR. Such functionality

is very useful for finding and reading printed signs, such as
street, office and other informational signs, as well as other
text in the environment. The text localization stage is neces-
sary since standard OCR techniques are ill-equipped to sort
through and discard the numerous non-text regions among
the background clutter.

A common thread among past work on text localization
is the assumption that any text to be detected is resolved
clearly enough in the image to be read by OCR: images in
this past work show individual text characters subtending
heights of many (i.e. usually 20 or more) pixels, and adja-
cent characters in words are separated by enough space that
they can be separately segmented.

However, we have found that this assumption may not be
appropriate for our application of finding and reading text
for blind and visually impaired persons, which poses two
important challenges: the limited computational resources
available on the cell phone platform that we are using, and
the often poor visibility of text when seen from typical
viewing distances and imaged at VGA video resolution. To
meet these challenges, we devised a text localization algo-
rithm that detects text even when it is not resolved large or
clearly enough to be read.

Such an algorithm is useful for our application for two
reasons. First, an image can be decimated and processed at
a coarser resolution than usual, resulting in faster localiza-
tion before OCR is performed (at full resolution, if needed).
Second, in real-time applications such as a cell phone app
to find and read text, text may initially be acquired from a
lower-resolution video image in which it appears too small
to be read; once the text’s presence and location have been
established, a higher-resolution image can be taken in order
to resolve the text clearly enough to read it.

We demonstrate proof of concept of this approach by de-
scribing a novel algorithm for binarizing the image and ex-
tracting candidate text features, called “blobs,” and group-
ing and classifying the blobs into text and non-text cate-
gories. Experimental results are shown on a variety of im-
ages in which the text is resolved too poorly to be clearly

1

read, but is still identifiable by our algorithm as text.

2. Related Work
The literature on text localization/segmentation in clut-

tered images is too extensive to cover in detail, so we in-
clude here only a brief summary of some of this work that
is relevant to this paper; see [7] for a survey of this research
area.

Many text segmentation algorithms employ determinis-
tic, bottom-up processes for grouping text features into can-
didate text regions using features such as edges, color or
texture [9, 5, 6, 4]. Statistical methods have also been de-
veloped, such as an Adaboost-based algorithm [2] that uses
a filter cascade to hone in on text regions.

Recent work on text localization [3], which outperforms
the latest published algorithms, estimates the local width of
stroke features in the image, and identifies text regions on
the basis of local homogeneity of this stroke width (corre-
sponding to consistent stroke widths in characters). How-
ever, it is important to note that the local stroke width is
only well defined when the text is resolved clearly enough
such that individual strokes are well delineated – which re-
quires individual characters to be clearly visible.

Our approach was motivated by the simple observation
that text regions form an identifiable texture [8], whether or
not the text itself is readable. Under these conditions, let-
ters (and groups of letters that have been merged together)
in text regions have distinctive geometric properties that dis-
tinguish these regions from non-text regions. Accordingly,
we extract text features (called “blobs”) that fulfill these ge-
ometric properties, and use these properties as a basis for
distinguishing between text and non-text (see Sec. 3.2).

3. Algorithm
The query image is binarized and the candidate text fea-

tures, called “blobs”, are extracted. The blobs are assigned
a potential of being text based on histograms of geometric
properties of blobs, learned from the training data. Neigh-
boring blobs are grouped into “superblobs” based on a sim-
ilarity measure. The resulting superblobs are classified into
text and non-text categories.

One of the main advantages of our method is that we
do not use a sliding-window approach. The text regions
emerge automatically as a result of our algorithm.

3.1. Blob Feature Detection

First, the image is binarized using a technique very sim-
ilar to Niblack’s method. For each pixel, the mean value
over a small neighborhood, say, 11x11 is calculated. If the
pixel value is greater than the mean plus a threshold, say,
10, its binary value is set to 255; otherwise, it is set to 0.
Then we extract connected components, called “blobs.”

A blob is a collection of connected horizontal line seg-
ments. A horizontal line segment, Lyi, is defined by its
y-coordinate, y, and starting and ending x-coordinates: x1,
and x2. For a given binary image, one can find one array
of horizontal line segments for each y-coordinate, ALy . A
blob is defined by a collection of connected Lyi, that is
also organized into a group of ALy according to their y-
coordinates.

Figure 1. Blobs as a collection of horizontal line segments

In Figure 1, there are three blobs, represented by three
colors and their bounding rectangles. In each blob, there
are many horizontal line segments, Lyi, represented by blue
lines, that are connected. For a given y, ALy , the array of
Lyi can have one or more Lyi.

The algorithm for blob construction is shown in Algo-
rithm 1, with binary image as input.

Figure 2 shows the blobs extracted from an image, over-
laid on the top of the original image. Notice that the image
is negated. Hence, the blobs correspond to dark text on light
background. Figure 3 shows a zoomed in shot of the blobs.
When text is well resolved, each character in a word usually
gives rise to one blob; when text is poorly resolved, one or
more adjacent characters are merged into a single blob.

Either way, the shape of the blob provides evidence for
whether the blob is text or non-text. In addition, alignment
among nearby blobs provides additional evidence.

3.2. Blob Scoring

Once the blobs from the image are extracted, each of
those is assigned a unitary potential of being text. We
use histograms of geometric properties of the blobs learned
from training images to determine the potential.

The blob is a bitmap, whose top left corner is
(xleft, ytop), width W and height H; and the geometric cen-
ter of the bounding box is given by (xc, yc). The geometric
properties extracted from a blob are as follows.

1. Blob Height (H)

2. Area Ratio (AR) = Bitmap Area(BA)
Area of Bounding Box

3. Aspect Ratio (AspR) = H
W

Algorithm 1 Blob Detection Algorithm
1. For each row, find an array of horizontal line segments,
indexed by row number (ALy).

2. At the end of Step 1, we get an array of line segment
arrays (ALA) representing the image.

3. Initiate a blob with one line, Lyi from first ALy of ALA,
and remove Lyi from ALA.

4. Sweeping downward: for each y where the blob has
any line segment, and for each line in the line array, search
ALy+1 in ALA for connected lines. If a line segment is
found, add it to the blob at (y+1), and remove it from ALA.

5. Sweeping upward: for each y where the blob has any
line segment, and for each line in the line array, search
ALy−1 in ALA for connected lines. If a line segment is
found, add it to the blob at (y−1), and remove it from ALA.

6. Repeat steps 4 and 5 until no new line segment is added
for either step 4 or 5. Store the blob.

7. Repeat steps 3 - 6 until ALA is exhausted.

Figure 2. Example of Blobs extracted from an image

4. X Moment (XM) =
∑

(i,j)∈ blob
(xc − xij)

5. Y Moment (YM) =
∑

(i,j)∈ blob
(yc − yij)

6. X Moment Second (XMS) =
∑
i

(∑
j

(yc − yij)
2
)
dAi

Figure 3. Example of Blobs extracted from an image: zoomed in

where, dAi = sum of ith row

7. Y Moment Second (YMS) =
∑
j

(∑
i

(xc − xij)
2
)
dAj

where, dAi = sum of jth column

8. X Moment Radius Gyration = XMS
BA

9. Y Moment Radius Gyration = YMS
BA

10. X Moment Two (XMT) =
∑
i

∑
j

(yc − yij)
2

11. Y Moment Two (YMT) =
∑
j

∑
i

(xc − xij)
2

12. XMoment Two Per Area = XMT
BA

13. YMoment Two Per Area = YMT
BA

14. Perimeter

15. Perimeter Sq Per Area = Perimeter2

BA

As part of the training, around 1200 blobs in 40 im-
ages are manually labelled as text and non-text. Figures
4 through 7 show the geometric properties of a randomly
chosen subset of labeled blobs. In these figures, the x-axis
is just the blob index, and the y-axis shows the values (off-
set plus scaled) of the properties. In fact, the y-axis is in-
verted since Java considers y-axis as positive downwards
by default. The actual scale of the index itself is not im-
portant; the figures just indicate the effectiveness of the ge-
ometric properties in distinguishing between text and non-
text blobs.

The blobs are divided in to two groups, ”long” and ”not
long” blobs, based on the aspect ratio. Blobs with aspect
ratio ≤ 0.35 are treated as ”long”. Figure 8 shows the blobs
from an image in the increasing order of aspect ratio.

Using the training blobs, a histogram of each of these
properties is formed, separately for long and not long blobs,
one each from positive and negative examples. The posi-
tive blobs’ histogram gives the probability of a blob being

Figure 4. Basic properties of blobs (Blue = text, Red = non text)

Figure 5. Second moments of blobs (Blue = text, Red = non text)

text, and the negative blobs’ histogram gives the probability
of a blob being not text. If a query blob is long, then the
histogram set learned from long blobs is used.

A query blob’s unitary potential of being text is defined
as the ratio P (~f |Text)

P (~f |NonText)
as given by the histograms, where

~f denotes the vector of all 15 geometric properties for a
given blob. A product is taken of the histograms across all

Figure 6. Second moments of blobs (Blue = text, Red = non text)

Figure 7. Perimeter related properties of blobs (Blue = text, Red =
non text)

15 features, in a Naive Bayes fashion, i.e.

P (~f |Text) =
15∏
i=1

P (fi|Text)

P (~f |NonText) =

15∏
i=1

P (fi|NonText)

(1)

where P (fi|Text) and P (fi|NonText) come from the
trained histograms of ith feature. The query blob’s unitary
potential of being not text is set to a constant 1.

Figure 9 shows the blobs from an image color coded
smoothly according to their potentials as obtained using
Equation 1. A darker shade of blue indicates a higher po-
tential of being text, and a darker shade of red indicates a

Figure 8. Showing Blobs in increasing order of Aspect Ratio

Figure 9. Blobs color graded according to their potentials (blue is
highest, red is lowest)

lower potential of being text, or a higher potential of being
non text. You can see from the figure that the unitary poten-
tials provide a lot of information. They form an important
basis to correctly classify and localize text. We performed
experiments on blobs classification based on just unitary
potentials. We used roughly 85% of our labeled blobs for
training, and remaining (200) blobs for testing. Out of 200
blobs used for testing, our classifier gave 14 false negatives
and 26 false positives.

Individual blobs may not represent a whole word. Along
with unitary potentials, we further use context information
to localize words. Context information also makes the lo-

calization robust. Hence, we group the blobs into larger
chunks using a grouping algorithm.

3.3. Grouping Blobs

A graph is defined using the blobs in the image, with
each blob representing a node in the graph. For each blob
in the graph, we define a neighborhood criterion as follows.
Two blobs are “neighbors” if they (a) overlap vertically and
(b) are “close” horizontally. Vertical overlapping criterion
is necessary since we are aiming to detect mostly horizontal
text. The threshold for horizontal proximity is a function of
the size of the blob. This is to accommodate the fact that
larger texts have larger gaps in between letters. Using this
neighborhood criterion, we calculate the connectivity of the
blobs within the graph.

Since we are aiming to find words of text, we group the
neighboring blobs which are “similar” into “superblobs”.
The similarity measure of two neighborhood blobs is based
upon (a) 50% or more similarity in height and (b) 90% or
more horizontal alignment either at the top or the bottom,
i.e. the difference in the ytop (or the difference in the ybot)
values of the two blobs should be less than 10% of either
blobs’ height. Thus the emphasis is on horizontal align-
ment. Of course, two blobs have to be neighbors of each
other to be considered similar. A blob is said to be similar
to a superblob, if the blob is similar to any of the blobs in
the superblob.

The grouping algorithm starts by creating the first su-
perblob with the first blob. At each further iteration, for
each blob in the image, the algorithm goes through all the
superblobs so far. If it is similar to any of those superblobs,
add the blob to that superblob. If the blob is similar to more
than one superblobs, then, all those superblobs are merged
in to one superblob. If none of the existing superblobs are
similar to the current blob, then a new superblob is createed
with the current blob alone. The iteration is repeated un-
til all the blobs in the image are analyzed. Each resulting
superblob corresponds roughly to a single word.

Figures 10 and 11 show the effectiveness of the group-
ing algorithm. Before grouping, the words were broken in
to different blobs. After grouping, the blobs unite into su-
perblobs, each superblob representing a word.

3.4. Final Classification

This step corresponds to classifying each resulting su-
perblob as text or not text. The potential of a superblob
being text is defined as the multiplication of the potentials
of the individual blobs it contains. Each superblob is classi-
fied as text or not text based on (a) Its potential and (b) the
number of the nodes contained in it, and (c) the overall area
ratio of the supernode. The potential of the superblob has to
be larger than a threshold. The threshold on the potential of
a superblob is a function of the number of blobs contained

Figure 10. Before grouping: Color coded raw blobs

Figure 11. Post grouping: Color coded Superblobs

in it. We expect words to have more than one letter, hence
two or more “similar” blobs next to each other in the image
to have a high likelihood of being text as opposed to a single
isolated blob. Naturally, the higher the number of blobs in a
superblob, the smaller the threshold. Also, the overall area
ratio of the superblob is taken in to account while clasify-

ing. The overall area ratio of the superblob has to be larger
than a certain threshold for the superblob to be classified as
text.

4. Experimental Results
The algorithm was tuned to find text with height between

5 and 14 pixels. It was tested on various pictures, some of
resolution 320 x 480 taken from an iPhone 3GS viewfinder
(Figures 12 through 15), and some taken from an online
dataset, down-sampled to approximately 200 pixels wide
(figures 16 through 18). For an image of size 320 x 480,
the current detection algorithm runs in around 100 ms on a
standard iMac desktop computer. However, there have been
no attempts at optimizing the algorithm yet.

The algorithm searches for text in one polarity, i.e. light
text on a dark background. To find dark text on a light
background, the algorithm is run with the image contrast
reversed. Each of the results shown marks only light text
in the given image. Hence, dark text on light background
will not be marked, and not considered as missed posi-
tives. It can be seen from the results that the algorithm
performs really well when the text can be seen clearly and
the image has a good contrast, such as those in Figures 16
through 18. Even when the image does not have a good
contrast, the algorithm performs reasonably well. In Fig-
ures 19 through 21, zoomed in regions of our results are
shown. Note that the algorithm detects text even at a very
low resolution (height ≤ 7), which may not be read even
by humans. These are low quality pictures taken from an
iPhone viewfinder (320 x 480). Though, not every low res-
olution text region is detected, this shows the effectiveness
of the algorithm.

There are a few missed positives, most of which trace
back to the Naive Bayes histograms based approach. Also,
single letters are more likely to be missed in our algorithm
since the potential threshold on a single blob is really high.
With a better method to find the potential of a blob such as
Adaboost [2] and random trees [1], the missed positives can
be reduced. Also, more training data of different resolutions
can reduce missed positives. In some cases, the word is bro-
ken down in two or more pieces. This is due to variation in
the gap in between the letters or a very unclear letter in a
word. These kind of cases can be greatly reduced by reit-
erating the grouping of superblobs. Sometimes, part of the
word is seen missing such as the last letter ”S” in the word
”Sandwiches” in Figure 12. This is due to the fact the last
letter S is not aligned with the rest of the word as per our
stringent alignment criterion. If the criterion is relaxed, the
word will be detected in its entirety, however, it will lead to
more false positives. The false positives are only a concern
with regards to the runtime speed of the overall algorithm
(detection plus OCR recognition) and not with regards to
the accuracy, as the false positives will be eliminated when

sent to the OCR engine.

Figure 12. Example: detected text regions (only light text on dark
background)

Figure 13. Example: detected text regions (only light text on dark
background)

Figure 14. Example: detected text regions (only light text on dark
background, image contrast reversed)

Figure 15. Example: detected text regions (only light text on dark
background, image contrast reversed)

Figure 16. Example: detected text regions (only light text on dark
background, image contrast reversed)

Figure 17. Example: detected text regions (only light text on dark
background, image contrast reversed)

Figure 18. Example: detected text regions (only light text on dark
background)

5. Conclusion

We have described a novel approach to text localization
aimed at detecting text even when it is too blurry or small
to be read accurately, based on the fact that such text may
still form a recognizable texture. The motivation for the
approach is two-fold, both to permit the processing of the
image at a coarser resolution for efficiency, and to allow text
to be detected in coarse video images before taking higher-

Figure 19. Example: detected low resolution text regions (zoomed
portion of Figure 12)

Figure 20. Example: detected low resolution text regions (zoomed
portion of Figure 13)

Figure 21. Example: detected low resolution text regions (zoomed
portion of Figure 15)

resolution stills to attempt to scrutinize it, when necessary.
We have demonstrated proof of concept of our approach on
a variety of images, acquired both from standard text image
datasets and from an iPhone at low resolution.

In the future, we plan to improve the algorithm to over-
come some of its current limitations, including the require-
ment that text be oriented horizontally, the non-negligible
incidence of false positives on text-like image regions con-
taining structures such as trees and textured walls, and the
fact that words are sometimes split into multiple pieces
in the detection process. These improvements may be
achieved by using better classifiers than the naive Bayes
method we are currently using, including Adaboost [2] and
random trees [1], and enlarging the set of training data. Fi-
nally, once the algorithm has been improved we plan to port
it to the iPhone platform, and use it as the front end of a
system we are developing that will enable blind and visu-
ally impaired users to find and read printed text signs.

6. Acknowledgments

This work was supported by NIH grant 1 R01
EY018210-01A1.

References
[1] Y. Amit and D. Geman. Shape quantization and recognition

with randomized trees. Neural Computation, 9:1545–1588,
1996. 6, 8

[2] X. Chen and A. Yuille. Adaboost learning for detecting and
reading text in city scenes. In CVPR, 2004. 2, 6, 8

[3] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural
scenes with stroke width transform. In Proc. CVPR, 2010. 2

[4] J. Gao and J. Yang. An adaptive algorithm for text detection
from natural scenes. In Proc. CVPR, pages 84–89, 2001. 2

[5] A. K. Jain and B. Yu. Automatic text location in images and
video frames. Pattern Recognition, International Conference
on, 2:1497, 1998. 2

[6] H. Li, H. Li, D. Doermann, D. Doermann, O. Kia, and O. Kia.
Automatic text detection and tracking in digital video. IEEE
Transactions on Image Processing, 1998. 2

[7] J. Liang, D. Doermann, and H. Li. Camera-based analysis
of text and documents: a survey. International Journal on
Document Analysis and Recognition, 7:83–200, 2005. 1, 2

[8] J. Portilla and E. P. Simoncelli. A parametric texture model
based on joint statistics of complex wavelet coefficients. Int.
J. Comput. Vision, 40(1):49–70, 2000. 2

[9] V. Wu, R. Manmatha, and E. M. Riseman. Finding text in
images. In DL ’97: Proceedings of the second ACM interna-
tional conference on Digital libraries, pages 3–12, New York,
NY, USA, 1997. ACM. 2

