
Real-Time Detection and Reading of LED/LCD Displays for Visually Impaired

Persons

Ender Tekin James M. Coughlan Huiying Shen

The Smith-Kettlewell Eye Research Institute

San Francisco, CA

{ender, coughlan, hshen}@ski.org

Abstract

Modern household appliances, such as microwave

ovens and DVD players, increasingly require users to

read an LED or LCD display to operate them, posing

a severe obstacle for persons with blindness or visual

impairment. While OCR-enabled devices are emerg-

ing to address the related problem of reading text in

printed documents, they are not designed to tackle the

challenge of finding and reading characters in appli-

ance displays. Any system for reading these characters

must address the challenge of first locating the charac-

ters among substantial amounts of background clutter;

moreover, poor contrast and the abundance of specu-

lar highlights on the display surface – which degrade

the image in an unpredictable way as the camera is

moved – motivate the need for a system that processes

images at a few frames per second, rather than forcing

the user to take several photos, each of which can take

seconds to acquire and process, until one is readable.

We describe a novel system that acquires video,

detects and reads LED/LCD characters in real time,

reading them aloud to the user with synthesized

speech. The system has been implemented on both a

desktop and a cell phone. Experimental results are re-

ported on videos of display images, demonstrating the

feasibility of the system.

1. Introduction

LED and LCD displays are becoming increasingly

prevalent in modern household appliances, posing sig-

nificant barriers to blind and visually impaired persons

who want to use such appliances. While OCR-enabled

devices are emerging to address the related problem

of reading text in printed documents, they are not de-

signed to tackle the challenge of finding and reading

characters in appliance displays. Indeed, the most pop-

ular portable OCR-enabled device that is designed to

help visually impaired users read printed documents

such as books and restaurant menus, the knfbReader

Mobile, [10], states in its user manual that “Other cir-

cumstances that may lower accuracy include: ...LED

and LCD screens.”

While it may seem that the low variability of

LED and LCD display characters (e.g. the common

7-segment character set encompassing the digits 0

through 9, which we consider in this paper, forms a

simple, fixed “font”) should make them easy to read,

they are in fact difficult to detect and read under typical

imaging conditions. The first reason for this difficulty

is that, while OCR techniques require the text of in-

terest to fill most of an image, a typical image of an

LED/LCD display contains mostly background clutter

that must be discarded before the display can be read.

Moreover, several characteristics of LED/LCD dis-

plays pose additional visibility problems. LED dis-

plays are often so high-contrast that the digit segments

saturate the image and “bleed” into fuzzy blobs; LCD

displays are typically low-contrast, which makes them

hard to detect, and to compound this problem, the

edges of the digits are often so close to the borders

of the display frame that they effectively disappear;

and the visibility of both displays is greatly impaired

by specularities from the display surface that often oc-

clude parts of digits or entire sets of digits, see Fig. 1.

Finally, note that these visibility problems vary greatly

depending on the exact camera location relative to the

1

Figure 1. LCD’s can suffer from glare and low contrast,

whereas LED’s can saturate images.

display. For instance, from a particular viewpoint, the

reflection of a bright light may occlude one or more

digits in a display – but the occlusion may disappear

altogether if the viewpoint is changed slightly.

To make a practical display reader system, not only

is it important that the computer vision algorithms be

robust to the kinds of image noise and degradation ob-

tained under typical viewing conditions, but the sys-

tem must process video quickly, at least a few frames

per second. Such rapid processing allows the user to

slowly vary the camera position and angle in such a

way as to maximize the chances of quickly obtaining

at least one clear image of the display. By contrast

with the operation of OCR-based systems such as the

knfbReader, our system does not force the user to snap

multiple photos, waiting up to a few seconds each time

until a satisfactory image has been obtained.

We demonstrate a prototype display reader system

which reads 7-segment LED/LCD displays on (i) a

desktop computer using a webcam running Windows

XP, and (ii) the Nokia N95 cell phone running Sym-

bian OS. The computer vision algorithms underlying

the system consists of a novel “blob” feature detection

system, which quickly extracts candidate digit features

in the image, followed by a Hough-type voting scheme

to classify each blob as a digit (0 through 9) or non-

digit, and then a grouping stage to determine the pres-

ence of coherent strings of LED/LCD display charac-

ters. Due to the fast nature of these steps, the algo-

rithms run at real time, achieving over 15 frames per

second on the desktop, and around 5 frames per second

on the Nokia N95. We describe the algorithm perfor-

mance on some videos of LED/LCD display images,

demonstrating the feasibility of the system.

2. Related Work

Comparatively little work has addressed the specific

problem of reading LED/LCD displays. One past ap-

proach is the Clearspeech system [7], which runs on

a desktop PC and requires that special markers be af-

fixed around the borders of each LED/LCD display to

guide the system to the location of the display char-

acters. Our approach builds on [9] on a cell phone-

based LED/LCD display reader, which requires no

such modification of the display. This past work ex-

tracts horizontal and vertical edge features in the im-

age (corresponding to the horizontal and vertical seg-

ments of the the 7-segment characters) and groups

them into “figure” and “ground” (i.e. digit region

and background, respectively) using a simple graph-

ical model (MRF).

In our experience with LED/LCD images, however,

we found that many character segments are distorted

in such a way that makes it difficult to reliably extract

horizontal and vertical segments. Thus, we decided to

extract “blob” features (see Sec. 3.2) instead, each of

which typically corresponds to one character, which

we found to be more reliable. Once suitable blob can-

didates are extracted it is straightforward to classify

them into digit categories (0 through 9 or non-digit),

as described in Sec. 3.5.

There exists a large body of literature on finding text

in natural images ([12, 5, 2], see [6] for a survey) that

we considered while devising possible approaches to

detecting LED/LCD characters. However, due to the

particular challenges of the led/lcd character domain

and the need for real-time performance, we chose the

blob feature extraction approach which we describe in

more detail in section 3 and is fast enough even us-

ing low-powered processors such as those in a cellu-

lar phone. Specializing to the limited domain of 7-

segment LED/LCD digits has simplified the problem

so as to allow us to create a prototype cell phone sys-

tem that runs in real time. The real-time performance

also allows us to somewhat alleviate some of the is-

sues that arise in this specific domain, such as the dis-

appearance of digits due to specularities and low-light

conditions, as the user can adjust the relative orienta-

tion of the display and camera to get a reading.

3. Finding and Reading Digits

The approach taken in this paper uses a connected

component analysis on binarized input video to extract

“blobs”, which are then analyzed further to detect the

candidates that are more likely to be digits. Such an

approach allows for rapid detection of possible dig-

its and is suitable for embedded implementation. The

blobs are then grouped to get more reliable estima-

tions of the digits, as otherwise it is possible to con-

fuse background shapes with single digits very easily.

Thus, we restrict our approach to finding groups of at

least two digits. Finally, we estimate the class of the

remaining blobs (digits 0...9 and ‘non-digit’) and dis-

play the results in the proper order. We present the

details of the algorithm below.

3.1. Image binarization

We start out by binarizing our original image. Due

to the low-contrast nature of LCD displays, we use a

method similar to Niblack’s method [8]), which uses a

local mean and variance to build a threshold. We build

on the algorithm proposed in Feng and Tan [3], but use

some estimations to reduce the computational load. In

our method, the threshold T for a pixel is calculated

using two windows (the second being twice the size of

the first), and is given by

T = µs − τ (1)

τ = max{
(µs −mL)× (1− σs/σL)

2
, τmin} (2)

where µs is the mean of the intensities in window

around a pixel, mL is the minimum intensity in a larger

window, and σs and σL are the standard deviations of

the intensities within the smaller and larger windows,

and τmin is the minimum threshold. If µs is less than

τmin, then we set the threshold at τmin. In our experi-

ments, we chose the minimum window to be 17 pixels

and the larger window to be 35 pixels. τmin was 4. As

binarization is the most computationally intensive part

of the application, to further speed up the calculations,

we calculate the threshold at half the resolution of the

original video, and the minimum, at a quarter the reso-

lution. We note that we still achieve good results with

a significant speed-up, see Fig. 2

Figure 2. Result of binarization on LED screen

3.2. Extracting Blob Features

To extract the blobs, we do a simple connected com-

ponent analysis. We first sweep the binarized image

horizontally, and extract segments of pure black and

pure white pixels. These are then further grouped to-

gether by vertical sweeps - for each segment, we move

vertically down and add to a list any segment that is

vertically overlapping with it for at least one pixel in

the row below, and remove these segments from the

global list of segments. We repeat this procedure for

every segment in this growing list. Once no more seg-

ments can be added in a downward sweep, we switch

directions and repeat this process again for each seg-

ment in the list. We keep alternating between direc-

tions until no more segments can be added to this

group. We then save this blob, and repeat the proce-

dure for all remaining segments in the global space

until no more segments are left. We note that we keep

separate lists of “white” and “black” blobs to be able

to detect both polarities of LED/LCD displays.

3.3. Blob Filtering

Next, we filter out blobs that are considered too

small or too large. During this filtering, we calcu-

late bounding boxes on the blobs. All blobs smaller

than 3x8 or larger than 40x80 are removed. We also

remove any blobs that have aspect ratios (defined as

height/width) of less than 0.8 or more than 5. The rea-

son for the conservative ratios is due to the fact that at

this point, some of the digits (especially ones that do

not have the middle segment, 1 and 7) can be divided

into two blobs (another challenge of LED/LCD digits

is that their segments are not necessarily connected.)

To merge discrete blobs that may be part of the

same digit, we look for vertically overlapping blobs

that have about the same height, and are only a short

distance away from each other. All such blobs are

merged into a single blob. Once these are also merged,

Figure 3. Some blobs. The first ten show blobs that belong

to digits. The right section shows non-digit blobs found

after filtering. Note that we find both polarities (white on

black and black on white) of digits, we convert them to

black on white for display purposes. Also, note that cor-

ners and edges can pop up similar to the digits 7 and 1.

we do a second level filtering to remove all blobs that

are smaller than 6x16 and have aspect ratios smaller

than 1.25. Fig. 3 shows some examples of digit-blobs

and non-digit blobs.

3.4. Blob Grouping

Similar to text, it is very easy to mis-estimate back-

ground clutter as a likely digit without constraints (es-

pecially the digit ’1’ which is just a small segment.)

Thus, we restrict our estimation to groups of at least

two digits. We iterate over blobs and form a neigh-

borhood list by seeing if there is a similarly sized blob

to the left or right of a blob. This neighborhood list

allows us to (i) eliminate single spurious estimates

of digits from background blobs that may resemble

a digit, and (ii) read the digits in correct order once

decoded. If a digit in a group is not successfully de-

coded, it also allows us to signal this fact, and wait for

a reliable class estimate for all before announcing the

reading.

3.5. Blob Classification

We use an additive voting scheme similar to a

Hough voting scheme, but diverges from the classical

Hough in that each pixel in a blob votes for all digits in

a one-dimensional space. We also experimented with

Haar-like windows to detect segments similar to the

classical Viola-Jones face detector [11], but the pixel-

wise voting scheme outperformed this method and the

extra computational load was negligible.

We first extracted a large amount of digit blobs from

several training videos (3336 blobs) which were la-

beled with the correct digit. We then used a simple

method to estimate the probabilities of each pixel be-

ing ’on’ for a particular digit by binning the pixels in

the training blobs to an image of size 10x20. For a

given bin in the resized image, divided the number of

’on’ pixels from the original image by the total number

Figure 4. “Average” digits, reflecting the probability of a

pixel being on/off for a given digit.

of pixels from the original image that fall in the same

bin in the new image. We then averaged these prob-

abilities over all images of the same category to get a

representative 10x20 image that reflected the probabil-

ity of a pixel in a 10x20 blob being on or off for a given

digit, see Figure 4.

For inference, we did a similar thing for each blob.

We resized the blobs by binning them to a 10x20 grid

and calculated the probability that each bin is ’on’ or

’off’. We then calculated the probability of a digit D
based on the blob B = {Bi} where i indicates a pixel

index as:

p(D|B) =
∏

i

P (D|Bi) (3)

where

p(D|Bi) = p(D|Bi = ’on’)p(Bi = ’on’)

+ p(D|Bi = ’off’)p(Bi = ’off’) (4)

To avoid classifying all digits as blobs, we used a

threshold for the probabilities of a digits. For the class

of ’non’-digit blobs, we initially just assumed that each

pixel had an equal likelihood of being ’on’ or ’off’ to

calculate this threshold. However, we found this to

be too conservative, and instead used a fixed thresh-

old based on our experiments. We apply two thresh-

olds: (i) the likelihood of the most likely digit must be

greater than the second by a factor, and (ii) the like-

lihood of the best digit must not be below a certain

threshold.

Before reporting the results, we ensure that all dig-

its in a group have been decoded reliably, and signal

this with an audio beep. Upon a button press, the sys-

tem speaks out loud the decoded digits that were last

decoded correctly as a group. We use this method to

ensure that displays that are changing (such as clock)

do not produce too much chatter.

4. Experimental Results

We have done a 5-fold cross-validation of our de-

coding algorithm on labeled blobs extracted from the

images. We divided our database of 3336 labeled blobs

randomly into 5 roughly equal sets. In turn, we trained

our algorithm on 4 of the subsets, and used the 5th sub-

set as a test set for inference. Among the 5 sets, We

achieved an average error rate of 1.19%, and a maxi-

mum error rate of 1.52%.

We also tested our algorithm on several videos taken

using the N95 cell phone camera, a webcam and di-

rectly on the N95. Even though the digits are missed

in some frames, the real-time aspect means that in a

short amount of time, the displayed digits are found.

We note that unlike text, we cannot use a dictionary to

reduce our error rate. However, by combining multi-

ple frames for static displays, it is possible to increase

the reliability of our estimate. Furthermore, this may

allow the user to read parts of the display sequentially

if glare may be a problem.

Figure 5 shows some still frames that are the result

of running our algorithm on video taken by the N95.

We note that the algorithm is rather robust to illumina-

tion conditions. However, we do sometimes miss dig-

its, as seen in the bottom two figures. In one case, the 9

blends into the frame and is then filtered out, whereas

in the bottom case, the ’1’ is lost due to the gap be-

tween strokes being larger than allowed. We provide

some videos in our supplemental materials that also

show some of the modes where we may miss digits.

We have also ported the algorithm and run it on

the N95, achieving about 5 frames/sec in VGA mode.

However, in the video mode and under low light con-

ditions, the raw camera frames can have a lot of extra

color noise or exposure problems. Thus, the reliability

was not as good as we liked. We are currently inves-

tigating some methods to improve the picture quality

from the N95 camera, and also other mobile platforms.

We should stress that while binarization allows for a

fast detection of blobs, we believe it would be more

useful to consider the original images while decoding

the digits as gradients can carry more refined edge es-

timations. We are hoping to find an improved trade-off

between algorithm speed (which we believe is crucial),

and better performance.

Figure 5. Experimental results on videos. The original im-

ages are on the left, and the corresponding binarized images

are on the right. The red bounding boxes show discovered

digits, the red indices at the bottom of each box is a blob

index, and the green displayed digits are the digit estimates.

5. Conclusions

We proposed a novel, fast connected-component

based algorithm to detect LED/LCD digits. We have

developed our algorithm to run in real time (achieving

over 15 frames/second on an Intel Pentium Dual-Core

desktop with 2GB of RAM, and 5 frames/second on

the Nokia N95 mobile phone running Symbian OS on

a dual-core 332MHz TI processor), allowing a user to

sweep around and possibly avoid issues such as glare,

and furthermore making it possible to capture real-

time displays such as microwave timers and clocks.

We will be testing our phone implementation with

blind/visually impaired subjects, and incorporate their

feedback into the final product. We are also exploring

the use of other platforms such as Android and iOS,

and plan to use newer cell phones that have better qual-

ity video cameras and faster processors. Also, we are

considering using built-in accelerometers to give the

users feedback and help the user hold the camera hor-

izontal for displays such as microwave timers, ovens

etc.

Another direction that we are currently exploring is

using random trees, [1, 4], and some simple cues to im-

prove the character decoding process. While training

a random forest may be slow, we expect the inference

to be fast enough for real-time performance.

In the future, we will integrate our functionality

with general OCR to provide a complete suite of

sign/display reader functionalities on a mobile device.

While OCR does provide a more general functionality,

for cases when OCR may be too unreliable, such as

LED/LCD displays, or fast performance is required,

we believe that it may still be useful to have a dedi-

cated “display reader” mode, which will specialize ei-

ther to 7-segment characters or other fixed “font” char-

acters.

6. Acknowledgments

This work was supported by NIH grant 1 R01

EY018890-01.

References

[1] Y. Amit and D. Geman. Shape quantization and recog-

nition with randomized trees. Neural Computation,

9:1545–1588, 1996. 6

[2] X. Chen and A. Yuille. Adaboost learning for detect-

ing and reading text in city scenes. In CVPR, 2004.

2

[3] M. Feng and Y.-P. Tan. Contrast adaptive binarization

of low quality document images. IEICE Electronic

Express, 1(16):501–506, 2004. 3

[4] J. Gall and V. Lempitsky. Class-specific hough forests

for object detection. In CVPR, 2009. 6

[5] A. K. Jain and B. Yu. Automatic text location in im-

ages and video frames. Pattern Recognition, Interna-

tional Conference on, 2:1497, 1998. 2

[6] J. Liang, D. Doermann, and H. Li. Camera-based

analysis of text and documents: a survey. Interna-

tional Journal on Document Analysis and Recogni-

tion, 7:83–200, 2005. 2

[7] T. Morris, P. Blenkhorn, L. Crossey, Q. Ngo, M. Ross,

D. Werner, and C. Wong. Clearspeech: A display

reader for the visually handicapped. IEEE Transac-

tions on Neural Systems and Rehabilitation Engineer-

ing, 14(4):492–500, 2006. 2

[8] W. Niblack. An Introduction to Digital Image Pro-

cessing. Prentice Hall, 1986. 3

[9] H. Shen and J. Coughlan. Reading lcd/led displays

with a camera cell phone. In CVPRW ’06: Proceed-

ings of the 2006 Conference on Computer Vision and

Pattern Recognition Workshop, page 119, Washing-

ton, DC, USA, 2006. IEEE Computer Society. 2

[10] K. Technologies. knfbreader. [Online]

http://www.knfbreader.com/. 1

[11] P. Viola and M. Jones. Robust real-time object de-

tection. International Journal of Computer Vision,

57:137–154, 2004. 4

[12] V. Wu, R. Manmatha, and E. M. Riseman. Finding text

in images. In DL ’97: Proceedings of the second ACM

international conference on Digital libraries, pages

3–12, New York, NY, USA, 1997. ACM. 2

