Projects
-
Active
CamIO
CamIO (short for “Camera Input-Output”) is a system to make physical objects (such as documents, maps, devices and 3D models) accessible to blind and visually impaired persons, by providing real-time audio feedback in response to the location on an object that the user is touching.
-
Active
Acoustic Cues for Wayfinding
This project aims to do a detailed analysis of the environmental acoustic cues that help some blind navigate successfully.
-
Completed
Learning in the Sighted and the Blind through Different Sensory Modalities: Structure and Dynamics of Cortical Reorganization
This project focuses on the emerging area of the neuroscience of art learning. It addresses the important issue of how the brain learns complex skills, specifically the process of drawing, through two different sensory modalities.
-
Completed
Human Oculomotor Functions & Their Deficits in Traumatic Brain Injury
Recent studies have established that a high proportion of patients diagnosed with mild (or diffuse) traumatic brain injury (mTBI) exhibit binocular vision dysfunctions, particularly, deficiencies in the binocular coordination of eye movements.
-
Completed
Encoding of 3D Structure in the Visual Scene: A New Conceptualization
The multidisciplinary goal was to develop an integrated conceptualization of the mid-level encoding of 3D object structure from multiple surface cues
-
Completed
Stereoscopic motion-in-depth perception: fMRI and neurophysiological studies
This project is designed to advance the integration of high field fMRI in alert macaque monkeys with "informed" neurophysiology, and to apply it in addressing a long-standing research question regarding the neural processing of stereoscopic 3-D motion.
-
Completed
Advanced Spatiomotor Rehabilitation in Blindness and Visual Impairment
We propose a multidisciplinary approach to effective spatiomotor rehabilitation in blindness and visual impairment. For those who have lost vision, the eye-hand coordination normally available for the manipulation of objects for everyday activities is unavailable and has to be replaced by information from other senses
-
Completed
Upper Depth Limit Across Visual Field
Stereopsis is important for tasks of daily living such as eye-hand coordination. It is best in central vision but is also mediated by the periphery. Previously we have shown that individuals with central-field loss who have residual stereopsis in the periphery perform better at an eye-hand-coordination task. Here we sought to determine what sets the limit of stereopsis, defined as the largest disparity that supports the sustained appearance of depth, in the near periphery in healthy individuals.
-
Completed
Motion Perception in Central Field Loss
The project investigates motion perception in individuals with vision loss due to central retinal lesion, but who retain healthy peripheral retina. Healthy peripheral retina is exquisitely sensitive to fast speeds, however, there is limited and conflicting information about motion processing in residual peripheral retina in patients with central field loss, often due to macular degeneration. We use psychophysical and eye tracking approaches to systematically probe speed and direction sensitivity in this population.
-
Completed
The Smith-Kettlewell Haptics Symposium
The Smith-Kettlewell Haptics Symposium was held on March 29, 2018 to honor and remember Dr. Val Morash and her research.
-
Completed
Regressions in Braille Reading
This project explores regressions (movements to re-read text) in braille reading.
The image on the right plots the braille reading finger movements in blue and regressions in black.